Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Circulating Specific IRAP Activity
2.2. Circulating Oxytocin
2.3. Circulating Vasopressin
3. Discussion
4. Materials and Methods
4.1. Subjects and Study Design
4.2. Sample Acquisition
4.3. Insulin-Regulated Aminopeptidase Activity Assay
4.4. Oxytocin Assay
4.5. Arginine-Vasopressin Assay
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carrera, M.P.; Ramírez-Expósito, M.J.; Dueñas, B.; Mayas, M.D.; García, M.J.; De La Chica, S.; Cortés, P.; Ruíz-Sanjuan, M.; Martínez-Martos, J.M. Insulin-regulated aminopeptidase/placental leucil Aminopeptidase (IRAP/P-lAP) and angiotensin IV-forming activities are modified in serum of rats with breast cancer induced by N-methyl-nitrosourea. Anticancer Res. 2006, 26, 1011–1014. [Google Scholar]
- Carrera, M.D.P.; Ramírez-Expósito, M.J.; Mayas, M.D.; Garcia, M.; Martínez-Martos, J.M.; Carrera-González, M.D.P. Mammary renin–angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer. Tumor Biol. 2010, 31, 583–588. [Google Scholar] [CrossRef]
- Carrera-González, M.P.; Ramírez-Expósito, M.J.; De Saavedra, J.M.A.; Sánchez-Agesta, R.; Mayas, M.D.; Martínez-Martos, J.M.; Carrera-González, M.D.P. Hypothalamus-pituitary-thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system. Tumor Biol. 2011, 32, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martos, J.M.; Carrera-González, M.D.P.; Dueñas, B.; Mayas, M.D.; García, M.J.; Ramírez-Expósito, M.J. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer. Breast 2011, 20, 444–447. [Google Scholar] [CrossRef]
- Ramírez-Expósito, M.J.; Carrera-González, M.D.P.; Mayas, M.D.; Dueñas, B.; Martínez-Ferrol, J.; Martínez-Martos, J.M. Neoadjuvant chemotherapy modifies serum angiotensinase activities in women with breast cancer. Maturitas 2012, 72, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Exposito, M.J.; Dueñas-Rodríguez, B.; Martínez-Martos, J.M. Circulating renin-angiotensin system-regulating specific aminopeptidase activities in pre- and post-menopausal women with breast cancer treated or not with neoadyuvant chemotherapy. A two years follow up study. Breast 2019, 43, 28–30. [Google Scholar] [CrossRef]
- Herbst, J.J.; Ross, S.A.; Scott, H.M.; Bobin, S.A.; Morris, N.J.; Lienhard, G.E.; Keller, S.R. Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am. J. Physiol. Metab. 1997, 272, E600–E606. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Mizutani, S.; Adachi, H.; Kimura, M.; Nakazato, H.; Tomoda, Y. Identification of human placental leucine aminopeptidase as oxytocinase. Arch. Biochem. Biophys. 1992, 292, 388–392. [Google Scholar] [CrossRef]
- Li, D.T.; Habtemichael, E.N.; Bogan, J.S. Vasopressin inactivation: Role of insulin-regulated aminopeptidase. Vitam. Horm. 2019, 113, 101–128. [Google Scholar] [CrossRef]
- Liu, H.; Gruber, C.W.; Alewood, P.F.; Möller, A.; Muttenthaler, M. The oxytocin receptor signalling system and breast cancer: A critical review. Oncogene 2020, 39, 5917–5932. [Google Scholar] [CrossRef]
- Keller, S.R.; Susanna, R.K. The insulin-regulated aminopeptidase: A companion and regulator of GLUT4. Front. Biosci. 2003, 8, s410–s420. [Google Scholar] [CrossRef] [Green Version]
- Keller, S.R. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol. Pharm. Bull. 2004, 27, 761–764. [Google Scholar] [CrossRef] [Green Version]
