GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biological Features
3. Clinical Features
3.1. Oncological and Non-Oncological Hematological Abnormalities
3.2. Infections
3.3. Pulmonary Alveolar Proteinosis (PAP)
3.4. Cardiovascular and Lymphatic
3.5. Other Oncological Malignancies
3.6. Deafness
4. Phenotype-Genotype Clustering
5. Management
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cogle, C.R.; Craig, B.M.; Rollison, D.E.; List, A.F. Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: High number of uncaptured cases by cancer registries. Blood 2011, 117, 7121–7125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Strahm, B. How I Treat Myelodysplastic Syndromes of Childhood. Blood 2018, 131, 1406–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, A.P.; Sampaio, E.P.; Khan, J.; Calvo, K.R.; Lemieux, J.E.; Patel, S.Y.; Frucht, D.M.; Vinh, D.C.; Auth, A.F.; Freeman, K.N.; et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 2011, 118, 2653–2655. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.N.; Chong, C.E.; Carmichael, C.L.; Wilkins, E.J.; Brautigan, P.J.; Li, X.C.; Babic, M.; Lin, M.; Carmagnac, A.; Lee, Y.K.; et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 2011, 43, 1012. [Google Scholar] [CrossRef]
- Ostergaard, P.; Simpson, M.A.; Connell, F.C.; Steward, C.G.; Brice, G.; Woollard, W.J.; Dafou, D.; Kilo, T.; Smithson, S.; Lunt, P.; et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 2011, 43, 929–931. [Google Scholar] [CrossRef] [Green Version]
- Scott, H.S.; Hahn, C.N.; Carmichael, C.L.; Wilkins, E.J.; Chong, C.-E.; Brautigan, P.J.; Babic, M.; Lin, M.; Carmagnac, A.; Lee, Y.K.; et al. GATA2 is a New Predisposition Gene for Familial Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML). Blood 2010, 116. [Google Scholar] [CrossRef]
- Wlodarski, M.W.; Hirabayashi, S.; Pastor, V.; Starý, J.; Hasle, H.; Masetti, R.; Dworzac, M.; Schmugge, M.; van den Heuvel-Eibrink, M.; Ussowicz, M.; et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016, 127, 1387–1397. [Google Scholar] [CrossRef]
- Collin, M.; Dickinson, R.; Bigley, V. Haematopoietic and immune defects associated with GATA2 mutation. Br. J. Haematol. 2015, 169, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Leubolt, G.; Redondo Monte, E.; Greif, P.A. GATA2 mutations in myeloid malignancies: Two zinc fingers in many pies. IUBMB Life 2020, 72, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Crispino, J.D.; Horwitz, M.S. GATA factor mutations in hematologic disease. Blood 2017, 129, 2103–2110. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Griffin, H.; Bigley, V.; Reynard, L.N.; Hussain, R.; Haniffa, M.; Lakey, J.H.; Rahman, T.; Wang, X.-N.; McGovern, N.; et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 2011, 118, 2656–2658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Ma, L.Y.; Huang, Q.H.; Li, G.; Gu, B.W.; Gao, X.D.; Shi, J.Y.; Wang, Y.Y.; Gao, L.; Cai, X.; et al. Gain-of-function mutation of GATA-2 in acute myeloid transformation of chronic myeloid leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 2076–2081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.D.; Hsu, A.P.; Ryu, M.J.; Wang, J.; Gao, X.; Boyer, M.E.; Liu, Y.; Lee, Y.; Calvo, K.R.; Keles, S.; et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J. Clin. Investig. 