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Abstract: This paper describes a method to reconstruct bendable superficial hyperthermia applicators
for routine clinical patient-specific treatment planning. The reconstruction uses a CT scan with a
flexible silicone dummy applicator positioned on the patient. The curvature was approximated
by two second-degree polynomial functions. A realistic treatment series was mimicked using a
standard Alderson radiation therapy phantom and a treatment planning model was reconstructed
from a CT scan. The variation among treatment curvatures was compared to the modelled curvature.
The mathematical approximation of the applicator curvature was validated for this phantom
experiment, as well as for clinical treatments. The average maximum variation among the successive
mimicked sessions was 3.67 ± 0.69 mm (range 2.98–4.60 mm). The maximum deviation between
the treatment curvature and the modelled curvature was 4.35 mm. Comparing the treatment and
approximated curvature yielded a maximum deviation between 2.98 mm and 4.12 mm. For clinical
treatments the maximum deviation of the treatment and approximated curvature varied between
0.48 mm and 1.98 mm. These results allow adequate reconstruction of bendable hyperthermia
applicators for treatment planning, which can further improve treatment quality, for example by
optimizing the water bolus temperature for patient-specific tumor depths. Predictive parameters for
hyperthermia treatment outcome can easily be evaluated and compared for various input parameters.
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1. Introduction

Hyperthermia, i.e., heating of tumor tissue to 40–43 ◦C for 1 h, is a very effective treatment that
enhances the effect of radiotherapy and chemotherapy [1]. Superficial hyperthermia combined with
radiotherapy is a proven treatment combination for, e.g., recurrent breast cancer infiltrating up to
4 cm beyond the skin [2]. Randomized trials showed that the overall complete response rate for
patients with recurrent breast cancer increases from 41% with radiation alone to 59% with radiation
plus hyperthermia [2].

Accurate temperature information during superficial hyperthermia is essential to ensure treatment
quality [3], and achieved temperatures are related to clinical outcome and thermal toxicity [4].
Information about the 3D temperature distribution is lacking, since standard temperature measurements
during superficial hyperthermia are limited to measurements at the skin, combined with one or two
invasive thermometry probes, if possible [3,5]. This makes it difficult to optimize temperatures
during treatment and assess treatment quality, which supports the need for treatment planning in
superficial hyperthermia.
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Hyperthermia treatment planning simulates power absorption and/or temperature patterns in the
patient to visualize the effect of different treatment strategies [6,7]. Treatment planning could be very
helpful to obtain more information about the 3D temperature distribution and to optimize relevant
treatment parameters, such as applicator positioning, bolus temperature and applied power. Different
applicators can be compared to determine the most effective heating technique [8,9] and previous
studies have demonstrated the usefulness of treatment planning for superficial hyperthermia [10],
for example, to support the selection of the optimal superficial heating strategy in non-standard
situations, such as when metallic implants are present in the heated region [11]. Scar tissue also
requires special attention during treatment and in treatment planning, since hot spots (i.e., excessive
normal tissue temperatures) can occur easily because of the low heat removal by perfusion at these
locations [12].

Several different types of radiofrequency and microwave applicators are clinically used, with an
operating frequency typically in the range of 434 MHz to 2450 MHz. Some of these designs are
rigid, such as Lucite cone applicators, waveguides and spiral antennas [13–16]. Other applicators can
either be bent or have a fixed curvature in order to follow the patient’s body contour, i.e., contact
flexible microstrip applicators (CFMAs, Figure 1) and the ALBA4000 ON [17,18], respectively. Clinical
advantages of these curved/bendable applicators are the body conformability and the increased effective
heating depth (EHD), which depends on the curvature. The EHD is defined as the additional depth at
which the relative power deposition has decreased to 50% of the value at 1 cm depth. The EHD is
~1.5 cm for a straight CFMA operating at 434 MHz [9,19]. With a mild curvature [20] (κ = 3.98 m−1),
positioned at the top of an elliptical phantom (cross-section 36 × 25 cm), the EHD increases with
1–2 mm [19,21]. With a roughly three times sharper curvature (κ = 11.21 m−1), positioned around
the side of the phantom, the increase is ~1 cm [19,21]. The shape of the applicator remains stable
after bending.
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Figure 1. A photograph of four contact flexible microstrip applicators (CFMAs; top left), positioning
during treatment (top right) and the five different sizes of CFMAs (bottom). The blue rubber frame
around the antennas has an integrated water bolus for electromagnetic coupling and skin temperature
control during treatment. The effective field size (i.e., the area covered by the 50% iso-SAR contour) is
indicated by the white contour on the antennas.
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Previous research validated modelling of standard straight and curved CFMAs by comparing
measured and simulated specific absorption rate (SAR) distributions in tissue-equivalent
phantoms [9,21]. When modelling elliptical phantoms, the curvature of the bent CFMAs can be
described relatively easily using a partial ellipse. For patient-specific hyperthermia treatment planning
a different approach is required to model the treatment position, orientation and the treatment
curvature of the applicator. Linthorst et al. described a procedure to create a model for superficial
hyperthermia with rigid Lucite cone applicators, using a mold representing the antenna footprint on
the CT scan [22]. Drizdal et al. have developed a method to reconstruct the position of an array of six
Lucite cone applicators from multiple-view images [23]. However, these methods were developed
for straight applicators and would thus require adaptations to also reconstruct the antenna curvature,
since modelling/rasterizing curved applicators for treatment planning requires a correct mathematical
function describing the antenna curvature. Furthermore, since a number of manual steps are required,
it takes about 1.5 h to reconstruct the applicator positions from a set of photos [23], which makes it less
practical for routine clinical use. Methods to reconstruct curved superficial hyperthermia applicators
for routine patient-specific treatment planning have not been described in the literature so far, and thus
routine clinical application of treatment planning for superficial hyperthermia with curved applicators
is not yet possible.