- Wallis, M.G.; Lankford, M.F.; Keller, S.R. Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1092–E1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagasaka, T.; Nomura, S.; Okamura, M.; Tsujimoto, M.; Nakazato, H.; Oiso, Y.; Nakashima, N.; Mizutani, S. Immunohistochemical localization of placental leucine aminopeptidase/oxytocinase in normal human placental, fetal and adult tissues. Reprod. Fertil. Dev. 1997, 9, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Fernando, R.N.; Albiston, A.L.; Chai, S.Y. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus—Potential role in modulation of glucose uptake in neurones? Eur. J. Neurosci. 2008, 28, 588–598. [Google Scholar] [CrossRef]
- Papakyriakou, A.; Zervoudi, E.; Theodorakis, E.A.; Saveanu, L.; Stratikos, E.; Vourloumis, D. Novel selective inhibitors of aminopeptidases that generate antigenic peptides. Bioorg. Med. Chem. Lett. 2013, 23, 4832–4836. [Google Scholar] [CrossRef] [Green Version]
- Saveanu, L.; Carroll, O.; Weimershaus, M.; Guermonprez, P.; Firat, E.; Lindo, V.; Greer, F.; Davoust, J.; Kratzer, R.; Keller, S.R.; et al. IRAP Identifies an Endosomal Compartment Required for MHC Class I Cross-Presentation. Science 2009, 325, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Saveanu, L.; Van Endert, P.M. The Role of Insulin-Regulated Aminopeptidase in MHC Class I Antigen Presentation. Front. Immunol. 2012, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- Albiston, A.L.; Cacador, M.; Sinnayah, P.; Burns, P.; Chai, S.Y. Insulin-regulated aminopeptidase inhibitors do not alter glucose handling in normal and diabetic rats. J. Mol. Endocrinol. 2017, 58, 193–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, S.Y.; Fernando, R.; Peck, G.; Ye, S.-Y.; Mendelsohn, F.A.O.; Jenkins, T.A.; Albiston, A.L. The angiotensin IV/AT4 receptor. Cell. Mol. Life Sci. 2004, 61, 2728–2737. [Google Scholar] [CrossRef]
- Harmon, A.W.; Patel, Y.M. Naringenin Inhibits Glucose Uptake in MCF-7 Breast Cancer Cells: A Mechanism for Impaired Cellular Proliferation. Breast Cancer Res. Treat. 2004, 85, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.A.; Meneses, A.M.; Vera, J.C.; Guzman, C.; Nualart, F.; Astuya, A.; García, M.D.L.A.; Kato, S.; Carvajal, A.; Pinto, M.; et al. Estrogen and Progesterone Up-Regulate Glucose Transporter Expression in ZR-75-1 Human Breast Cancer Cells. Endocrinology 2003, 144, 4527–4535. [Google Scholar] [CrossRef] [Green Version]
- Albiston, A.L.; Fernando, R.N.; Yeatman, H.R.; Burns, P.; Ng, L.; Daswani, D.; Diwakarla, S.; Pham, V.; Chai, S.Y. Gene knockout of insulin-regulated aminopeptidase: Loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol. Learn. Mem. 2010, 93, 19–30. [Google Scholar] [CrossRef]
- Albiston, A.L.; McDowall, S.G.; Matsacos, D.; Sim, P.; Clune, E.; Mustafa, T.; Lee, J.; Mendelsohn, F.A.O.; Simpson, R.J.; Connolly, L.M.; et al. Evidence That the Angiotensin IV (AT4) Receptor Is the Enzyme Insulin-regulated Aminopeptidase. J. Biol. Chem. 2001, 276, 48623–48626. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Mustafa, T.; McDowall, S.G.; Mendelsohn, F.A.O.; Brennan, M.; Lew, R.A.; Albiston, A.L.; Chai, S.Y. Structure-Activity Study of LVV-Hemorphin-7: Angiotensin AT4 Receptor Ligand and Inhibitor of Insulin-Regulated Aminopeptidase. J. Pharmacol. Exp. Ther. 2002, 305, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascher, D.B.; Cromer, B.A.; Morton, C.J.; Volitakis, I.; Cherny, R.A.; Albiston, A.L.; Chai, S.Y.; Parker, M.W. Regulation of Insulin-Regulated Membrane Aminopeptidase Activity by Its C-Terminal Domain. Biochemistry 2011, 50, 2611–2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albiston, A.L.; Mustafa, T.; McDowall, S.G.; Mendelsohn, F.A.; Lee, J.; Chai, S.Y. AT4 receptor is insulin-regulated membrane aminopeptidase: Potential mechanisms of memory enhancement. Trends Endocrinol. Metab. 2003, 14, 72–77. [Google Scholar] [CrossRef]