2012, 122, 3692–3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehr, C.; Grotius, K.; Casadei, S.; Bleckmann, D.; Bode, S.F.N.; Frye, B.C.; Seidls, M.; Gulsuner, S.; King, M.C.; Percival, M.B.; et al. A novel disease-causing synonymous exonic mutation in GATA2 affecting RNA splicing. Blood 2018, 132, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Donadieu, J.; Lamant, M.; Fieschi, C.; de Fontbrune, F.S.; Caye, A.; Ouachee, M.; Beaupain, B.; Baustamante, J.; Poirel, H.A.; Isidor, B.; et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica 2018, 103, 1278–1287. [Google Scholar] [CrossRef] [Green Version]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C.; et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Milne, P.; Jardine, L.; Zandi, S.; Swierczek, S.I.; McGovern, N.; Cookson, S.; Ferozepurwalla, Z.; Langridge, A.; Pagan, S.; et al. The evolution of cellular deficiency in GATA2 mutation. Blood 2014, 123, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Nováková, M.; Žaliová, M.; Suková, M.; Wlodarski, M.; Janda, A.; Froňková, E.; Campr, V.; Lejhancová, K.; Zapletal, O.; Pospíšilová, D.; et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica 2016, 101, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Ganapathi, K.A.; Townsley, D.M.; Hsu, A.P.; Arthur, D.C.; Zerbe, C.S.; Cuellar-Rodriguez, J.; Hickstein, D.D.; Rosenzweing, S.D.; Braylan, R.C.; Young, N.S.; et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood 2015, 125, 56–70. [Google Scholar] [CrossRef]
- McReynolds, L.J.; Calvo, K.R.; Holland, S.M. Germline GATA2 Mutation and Bone Marrow Failure. Hematol. Oncol. Clin. N. Am. 2018, 32, 713–728. [Google Scholar] [CrossRef]
- Lim, K.C.; Hosoya, T.; Brandt, W.; Ku, C.J.; Hosoya-Ohmura, S.; Camper, S.A.; Yamamoto, M.; Engel, J.D. Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J. Clin. Investig. 2012, 122, 3705–3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnemann, A.K.; O’Geen, H.; Keles, S.; Farnham, P.J.; Bresnick, E.H. Genetic framework for GATA factor function in vascular biology. Proc. Natl. Acad Sci. USA 2011, 108, 13641–13646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crall, C.; Morley, K.W.; Rabinowits, G.; Schmidt, B.; Dioun Broyles, A.; Huang, J.T. Merkel cell carcinoma in a patient with GATA2 deficiency: A novel association with primary immunodeficiency. Br. J. Dermatol. 2016, 174, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Haugas, M.; Lilleväli, K.; Hakanen, J.; Salminen, M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev. Dyn. 2010, 239, 2452–2469. [Google Scholar] [CrossRef]
- Mir, M.A.; Kochuparambil, S.T.; Abraham, R.S.; Rodriguez, V.; Howard, M.; Hsu, A.P.; Jackson, A.E.; Holland, S.M.; Patnaik, M.M. Spectrum of myeloid neoplasms and immune deficiency associated with germline GATA2 mutations. Cancer Med. 2015, 4, 490–499. [Google Scholar] [CrossRef]
- Bresnick, E.H.; Jung, M.M.; Katsumara, K.R. Human GATA2 mutations and hematologic disease: How many paths to pathogenesis? Blood Adv. 2020, 4, 4584–4592. [Google Scholar] [CrossRef]