The aim of this study was to develop a new method to reconstruct the clinical applicator position,
curvature and orientation of bendable hyperthermia applicators, which is suitable for routine clinical
patient-specific hyperthermia treatment planning, i.e., applicator reconstruction should be possible
within approximately 5 min. The developed method reconstructs the antenna position and shape based
on specified points on a CT scan with a dummy applicator. Two separate second-degree polynomial
functions are fitted to represent the applicator curvature. The curvature modelling is validated for
CFMAs and the reconstruction method is applied on a CT scan of a patient with recurrent breast cancer
to demonstrate the use in a clinical treatment planning process.

2. Materials and Methods

2.1. Contact Flexible Microstrip Applicators

CFMAs (SRPC “Istok”, Moscow, Russia) operating at 434 MHz are available in five different sizes
and can be bent to follow the patient’s body contour [17]. For convenience a basic summary of the
antenna design is given here. For more details the reader is referred to Gelvich and Mazokhin [17], who
extensively described the design and technical aspects of the CFMAs. The five different sizes, labelled
by the manufacturer as 1H (aperture size 7.2 × 19.7 cm), 2H (14.8 × 14.3 cm), 3H (28.7 × 20.7 cm),
4H (19.6 × 19.6 cm) and 5H (19.7 × 28.5 cm) are drawn schematically in Figure 1. The design of a
CFMA is based on a quarter-wave microstrip resonator. A CFMA consists of two coplanar active
electrodes and a shield electrode, with a fluoroplastic substrate in between [17]. The active electrodes
are separated by means of an excitation slot of approximately 5 mm (manufacturer specifications).
The orientation of the principal electric field component is perpendicular to this slot and bending
is possible only around the axis perpendicular to the main field component. The microstrip line
is excited by a center pin of a coaxial cable. A short-circuit is positioned at ~ 1

4λ from the exciting
slot (manufacturer specifications), where λ is the wavelength in the substrate [17]. A rubber frame
surrounds the electrodes and this rubber frame has an integrated bolus bag filled with circulating
deionized water to couple the electromagnetic fields into tissue and to control the skin temperature
during treatment. Folds in the bolus should be prevented for optimal coupling and skin temperature
control. A schematic drawing is shown in Figure 2.
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Figure 2. Schematic representation of a contact flexible microstrip applicator (CFMA).

2.2. Generation of a Patient and Applicator Model

A module-based software package for hyperthermia treatment planning (Plan2Heat) has been
developed in C++ and validated at our department [24]. This work focuses on a method to model
CFMAs in treatment position, which can be integrated into Plan2Heat. Hyperthermia treatment
planning requires a patient model combined with a model of the hyperthermia applicator for simulation
of the electromagnetic field, SAR and temperature distributions [6]. The patient model and the applicator
model were reconstructed from a standard (hyperthermia) planning CT scan. Since the applicator
contains metal structures causing scattering artefacts on the CT, flexible dummy applicators were created
for each applicator size for use during the CT scan, to reconstruct the antenna orientation, position and
curvature for treatment planning. The dummy applicators were made of silicone and the bi-component
Eurosil 10 orange and Eurosil softener (Schouten group, Mijnsheerenland, The Netherlands) were
used in mixing ratio 1:1:1. Depending on the tumor sizes, a dummy applicator was positioned on the
patient according to the position, orientation and applicator curvature as during treatment (Figure 3),
and attached with a Velcro strip as used during treatment (Figure 1). The CT scan was segmented into
different tissue types based on Hounsfield Units [25], and dielectric and thermal tissue properties were
assigned [26,27].
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Figure 3. Photograph of four sizes of silicone dummy applicators (left) and a CT scan of a patient with
a dummy applicator (right). As for the real antennas (Figure 1), the effective field size of the antenna is
also marked on the dummy applicators.

