Clonal Evolution and Timing of Metastatic Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Genomic Landscape
2.2. Driver Events
2.3. Origin of Metastasis
2.4. Metastatic Divergence
2.5. Therapy-Resistant Subclones
3. Discussion
4. Materials and Methods
4.1. Patients and Tumour Samples
4.2. Ethics Statement
4.3. Sample Processing
4.4. Genotyping
4.5. Whole-Exome Sequencing
4.6. Variant Calling
4.7. Mutation Validation
4.8. Using SNPs for Patient Sample Mismatch or Swaps
4.9. Microsatellite Stability Classification
4.10. Mutational Signature Analysis
4.11. Gene Copy Number Profiling, Cancer Cell Fraction, and Genome Doubling
4.12. Clonality
4.13. Driver Mutation Classification
4.14. Driver Copy Number Classification
4.15. Phylogenetic Trees
4.16. Molecular Time at Dissemination
4.17. Quantifying Therapy Resistance
4.18. dN/dS Analysis
4.19. Heterogeneity Analysis
4.20. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Bazarbashi, S. Cancer Incidence Report Saudi Arabia 2014. Available online: https://nhic.gov.sa/eServices/Documents/2014.pdf (accessed on 14 April 2020).
- Siegel, R.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Ghiringhelli, F.; Hennequin, A.; Drouillard, A.; Lepage, C.; Faivre, J.; Bouvier, A.-M. Epidemiology and prognosis of synchronous and metachronous colon cancer metastases: A French population-based study. Dig. Liver Dis. 2014, 46, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Nordlinger, B.; Arnold, D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii1–iii9. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Fearon, E.R.; Hamilton, S.R.; Kern, S.E.; Preisinger, A.C.; Leppert, M.; Smits, A.M.; Bos, J.L. Genetic Alterations during Colorectal-Tumor Development. N. Engl. J. Med. 1988, 319, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Turajlic, S.; Swanton, C. Metastasis as an evolutionary process. Science 2016, 352, 169–175. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, S.; Wu, S.; Song, P.; Sun, X.; Hu, X.; Zhang, S.; Yu, Y.; Zhu, J.; Li, C.; et al. Multilayered molecular profiling supported the monoclonal origin of metastatic renal cell carcinoma. Int. J. Cancer 2013, 135, 78–87. [Google Scholar] [CrossRef]
- MacIntyre, G.; Van Loo, P.; Corcoran, N.M.; Wedge, D.C.; Markowetz, F.; Hovens, C.M. How Subclonal Modeling Is Changing the Metastatic Paradigm. Clin. Cancer Res. 2016, 23, 630–635. [Google Scholar] [CrossRef] [Green Version]
- Heyde, A.; Reiter, J.G.; Naxerova, K.; Nowak, M.A. Consecutive seeding and transfer of genetic diversity in metastasis. Proc. Natl. Acad. Sci. USA 2019, 116, 14129–14137. [Google Scholar] [CrossRef] [Green Version]
- Ulintz, P.J.; Greenson, J.K.; Hardiman, K.M.; Wu, R.; Fearon, E.R. Lymph Node Metastases in Colon Cancer Are Polyclonal. Clin. Cancer Res. 2017, 24, 2214–2224. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.X.; Krasnick, B.; White, B.S.; Grossman, J.G.; Strand, M.S.; Zhang, J.; Cabanski, C.R.; Miller, C.A.; Fulton, R.S.; Goedegebuure, S.P.; et al. The clonal evolution of metastatic colorectal cancer. Sci. Adv. 2020, 6, eaay9691. [Google Scholar] [CrossRef]