- Lew, R.A.; Mustafa, T.; Ye, S.; McDowall, S.G.; Chai, S.Y.; Albiston, A.L. Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J. Neurochem. 2004, 86, 344–350. [Google Scholar] [CrossRef]
- Martínez, J.M.; Prieto, I.; Ramírez, M.J.; Cueva, C.; Alba, F.; Ramírez, M. Aminopeptidase Activities in Breast Cancer Tissue. Clin. Chem. 1999, 45, 1797–1802. [Google Scholar] [CrossRef] [Green Version]
- North, W.G.; Pai, S.; Friedmann, A.; Yu, X.; Fay, M.; Memoli, V. Vasopressin gene related products are markers of human breast cancer. Breast Cancer Res. Treat. 1995, 34, 229–235. [Google Scholar] [CrossRef]
- Cassoni, P.; Sapino, A.; Negro, F.; Bussolati, G. Oxytocin inhibits proliferation of human breast cancer cell lines. Virchows Arch. 1994, 425, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Farsinejad, S.; Gheisary, Z.; Samani, S.E.; Alizadeh, A.M. Mitochondrial targeted peptides for cancer therapy. Tumor Biol. 2015, 36, 5715–5725. [Google Scholar] [CrossRef]
- Imanieh, M.H.; Bagheri, F.; Alizadeh, A.M.; Ashkani-Esfahani, S. Oxytocin has therapeutic effects on cancer, a hypothesis. Eur. J. Pharmacol. 2014, 741, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Khori, V.; Alizadeh, A.M.; Khalighfard, S.; Heidarian, Y.; Khodayari, H. Oxytocin effects on the inhibition of the NF-κB/miR195 pathway in mice breast cancer. Peptides 2018, 107, 54–60. [Google Scholar] [CrossRef]
- Alizadeh, A.M.; Heydari, Z.; Rahimi, M.; Bazgir, B.; Shirvani, H.; Alipour, S.; Heidarian, Y.; Khalighfard, S.; Isanejad, A. Oxytocin mediates the beneficial effects of the exercise training on breast cancer. Exp. Physiol. 2017, 103, 222–235. [Google Scholar] [CrossRef]
- Ariana, M.; Pornour, M.; Mehr, S.S.; Vaseghi, H.; Ganji, S.M.; Alivand, M.R.; Salari, M.; E Akbari, M. Preventive effects of oxytocin and oxytocin receptor in breast cancer pathogenesis. Pers. Med. 2019, 16, 25–34. [Google Scholar] [CrossRef]
- Keegan, B.P.; Akerman, B.L.; Pequeux, C.; North, W.G. Provasopressin expression by breast cancer cells: Implications for growth and novel treatment strategies. Breast Cancer Res. Treat. 2005, 95, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Pequeux, C.; Keegan, B.P.; Hagelstein, M.-T.; Geenen, V.; Legros, J.-J.; North, W.G. Oxytocin- and vasopressin-induced growth of human small-cell lung cancer is mediated by the mitogen-activated protein kinase pathway. Endocr. Relat. Cancer 2004, 11, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Seckl, M.J.; Higgins, T.; Widmer, F.; Rozengurt, E. [D-Arg1,D-Trp5,7,9,Leu11]substance P: A novel potent inhibitor of signal transduction and growth in vitro and in vivo in small cell lung cancer cells. Cancer Res. 1997, 57, 51–54. [Google Scholar]
- Garona, J.; Alonso, D.F. Perioperative biology in primary breast cancer: Selective targeting of vasopressin type 2 receptor using desmopressin as a novel therapeutic approach. Breast Cancer Res. Treat. 2016, 158, 597–599. [Google Scholar] [CrossRef]