- West, R.R.; Hsu, A.P.; Holland, S.M.; Cuellar-Rodriguez, J.; Hickstein, D.D. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica 2014, 99, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Pastor Loyola, V.B.; Hirabayashi, S.; Pohl, S.; Kozyra, E.J.; Catala, A.; De Moerloose, B.; Hasle, H.; Masetti, R.; Schmugge, M.; Smith, O.; et al. Somatic Genetic and Epigenetic Architecture of Myelodysplastic Syndromes Arising from GATA2 Deficiency. Blood 2015, 126, 299. [Google Scholar] [CrossRef]
- Katsumara, K.R.; Ong, I.M.; DeVilbiss, A.W.; Sanalkumar, R.; Bresnick, E.H. GATA Factor-Dependent Positive-feedback Circuit in Acute Myeloid Leukemia cells. Cell Rep. 2016, 16, 2428–2441. [Google Scholar] [CrossRef] [Green Version]
- McReynolds, L.J.; Yang, Y.; Wong, H.Y.; Tang, J.; Zhang, Y.; Mulé, M.P.; Dub, J.; Palmer, C.; Foruraghi, L.; Liu, Q.; et al. MDS-associated mutations in germline GATA2 mutated patients with hematologic manifestations. Leuk. Res. 2019, 76, 70–75. [Google Scholar] [CrossRef]
- Fujiwara, T.; Fukuhara, N.; Funavama, R.; Nariai, N.; Kamata, M.; Nagashima, T.; Kojima, K.; Onishi, Y.; Sasahara, Y.; Ishizawa, K.; et al. Identification of acquired mutations by whole-genome sequencing in GATA-2 deficiency evolving into myelodysplasia and acute leukemia. Ann. Hematol. 2014, 93, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, M.; Tanase-Nakao, K.; Shima, H.; Shirai, R.; Yoshida, K.; Osumi, T.; Deguchi, T.; Mori, M.; Arakawa, Y.; Takagi, M.; et al. Prevalence of Germline GATA2 and SAMD9/9L Variants in Paediatric Haematological Disorders with Monosomy 7. Br. J. Haematol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tien, F.M.; Hou, H.A.; Tsai, C.H.; Tang, J.L.; Chiu, Y.C.; Chen, C.Y.; Kuo, Y.Y.; Tseng, M.H.; Peng, Y.L.; Liu, M.C.; et al. GATA2 zinc finger 1 mutations are associated with distinct clinico-biological features and outcomes different from GATA2 zinc finger 2 mutations in adult acute myeloid leukemia. Blood Cancer J. 2018, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Nunes-Santos, C.; Sergio, D. Rosenzweig. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010–2017. Front. Immunol. 2018, 9, 1423. [Google Scholar] [CrossRef]
- Cuellar-Rodriguez, J.; Gea-Banacloche, J.; Freeman, A.F.; Hsu, A.P.; Zerbe, C.S.; Calvo, K.R.; Wilder, J.; Kurlander, R.; Olivier, K.N.; Holland, S.M.; et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood 2011, 118, 3715–3720. [Google Scholar] [CrossRef] [Green Version]
- Lübking, A.; Vosberg, S.; Konstandin, N.P.; Dufour, A.; Graf, A.; Krebs, S. Young woman with mild bone marrow dysplasia, GATA2 and ASXL1 mutation treated with allogeneic stem cell transplantation. Leuk. Res. Rep. 2015, 4, 72–75. [Google Scholar] [CrossRef] [Green Version]
- Maeurer, M.; Magalhaes, I.; Andersson, J.; Ljungman, P.; Sandholm, E.; Uhlin, M.; Mattsson, J.; Ringdén, O. Allogeneic Hematopoietic Cell Transplantation for GATA2 Deficiency in a Patient with Disseminated Human Papillomavirus Disease. Transplantation 2014, 98, e95-6. [Google Scholar] [CrossRef]
- Bogaert, D.J.; Laureys, G.; Naesens, L.; Mazure, D.; De Bruyne, M.; Hsu, A.P.; Bordon, V.; Wouters, E.; Tavernier, S.J.; Lambrecht, B.N.; et al. GATA2 deficiency and haematopoietic stem cell transplantation: Challenges for the clinical practitioner. Br. J. Haematol. 2020, 188, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, I.; Avagyan, S.; Stetson, A.; Guo, D.; Al-Sayegh, H.; London, W.B.; Lehman, L. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol. Blood Marrow. Transplant. 2020, 26, 1124–1130. [Google Scholar] [CrossRef]