2.3. Applicator Curvature Estimation

The first step of the planning process was to reconstruct the curvature of the applicator from the
CT scan of the patient with the dummy applicator in the treatment position, to be described by an
appropriate mathematical function. A translational symmetry along the z-axis was assumed, since the
applicator is bent around the z-axis, which means that the curvature is assumed to be constant over
the length of the applicator. Because of the rigid coaxial cable connector on top of the applicator the
slope of the curve approaches zero around that location. This is illustrated by the two examples of bent
applicators after a hyperthermia treatment shown Figure 4. Since the antenna follows the body contour,
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the curvature on the left and right side of the coaxial cable connector can be different. The function(s)
describing the curvature of the antenna to be reconstructed should meet the following criteria:

• The slope is approximately zero near the rigid coaxial cable connector on top of the applicator.
• The reconstructed curve can consist of two segments, described by a different function.
• The areas with the strongest changes in slope are near the coaxial cable connector.
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Given these criteria and the fact that the stiffness of the dummy and the real applicator may differ
and thus the curvatures will not correspond exactly, using the exact contour of the dummy will not be
feasible. To reconstruct a realistic applicator curvature from the CT scan, satisfying the above criteria,
two functions are used to describe the curvature, one on each side from the connector. To this end,
a starting point (P1), a center point (P2, where the slope approaches zero) and an end point (P3) were
defined. A 2nd order polynomial function was fit through these user-defined points on the CT scan;
two on the edges of the dummy and one where the slope of the curve approaches zero (Figure 4).
This was used to describe the two parts, each defined by its own 2nd order polynomial function. Using
the standard form of a polynomial function y = f(x) = Ax2 + Bx + C, we can define equations for the
left hand side (subscripts L, Equations (1) and (2)) and the right hand side (subscripts R, Equations (3)
and (4)):

P1y = ALP12
x + BLP1x + CL, (1)

P2y = ALP22
x + BLP2x + CL, (2)

P2y = ARP22
x + BRP2x + CR, (3)

P3y = ARP32
x + BRP3x + CR, (4)

Since the slope at the center of the curvature is zero, we have

f ′(P2x) = 0, (5)

which allows to derive AL, AR, BL, BR, CL and CR, defining the curve:

AL =
P1y − P2y

P22
x + P12

x − 2(P2xP1x)
, (6)

AR =
P2y − P3y

P32
x + P22

x − 2(P3xP2x)
, (7)
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BL = −2ALP2x, (8)

BR = −2ARP3x, (9)

CL = P1y −ALP12
x − BLP1x, (10)

CR = P2y −ARP22
x − BRP2x, (11)

2.4. Curvature Recognition

Estimating both the x and y coordinate of P2 might introduce uncertainties in the reconstruction
process, which can also result in incorrect reconstructed applicator dimensions. To ensure a robust
reconstruction, only one coordinate of P2 was used in combination with the known applicator length
using the equation ∫ P2x

P1x

dl =
∫ P2x

P1x

√
1 + f ′(x)2 dx = lP1P2, (12)

where lP1P2 is half the length of the applicator. A similar equation can be applied to the right half of the
curve. Evaluating Equation (12) for f(x) = Ax2 + Bx + C yields

∫
dl =

−(B− 2Ax)
√
(B− 2Ax)2 + 1 + arsinh(B− 2Ax)

4A
+ constant, (13)

where

constant =
−B
√

B2 + 1 + arsinh(B)
4A

, (14)

since at x=0 the travelled distance is zero. Combining this with Equations (6), (8) and (10) yields a
system of five non-linear equations for the left-hand side of the curvature profile:

0 = ALP12
x + BLP1x + CL − P1y, (15)

0 = ALP22
x + BLP2x + CL − P2y, (16)

0 = −2ALP2x − BL, (17)

0 =
−

√
(BL − 2ALP2x)

2 + 1 (BL − 2ALP2x) + arsinh(BL − 2ALP2x)

4AL
+ constant− lP1P2, (18)

0 =
−BL

√
B2

L + 1 + arsinh(BL)

4AL
− constant, (19)

where AL, BL, CL and P2y are unknowns. The system of equations was solved by Newton’s method,
as available in the open source “eigen library” of C++ for linear algebra. Similar equations hold for the
right-hand side of the curvature.