- Leung, M.L.; Davis, A.; Gao, R.; Casasent, A.; Wang, Y.; Sei, E.; Vilar, E.; Maru, D.; Kopetz, S.; Navin, N.E. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017, 27, 1287–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Ishaque, N.; Abba, M.L.; Hauser, C.; Patil, N.; Paramasivam, N.; Huebschmann, D.; Leupold, J.H.; Balasubramanian, G.P.; Kleinheinz, K.; Toprak, U.H.; et al. Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nat. Commun. 2018, 9, 4782. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Ding, J.; Ma, Z.; Sun, R.; Seoane, J.A.; Shaffer, J.S.; Suarez, C.J.; Berghoff, A.S.; Cremolini, C.; Falcone, A.; et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 2019, 51, 1113–1122. [Google Scholar] [CrossRef]
- Lote, H.; Spiteri, I.; Ermini, L.; Vatsiou, A.; Roy, A.; McDonald, A.; Maka, N.; Balsitis, M.; Bose, N.; Simbolo, M.; et al. Carbon dating cancer: Defining the chronology of metastatic progression in colorectal cancer. Ann. Oncol. 2017, 28, 1243–1249. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Park, S.Y.; Gonen, M.; Kim, H.J.; Michor, F.; Polyak, K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Investig. 2010, 120, 636–644. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Christensen, S.; Van Der Roest, B.; Besselink, N.; Janssen, R.; Boymans, S.; Martens, J.W.; Yaspo, M.-L.; Priestley, P.; Kuijk, E.; Cuppen, E.; et al. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Okamoto, W.; Mimaki, S.; Kawamoto, Y.; Bando, H.; Yamashita, R.; Yuki, S.; Yoshino, T.; Komatsu, Y.; Ohtsu, A.; et al. Comparative sequence analysis of patient-matched primary colorectal cancer, metastatic, and recurrent metastatic tumors after adjuvant FOLFOX chemotherapy. BMC Cancer 2019, 19, 255. [Google Scholar] [CrossRef]
- Bielski, C.M.; Zehir, A.; Penson, A.V.; Donoghue, M.T.A.; Chatila, W.K.; Armenia, J.; Chang, M.T.; Schram, A.M.; Jonsson, P.; Bandlamudi, C.; et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 2018, 50, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Jamal-Hanjani, M.; Wilson, G.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Network, T.C.G.A. Comprehensive molecular characterization of human colon and rectal cancer. Nat. Cell Biol. 2012, 487, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Siraj, A.K.; Parvathareddy, S.K.; Pratheeshkumar, P.; Divya, S.P.; Ahmed, S.O.; Melosantos, R.; Begum, R.; Concepcion, R.M.J.; Al-Sanea, N.; Ashari, L.H.; et al. APC truncating mutations in Middle Eastern Population: Tankyrase inhibitor is an effective strategy to sensitize APC mutant CRC To 5-FU chemotherapy. Biomed. Pharmacother. 2020, 121, 109572. [Google Scholar] [CrossRef] [PubMed]
- Siraj, A.K.; Masoodi, T.; Bu, R.; Pratheeshkumar, P.; Al-Sanea, N.; Ashari, L.H.; Abduljabbar, A.; Alhomoud, S.; Al-Dayel, F.; Alkuraya, F.S.; et al. MED12is recurrently mutated in Middle Eastern colorectal cancer. Gut 2017, 67, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Abubaker, J.; Bavi, P.; Al-Harbi, S.; Ibrahim, M.; Siraj, A.K.; Alsanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.; et al. Clinicopathological analysis of colorectal cancers with PIK3CA mutations in Middle Eastern population. Oncogene 2008, 27, 3539–3545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Yang, C.; Li, X.; Luo, W.; Roy, B.; Xiong, T.; Zhang, X.; Yang, H.; Wang, J.; Ye, Z.; et al. The landscape of somatic mutation in sporadic Chinese colorectal cancer. Oncotarget 2018, 9, 27412–27422. [Google Scholar] [CrossRef] [Green Version]