- Parta, M.; Shah, N.N.; Baird, K.; Rafei, H.; Calvo, K.R.; Hughes, T.; Cole, K.; Kenyon, M.; Schuver, B.B.; Cuellar-Rodriguez, J.; et al. Allogeneic Hematopoietic Stem Cell Transplantation for GATA2 Deficiency Using a Busulfan-Based Regimen. Biol. Blood Marrow. Transplant. 2018, 24, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Hickstein, D. HSCT for GATA2 deficiency across the pond. Blood 2018, 131, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Churpek, J.E.; Pyrtel, K.; Kanchi, K.L.; Shao, L.; Koboldt, D.; Miller, C.A.; Shen, D.; Fulton, R.; O’Laughlin, M.; Fronick, C.; et al. Genomic Analysis of Germ Line and Somatic Variants in Familial Myelodysplasia/Acute Myeloid Leukemia. Blood 2015, 126, 2484–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Muramatsu, H.; Okuno, Y.; Sakaguchi, H.; Yoshida, K.; Kawashima, N.; Xu, Y.; Shiraishi, Y.; Chiba, K.; Tanaka, H.; et al. GATA2 and Secondary Mutations in Familial Myelodysplastic Syndromes and Pediatric Myeloid Malignancies. Haematologica 2015, 100, e398–e401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.Y.; Keel, S.B.; Walsh, T.; Lee, M.K.; Gulsuner, S.; Watts, A.C.; Pritchard, C.C.; Salipante, S.J.; Jeng, M.R.; Hofmann, I.; et al. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity. Haematologica 2015, 100, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlums, H.; Jung, M.; Han, H.; Theorell, J.; Bigley, V.; Chiang, S.C.C.; Allan, D.S.J.; Davidson-Moncada, J.K.; Dickinson, R.E.; Holmes, T.D.; et al. Adaptive NK Cells Can Persist in Patients with GATA2 Mutation Depleted of Stem and Progenitor Cells. Blood 2017, 129, 1927–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, K.E.; Hsu, A.P.; Williams, C.L.; Sayeed, H.; Merritt, B.Y.; Elghetany, M.T.; Holland, S.M.; Bertuch, A.A.; Gramatges, M.M. Somatic Mutations in Children with GATA2-Associated Myelodysplastic Syndrome Who Lack Other Features of GATA2 Deficiency. Blood Adv. 2017, 1, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Kozyra, E.J.; Pastor, V.B.; Lefkopoulos, S.; Sahoo, S.S.; Busch, H.; Voss, R.K.; Erlacher, M.; Lebrecht, D.; Szvetnik, E.A.; Hirabayashi, S.; et al. Synonymous GATA2 Mutations Result in Selective Loss of Mutated RNA and Are Common in Patients with GATA2 Deficiency. Leukemia 2020. [Google Scholar] [CrossRef]
- Fox, L.C.; Tan, M.; Brown, A.L.; Arts, P.; Thompson, E.; Ryland, G.L.; Lickiss, J.; Scott, H.S.; Poplawski, N.K.; Phillips, K.; et al. A Synonymous GATA2 Variant Underlying Familial Myeloid Malignancy with Striking Intrafamilial Phenotypic Variability. Br. J. Haematol. 2020, 190, e297–e301. [Google Scholar] [CrossRef]
Clinical Features | Frequency (%) |
---|---|
Hematological features | |
MDS | 70–84 [15,16] |
AML | 14–19 [15,16] |
ALL | 1.3 [15] |
AA | 2.5 [15] |
JMML | 1.3 [15] |
Immunodeficit | |
Monocytopenia | 49–78 [15,16] |
B lymphopenia | 86–100 [15,16] |
NK lymphopenia | 7.8–82 [15,16] |
Neutropenia | 47 [16] |
Infections | |
Severe viral infections | 70 [16] |
Disseminated NTM infections | 53 [16] |
Severe bacterial infections | 49–56 [15,16] |
Severe fungal infections | 16% [16] |
Persistent EBV viremia | 11% [16] |
Warts | |
HPV-related | 35–40 [15,16] |
Oncologic | 3.8 [15] |