- Weinberg, R.S.; O Grecco, M.; Ferro, G.S.; Seigelshifer, D.J.; Perroni, N.V.; Terrier, F.J.; Sánchez-Luceros, A.; Maronna, E.; Sánchez-Marull, R.; Frahm, I.; et al. A phase II dose-escalation trial of perioperative desmopressin (1-desamino-8-d-arginine vasopressin) in breast cancer patients. SpringerPlus 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, O.; Villarreal-Garza, C.; Vizcaíno, G.; Pineda, B.; Hernández-Pedro, N.; Guevara-Salazar, P.; Wegman-Ostrosky, T.; Villanueva-Rodríguez, G.; Gamboa-Domínguez, A. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumor Biol. 2015, 36, 5627–5634. [Google Scholar] [CrossRef]
- Raimondi, S.; Botteri, E.; Munzone, E.; Cipolla, C.; Rotmensz, N.; DeCensi, A.; Gandini, S. Use of beta-blockers, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers and breast cancer survival: Systematic review and meta-analysis. Int. J. Cancer 2016, 139, 212–219. [Google Scholar] [CrossRef]
- Sipahi, I.; Debanne, S.M.; Rowland, D.Y.; I Simon, D.; Fang, J.C. Angiotensin-receptor blockade and risk of cancer: Meta-analysis of randomised controlled trials. Lancet Oncol. 2010, 11, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Garrido, P.; Morán, J.; Alonso, A.; González, S.; González, C. 17β-Estradiol Activates Glucose Uptake via GLUT4 Translocation and PI3K/Akt Signaling Pathway in MCF-7 Cells. Endocrinology 2013, 154, 1979–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, P.; Osorio, F.G.; Morán, J.; Cabello, E.; Alonso, A.; Freije, J.M.; González, C. Loss of GLUT4 Induces Metabolic Reprogramming and Impairs Viability of Breast Cancer Cells. J. Cell. Physiol. 2014, 230, 191–198. [Google Scholar] [CrossRef]
- Mohr, E.; Meyerhof, W.; Richter, D. Vasopressin and Oxytocin: Molecular Biology and Evolution of the Peptide Hormones and Their Receptors. Vitam. Horm. 1995, 51, 235–266. [Google Scholar] [CrossRef]
- Gupta, S.K.; Aziz, M.; A Khan, A. Serum leucine aminopeptidase estimation: A sensitive prognostic indicator of invasiveness in breast carcinoma. Indian J. Pathol. Microbiol. 1989, 32, 301–305. [Google Scholar]
- Carrera-González, M.D.P.; Ramírez-Expósito, M.J.; Valenzuela, M.; García, M.; Mayas, M.; Martínez-Martos, J.; Martínez-Martos, J.M. Serum oxytocinase activity is related to tumor growth parameters in N-methyl nitrosourea induced rat breast cancer. Life Sci. 2004, 75, 1369–1377. [Google Scholar] [CrossRef]
- Cassoni, P.; Catalano, M.G.; Sapino, A.; Marrocco, T.; Fazzari, A.; Bussolati, G.; Fortunati, N. Oxytocin modulates estrogen receptor alpha expression and function in MCF7 human breast cancer cells. Int. J. Oncol. 2002, 21, 375–378. [Google Scholar] [CrossRef]
- Anderson, W.F.; Chatterjee, N.; Ershler, W.B.; Brawley, O.W. Estrogen Receptor Breast Cancer Phenotypes in the Surveillance, Epidemiology, and End Results Database. Breast Cancer Res. Treat. 2002, 76, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Saji, F.; Nishimori, K.; Ogita, K.; Nakamura, H.; Koyama, M.; Murata, Y. Molecular regulation of the oxytocin receptor in peripheral organs. J. Mol. Endocrinol. 2003, 30, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Copland, J.A.; Jeng, Y.-J.; Strakova, Z.; Ives, K.L.; Hellmich, M.R.; Soloff, M.S. Demonstration of Functional Oxytocin Receptors in Human Breast Hs578T Cells and Their Up-Regulation through a Protein Kinase C-Dependent Pathway. Endocrinology 1999, 140, 2258–2267. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.H.; Ang, V.T.; Jenkins, J.S.; Silverlight, J.J.; Coombes, R.C.; A Luqmani, Y. Interaction of vasopressin and oxytocin with human breast carcinoma cells. Cancer Res. 1990, 50, 7882–7886. [Google Scholar]