- Uchi, R.; Takahashi, Y.; Niida, A.; Shimamura, T.; Hirata, H.; Sugimachi, K.; Sawada, G.; Iwaya, T.; Kurashige, J.; Shinden, Y. Integrated multiregional analysis proposing a new model of colorectal cancer evolution. PLoS Genet. 2016, 12, e1005778. [Google Scholar] [CrossRef]
- McGranahan, N.; Favero, F.; De Bruin, E.C.; Birkbak, N.J.; Szallasi, Z.; Swanton, C. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 2015, 7, 283ra54. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Li, Z.; Ma, Z.; Curtis, C. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 2020, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.G.; Hung, W.-T.; Lee, I.-H.; Nagpal, S.; Giunta, P.; Degner, S.; Liu, G.; Wassenaar, E.C.E.; Jeck, W.R.; Taylor, M.S.; et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 2020, 52, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Priestley, P.; Baber, J.; Lolkema, M.P.; Steeghs, N.; De Bruijn, E.; Shale, C.; Duyvesteyn, K.; Haidari, S.; Van Hoeck, A.; Onstenk, W.; et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nat. Cell Biol. 2019, 575, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Yaeger, R.; Chatila, W.K.; Lipsyc, M.D.; Hechtman, J.F.; Cercek, A.; Sanchez-Vega, F.; Jayakumaran, G.; Middha, S.; Zehir, A.; Donoghue, M.T.; et al. Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer. Cancer Cell 2018, 33, 125–136.e3. [Google Scholar] [CrossRef] [PubMed]
- Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017, 23, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, C.; Zhang, Y.; Xu, L.; Fang, W.; Zhu, Y.; Zheng, Y.; Chen, X.; Xie, X.; Hu, X.; et al. Genomic signatures reveal DNA damage response deficiency in colorectal cancer brain metastases. Nat. Commun. 2019, 10, 3190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Matsuda, A.; Koizumi, M.; Shinji, S.; Takahashi, G.; Iwai, T.; Takeda, K.; Ueda, K.; Yokoyama, Y.; Hara, K.; et al. Liquid Biopsy for the Management of Patients with Colorectal Cancer. Digestion 2018, 99, 39–45. [Google Scholar] [CrossRef]
- Wei, Q.; Ye, Z.; Zhong, X.; Li, L.; Wang, C.; Myers, R.E.; Palazzo, J.P.; Fortuna, D.; Yan, A.; Waldman, S.A.; et al. Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis. Ann. Oncol. 2017, 28, 2135–2141. [Google Scholar] [CrossRef]
- Gundem, G.; Van Loo, P.; Kremeyer, B.; Alexandrov, L.B.; Tubio, J.M.C.; Papaemmanuil, E.; Brewer, D.S.; Kallio, H.M.; Högnäs, G.; Annala, M.; et al. The evolutionary history of lethal metastatic prostate cancer. Nat. Cell Biol. 2015, 520, 353–357. [Google Scholar] [CrossRef]
- Löppenberg, B.; Dalela, D.; Karabon, P.; Sood, A.; Sammon, J.D.; Meyer, C.P.; Sun, M.; Noldus, J.; Peabody, J.O.; Trinh, Q.-D.; et al. The Impact of Local Treatment on Overall Survival in Patients with Metastatic Prostate Cancer on Diagnosis: A National Cancer Data Base Analysis. Eur. Urol. 2017, 72, 14–19. [Google Scholar] [CrossRef]