Lymphedema | 11–15 [15,16] |
Pulmonary features | |
PAPs | 3.8–18 [15,16] |
Recurrent bacterial infections | 56 [15] |
Pulmonary hypertension | <20% [16] |
Thrombotic complications | 9–25 [15,16] |
Deafness | 1.3 [15] |
Autoimmune features | 11 [15] |
Urinary tract malformation | 5 [15] |
Obsetrian complications | 6.3–33 [15,16] |
Hypothyroidism | 1.3–14 [15,16] |
No. of Patients with GATA2 Related MDS/AML | MDS Type | Additional Cytogenetic Abnormality | Median Age at MDS Diagnosis (Range) | HSCT | Outcome | Reference |
---|---|---|---|---|---|---|
3 | AML(33%) MDS (66%) | t(1;21) (33%) | 27.7 (10–38) | 3/3 | Relapse (33%) Alive (66%) | Mir, 2015 [25] |
28 | MDS-RAEB-1 (7%) MDS-RAEB-2 (4%) MDS-RCMD (89%) | Monosomy 7 (14%) Trisomy 8 (25%) Der(1;7) (4%) | 35.4 (12–73) | n.a. | n.a. | Ganapathi [19] |
7 | MDS-RCMD (29%) MDS-RAEB-2 (29%) AML (43%) | Trisomy 8 (14%) | 16.8 (13–25) | 1/7 | Alive (57%) Dead (43%) | Churpek [42] |
5 | MDS n.s. (80%) MDS-RCMD (20%) | Trisomy 8 (60%) Monosomy 7 (40%) Der(1;7) (40%) | n.a. | 4/5 | Alive (60%) Dead (40%) | Wang [43] |
5 | Marrow failure (100%) | Trisomy 8 (40%) | 16.0 (12–22) | 1/5 | n.a. | Zahng [44] |
57 | RCC (54%) RAEB (35%) RAEB-t (11%) | Monosomy 7 (68%) Trisomy 8 (9%) Der(1;7) (7%) | 12.0 (3–19) | 50/57 | Died (28%) Relapse (5%) Alive (67%) | Wlodarski [7] |
11 | RCC (73%) RCMD (9%) RAEB (18%) | Monosomy 7 (73%) Trisomy 8 (18%) | 14.7 (4–21) | 9/11 | Alive (73%) Dead (27%) Relapse (9%) | Novakova [18] |
5 | MDS n.s. (100%) | n.a. | 26.0 (7–60) | n.a. | n.a. | Schlums [45] |
5 | RCC (100%) | Monosomy 7 (80%) | 9.8 (5–15) | 5/5 | Alive (80%) Dead (20%) | Fisher [46] |
11 | MDS n.s. (100%) | Trisomy 8 (45%) | 33.5 (23–53) | n.a. | n.a. | McReynolds [30] |
8 * | RCC (75%) RAEB (13%) MDS-MLD (13%) | Monosomy 7 (50%) | 11.6 (3–24) | 6/8 | Alive (88%) Dead (13%) | Kozyra [47] |
3 | AML (33%) MDS (66%) | n.a. | 19.0 (13–27) | 2/3 | Alive (66%) Dead after HSCT (33%) | Bogaert [36] |
1 | MDS n.s. (100%) | Monosomy 7 (50%) | 22 (19–25) | 1/2 | Alive (50%) Dead (50%) | Fox [48] |
6 | AML (50%) RAEB (17%) RCC (33%) | Monosomy 7 (100%) Trisomy 8 (17%) | 10.5 (5–15) | 6/6 | Alive (83%) Dead (17%) | Yoshida [33] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruzzese, A.; Leardini, D.; Masetti, R.; Strocchio, L.; Girardi, K.; Algeri, M.; Del Baldo, G.; Locatelli, F.; Mastronuzzi, A. GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers 2020, 12, 2962. https://doi.org/10.3390/cancers12102962
Bruzzese A, Leardini D, Masetti R, Strocchio L, Girardi K, Algeri M, Del Baldo G, Locatelli F, Mastronuzzi A. GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers. 2020; 12(10):2962. https://doi.org/10.3390/cancers12102962
Chicago/Turabian StyleBruzzese, Antonella, Davide Leardini, Riccardo Masetti, Luisa Strocchio, Katia Girardi, Mattia Algeri, Giada Del Baldo, Franco Locatelli, and Angela Mastronuzzi. 2020. "GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes" Cancers 12, no. 10: 2962. https://doi.org/10.3390/cancers12102962
APA StyleBruzzese, A., Leardini, D., Masetti, R., Strocchio, L., Girardi, K., Algeri, M., Del Baldo, G., Locatelli, F., & Mastronuzzi, A. (2020). GATA2 Related Conditions and Predisposition to Pediatric Myelodysplastic Syndromes. Cancers, 12(10), 2962. https://doi.org/10.3390/cancers12102962