- North, W.G. Gene regulation of vasopressin and vasopressin receptors in cancer. Exp. Physiol. 2000, 85, 27s–40s. [Google Scholar] [CrossRef]
- Edwards, C. Vasopressin and oxytocin in health and disease. Clin. Endocrinol. Metab. 1977, 6, 223–259. [Google Scholar] [CrossRef]
- Ochȩdalska, A.L.; Rȩbas, E.; Kunert-Radek, J.; Fournié-Zaluski, M.-C.; Pawlikowski, M. Angiotensins II and IV stimulate the activity of tyrosine kinases in estrogen-induced rat pituitary tumors. Biochem. Biophys. Res. Commun. 2002, 297, 931–933. [Google Scholar] [CrossRef]
Characteristics | Premenopausal | Postmenopausal | ||
---|---|---|---|---|
Untreated | Treated with Neoadjuvance | Untreated | Treated with Neoadjuvance | |
n (%) | n (%) | n (%) | n (%) | |
Age (Years) | ||||
Mean | 45.2 ± 1.2 | 45.1 ± 0.8 | 65.3 ± 0.9 | 65.3 ± 0.90 |
Median | 48 | 46 | 64 | 63 |
Range | 27–54 | 27–54 | 57–78 | 56–78 |
Tumor Histology | ||||
Ductal | 39 (100%) | 63 (100%) | 44 (100%) | 52 (100%) |
Lobular | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Other | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Molecular Subtypes | ||||
Luminal A | 23 (59.0%) | 34 (54.0%) | 27 (61.4%) | 27 (51.9%) |
Luminal B | 10 (25.6%) | 7 (11.1%) | 6 (13.6%) | 12 (23.1%) |
Her-2 | 2 (5.1%) | 18 (28.6%) | 4 (9.1%) | 0 (0%) |
Triple negative | 4 (10.3%) | 4 (6.3%) | 7 (15.9%) | 13 (25.0%) |
Pathologic Tumor Size (cm) | ||||
Mean ± SEM | 1.31 ± 0.09 | 3.02 ± 0.17 | 1.52 ± 0.14 | 3.36 ± 0.15 |
Median | 1.20 | 3.00 | 1.30 | 3.00 |
Range | 0.5–3.1 | 0.8–5.6 | 0.8–5.0 | 1.4–5.0 |
Pathologic T Classification | ||||
0 | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
1 | 35 (89.7%) | 18 (28.6%) | 40 (90.9%) | 6 (11.5%) |
2 | 4 (10.3%) | 40 (63.5%) | 4 (9.1%) | 43 (82.7%) |
3 | 0 (0%) | 5 (7.9%) | 0 (0%) | 3 (5.8%) |
Scarf–Bloom–Richardson Grade | ||||
I | 19 (48.7%) | 8 (12.7%) | 10 (22.7%) | 13 (25%) |
II | 20 (51.3%) | 55 (87.3%) | 34 (77.3%) | 39 (75%) |
III | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Hormonal Status | ||||
ER+ | 33 (84.6%) | 41 (65.1%) | 33 (75.0%) | 36 (69.2%) |
ER− | 6 (15.4%) | 22 (34.9%) | 11 (25.0%) | 16 (30.8%) |
PgR+ | 25 (64.1%) | 41 (65.1%) | 27 (61.4%) | 33 (63.5%) |
PgR− | 14 (35.9%) | 22 (34.9%) | 17 (38.6%) | 19 (36.5%) |
HER-2/neu Status | ||||
Negative | 29 (74.4%) | 38 (60.3%) | 34 (77.3%) | 49 (94.2%) |
Positive | 10 (25.6%) | 25 (39.7%) | 10 (22.7%) | 3 (5.8%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Expósito, M.J.; Dueñas-Rodríguez, B.; Carrera-González, M.P.; Navarro-Cecilia, J.; Martínez-Martos, J.M. Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin. Cancers 2020, 12, 3252. https://doi.org/10.3390/cancers12113252
Ramírez-Expósito MJ, Dueñas-Rodríguez B, Carrera-González MP, Navarro-Cecilia J, Martínez-Martos JM. Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin. Cancers. 2020; 12(11):3252. https://doi.org/10.3390/cancers12113252
Chicago/Turabian StyleRamírez-Expósito, María Jesús, Basilio Dueñas-Rodríguez, María Pilar Carrera-González, Joaquín Navarro-Cecilia, and Jose Manuel Martínez-Martos. 2020. "Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin" Cancers 12, no. 11: 3252. https://doi.org/10.3390/cancers12113252
APA StyleRamírez-Expósito, M. J., Dueñas-Rodríguez, B., Carrera-González, M. P., Navarro-Cecilia, J., & Martínez-Martos, J. M. (2020). Insulin-Regulated Aminopeptidase in Women with Breast Cancer: A Role beyond the Regulation of Oxytocin and Vasopressin. Cancers, 12(11), 3252. https://doi.org/10.3390/cancers12113252