- Fleckenstein, J.; Petroff, A.; Schäfers, H.-J.; Wehler, T.; Schöpe, J.; Rübe, C. Long-term outcomes in radically treated synchronous vs. metachronous oligometastatic non-small-cell lung cancer. BMC Cancer 2016, 16, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siraj, A.K.; Masoodi, T.; Bu, R.; Beg, S.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Dawish, M.; Alkuraya, F.; Al-Kuraya, K.S. Genomic Profiling of Thyroid Cancer Reveals a Role for Thyroglobulin in Metastasis. Am. J. Hum. Genet. 2016, 98, 1170–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G.; et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, D.; Sato, T.; Cibulskis, K.; Getz, G.; Stewart, C.; Lichtenstein, L. Calling somatic snvs and indels with mutect2. BioRxiv 2019, 861054. [Google Scholar] [CrossRef] [Green Version]
- De Mattos-Arruda, L.; Sammut, S.-J.; Ross, E.M.; Bashford-Rogers, R.; Greenstein, E.; Markus, H.; Morganella, S.; Teng, Y.; Maruvka, Y.; Pereira, B.; et al. The Genomic and Immune Landscapes of Lethal Metastatic Breast Cancer. Cell Rep. 2019, 27, 2690–2708. [Google Scholar] [CrossRef] [Green Version]
- Obenauf, A.C.; Massagué, J. Surviving at a Distance: Organ-Specific Metastasis. Trends Cancer 2015, 1, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Al-Shamsi, H.O.; Jones, J.; Fahmawi, Y.; Dahbour, I.; Tabash, A.; Abdel-Wahab, R.; Abousamra, A.O.S.; Shaw, K.R.; Xiao, L.; Hassan, M.M.; et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: Determination of frequency and distribution pattern. J. Gastrointest. Oncol. 2016, 7, 882–902. [Google Scholar] [CrossRef] [Green Version]
- Horvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef] [Green Version]
- Pengelly, R.J.; Gibson, J.; Andreoletti, G.; Collins, A.; Mattocks, C.J.; Ennis, S. Erratum to: A SNP profiling panel for sample tracking in whole-exome sequencing studies. Genome Med. 2015, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Niu, B.; Ye, K.; Zhang, Q.; Lu, C.; Xie, M.; McLellan, M.D.; Wendl, M.C.; Ding, L. MSIsensor: Microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 2013, 30, 1015–1016. [Google Scholar] [CrossRef] [Green Version]
- Siraj, A.K.; Prabhakaran, S.; Bavi, P.; Bu, R.; Beg, S.; Al Hazmi, M.; Al-Rasheed, M.; Al-Assiri, M.; Sairafi, R.; Al-Dayel, F.; et al. Prevalence of Lynch syndrome in a Middle Eastern population with colorectal cancer. Cancer 2015, 121, 1762–1771. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Seshan, V.E. FACETS: Allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 2016, 44, e131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, S.L.; Cibulskis, K.; Helman, E.; McKenna, A.; Shen, H.; Zack, T.; Laird, P.W.; Onofrio, R.C.; Winckler, W.; Weir, B.A.; et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 2012, 30, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Londoño, A.I.; Montgomery, A.M.; Smith, H.J.; Dobbin, Z.C.; Katre, A.A.; Martinez, A.; Yang, E.S.; Alvarez, R.D.; Huh, W.K.; et al. Molecular Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma. Mol. Cancer Res. 2018, 16, 813–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannakis, M.; Mu, X.J.; Shukla, S.A.; Qian, Z.R.; Cohen, O.; Nishihara, R.; Bahl, S.; Cao, Y.; Amin-Mansour, A.; Yamauchi, M. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016, 15, 857–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popic, V.; Salari, R.; Hajirasouliha, I.; Kashef-Haghighi, D.; West, R.B.; Batzoglou, S. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 2015, 16, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yates, L.R.; Knappskog, S.; Wedge, D.; Farmery, J.H.; Gonzalez, S.; Martincorena, I.; Alexandrov, L.B.; Van Loo, P.; Haugland, H.K.; Lilleng, P.K.; et al. Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell 2017, 32, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseini, H.; Obradović, M.M.S.; Hoffmann, M.; Harper, K.L.; Sosa, M.S.; Werner-Klein, M.; Nanduri, S.L.K.; Werno, C.; Ehrl, C.; Maneck, M.; et al. Early dissemination seeds metastasis in breast cancer. Nature 2016, 540, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.K.Y.; Bidard, F.-C.; Piscuoglio, S.; Geyer, F.C.; Lim, R.S.; De Bruijn, I.; Shen, R.; Pareja, F.; Berman, S.H.; Wang, L.; et al. Genetic Heterogeneity in Therapy-Naïve Synchronous Primary Breast Cancers and Their Metastases. Clin. Cancer Res. 2017, 23, 4402–4415. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Gao, R.; Sei, E.; Brandt, R.; Hartman, J.; Hatschek, T.; Crosetto, N.; Foukakis, T.; Navin, N.E. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell 2018, 173, 879–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Connors, S.; Pisapia, D.; Huang, Y.; Xu, R.; Greenfield, J. Epig-09genetic And Epigenetic Tumor Evolution in Gliomatosis Cerebri. Neuro Oncol. 2015, 17, v88. [Google Scholar] [CrossRef] [Green Version]
Clinicopathological Variables | n (%) |
---|---|
Age | |
Median | 53.0 |
Range | 32–82 |
≤50 years | 13 (43.3) |
>50 years | 17 (56.7) |
Sex | |
Male | 13 (43.3) |
Female | 17 (56.7) |
Histopathology | |
Adenocarcinoma | 29 (96.7) |
Mucinous carcinoma | 1 (3.3) |
Tumour Site | |
Right colon | 6 (20.0) |
Left colon and rectum | 24 (80.0) |
Histologic Grade | |
Well differentiated | 4 (13.3) |
Moderately differentiated | 24 (80.0) |
Poorly differentiated | 2 (6.7) |
pT | |
T1 | 0 (0.0) |
T2 | 1 (3.3) |
T3 | 20 (66.7) |
T4 | 9 (30.0) |
pN | |
N0 | 5 (16.7) |
N1 | 14 (46.6) |
N2 | 11 (36.7) |
Microsatellite Instability | |
Microsatellite instable (MSI) | 0 (0.0) |
Microsatellite stable (MSS) | 30 (100.0) |
Site of Distant Metastasis | |
Liver | 18 (60.0) |
Lung | 3 (10.0) |
Ovary | 4 (13.3) |
Urinary Bladder | 2 (6.7) |
Spleen | 1 (3.3) |
Adrenal gland | 1 (3.3) |
Prostate | 1 (3.3) |
Treated Primary Tumour | |
No | 19 (63.3) |
Yes | 10 (33.3) |
Unknown | 1 (3.3) |
Treated Distant Metastatic Tumour | |
No | 16 (53.3) |
Yes | 14 (46.7) |
Unknown | 0 (0.0) |
Gene | HGVS a Nomenclature | Response to Treatment | Clinically Actionable |
---|---|---|---|
APC | c.G2752T:p.E918* | Sensitive | Sensitive to inhibitors of WNT signalling and anti-TRAIL antibodies |
APC | c.C3340T:p.R1114* | Sensitive | |
APC | c.G3925T:p.E1309* | Sensitive | |
APC | c.C646T:p.R216* | Resistant | |
APC | c.C3871T:p.Q1291* | Resistant | |
APC | c.C2626T:p.R876* | Resistant | |
APC | c.A4156T:p.R1386* | Sensitive | |
APC | c.C3268T:p.Q1090* | Resistant | |
ARID1B | c.G5515T:p.E1839* | Resistant | - |
CDH11 | c.G1732A:p.G578S | Resistant | - |
CREBBP | c.C6310T:p.R2104C | Resistant | - |
CSMD3 | c.C7792T:p.R2598* | Sensitive | - |
ELF4 | c.G460T:p.E154* | Metastatic specific | - |
ERCC4 | c.G349C:p.D117H | Metastatic specific | - |
FAT1 | c.C10271T:p.T3424M | Resistant | - |
FAT4 | c.G7531C:p.E2511Q | Resistant | - |
FOXO1 | c.G1763A:p.G588D | Resistant | - |
FUS | c.A1361T:p.D454V | Metastatic specific | - |
KMT2D | c.C12634T:p.R4212W | Sensitive | - |
KRAS | c.G35A:p.G12D | Resistant | Resistant to anti-EGFR therapies; sensitive to MEK inhibitors; and targetable by immunotherapies. |
KRAS | c.G35T:p.G12V | Resistant | |
KRAS | c.A183C:p.Q61H | Resistant | |
LEF1 | c.G614A:p.G205E | Resistant | - |
LRP1B | c.G4551T:p.Q1517H | Resistant | - |
MAP2K4 | c.T776A:p.F259Y | Resistant | - |
NCOR2 | c.G2797A:p.D933N | Resistant | - |
NF1 | c.A7409T:p.N2470I | Sensitive | Sensitive to PI3K pathway inhibitors; and resistant to RAF and MEK inhibitors. |
PTPRK | c.C3949T:p.Q1317* | Sensitive | - |
PTPRT | c.C925G:p.P309A | Metastatic specific | - |
RNF43 | c.T158A:p.L53* | Resistant | Sensitive to porcupine inhibitors |
SMAD4 | c.T362G:p.L121* | Resistant | - |
SMAD4 | c.A1064T:p.D355V | Metastatic specific | |
SMAD4 | c.G1082A:p.R361H | Sensitive | |
SMAD4 | c.C1363T:p.Q455* | Sensitive | |
SPEN | c.G578A:p.R193H | Resistant | - |
TP53 | c.G524A:p.R175H | Resistant | Sensitive to cell cycle inhibitors and p53 specific gene therapies or immunotherapies. |
TP53 | c.C586T:p.R196* | Resistant | |
TP53 | c.C742T:p.R248W | Resistant | |
TP53 | c.C378G:p.Y126* | Resistant | |
TP53 | c.G919T+1 | Resistant | |
ZFP36L2 | c.T502C:p.C168R | Resistant | - |
ZFP36L2 | c.460dupT:p.Y154fs*320 | Resistant |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siraj, S.; Masoodi, T.; Siraj, A.K.; Azam, S.; Qadri, Z.; Ahmed, S.O.; AlBalawy, W.N.; Al-Obaisi, K.A.; Parvathareddy, S.K.; AlManea, H.M.; et al. Clonal Evolution and Timing of Metastatic Colorectal Cancer. Cancers 2020, 12, 2938. https://doi.org/10.3390/cancers12102938
Siraj S, Masoodi T, Siraj AK, Azam S, Qadri Z, Ahmed SO, AlBalawy WN, Al-Obaisi KA, Parvathareddy SK, AlManea HM, et al. Clonal Evolution and Timing of Metastatic Colorectal Cancer. Cancers. 2020; 12(10):2938. https://doi.org/10.3390/cancers12102938
Chicago/Turabian StyleSiraj, Sarah, Tariq Masoodi, Abdul K. Siraj, Saud Azam, Zeeshan Qadri, Saeeda O. Ahmed, Wafaa N. AlBalawy, Khadija A. Al-Obaisi, Sandeep K. Parvathareddy, Hadeel M. AlManea, and et al. 2020. "Clonal Evolution and Timing of Metastatic Colorectal Cancer" Cancers 12, no. 10: 2938. https://doi.org/10.3390/cancers12102938
APA StyleSiraj, S., Masoodi, T., Siraj, A. K., Azam, S., Qadri, Z., Ahmed, S. O., AlBalawy, W. N., Al-Obaisi, K. A., Parvathareddy, S. K., AlManea, H. M., AlHussaini, H. F., Abduljabbar, A., Alhomoud, S., Al-Dayel, F. H., Alkuraya, F. S., & Al-Kuraya, K. S. (2020). Clonal Evolution and Timing of Metastatic Colorectal Cancer. Cancers, 12(10), 2938. https://doi.org/10.3390/cancers12102938