2.5. Applicator Position and Orientation

So far, P1–P3 determined the curvature of the applicator. For a robust determination of
the orientation and position of the applicator, including rotations around the coordinate axes,
three additional points were used, such that the outer edges and the rotations of the applicator
are correctly defined (Figure 4). Points P4 and P5 define the other two outer points of the dummy
applicator. The software validates whether antenna sizes resulting from these coordinates match the
real antenna dimensions. Point P6 is the central point on the dummy above P2 and these two points
determine the rotation around the patient’s body axis (z-axis). For the orientation, rotation angles
around the x- and y-axis with respect to P1 can be easily determined (see Figure 4).
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2.6. Integration in Treatment Planning

The integration of curved CFMA models into the treatment planning system Plan2Heat is
schematically represented in Figure 5. As input for the treatment planning a patient CT with a dummy
applicator was required and the coordinates P1–P6 on the dummy were determined by the user.
In the next step “Model generation” a patient model was created from the CT scan by segmenting it
into fat, muscle, bone, lung and air using the CT Hounsfield Units. Additionally, the tumor can be
delineated manually by a radiation oncologist if required for detailed evaluation of tumor heating, but
this additional tumor delineation was not necessary for the purpose of the present study. This patient
model was combined with the applicator model, which was modeled using a dedicated C++ module
(represented by the green box in Figure 5) by assigning the required dielectric properties to the
voxels corresponding to the different materials of the applicator, based on the placement information
determined by the user-defined points P1–P6. The different layers of the bent CFMA (metal electrodes,
substrate, rubber, water bolus) all follow the same curvature. The bolus membrane was not modelled
separately, as justified by previous studies [9,21]. User-defined properties, such as water bolus thickness,
applicator type and coordinates P1–P6, were imported via a parameter file.
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Figure 5. Integration of curved CFMA models into the treatment planning system. The modelling
sequence for reconstruction of the CFMA is as follows: water bolus, rubber frame, electrodes, substrate,
short circuit, exciting slot and coaxial cable.

For correct modelling of the applicator, the sequence of rasterizing the different structures is
important. To ensure good contact between the water bolus and the patient, the water bolus was
drawn thicker than required, prior to insertion of the patient model. Next, the curve of the rubber
frame was modeled, followed by the two active electrodes and the shield electrode. The two active
electrodes were first modeled as one single curve. Then the fluoroplastic substrate was modeled,
which may in turn introduce small holes in the electrodes. This is corrected by an algorithm inserting
missing electrode voxels. After this, the short-circuit (Figure 2) and the exciting slot were added.
Finally, the coaxial feeding cable was modeled, consisting of an outer conductor, inner conductor and
dielectric. This completes the model for the final “Treatment planning”, in which electromagnetic field
and temperature simulations were performed.

2.7. Validation of the Curvature Approximation

A realistic treatment series of four sessions was mimicked using a standard Alderson radiation
therapy phantom for which the 5H applicator was bent four times around the phantom’s chest by
an experienced hyperthermia treatment operator, mimicking four separate consecutive “sessions”.
After each “session” a photograph of the applicator was taken, from the same position relative to the
applicator and each photograph was overlaid with a standard grid. The three points P1, P2 and P3
(Figure 4) were defined on the photograph and a line following the applicator treatment curvature was
drawn. Additionally, 12 points were drawn that represent the treatment curvature, i.e., the part of
the curve between two successive points can be represented by a straight line segment. Treatment
curvatures were aligned such that the variance was minimized and the overall maximum difference
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and the average maximum difference between the first and the remaining sessions were determined.
A CT scan with the dummy applicator was made to reconstruct a treatment planning model and the
modelled curvature was compared to the treatment curvature.

Additionally, to validate the approximation of the applicator curvature by two polynomial
functions, the reconstructed curvature was determined using points P1–P3 and compared to the real
curvature for each of the four mimicked treatment session. The maximum and average distance
between the real and reconstructed curves was determined by subtraction of the 9 points (i.e., 12 points
excluding fixed points P1–P3).

Next, the approximation of the applicator curvature was validated after clinical treatment sessions.
This was done once for each of the five applicator sizes 1H–5H. Again, photographs were taken and
the treatment curvature was drawn on the photograph and reconstructed. A number of 6–12 points
were drawn that represent the curvature and the maximum and average distance between the real and
reconstructed curves was determined, as described above.

2.8. Superficial Hyperthermia Treatment Planning

To show the possible clinical application of the developed method, treatment planning was
performed for a patient with recurrent breast cancer. An anonymized planning CT scan (resolution
1 × 1 × 1.25 mm3) of a patient with a dummy applicator was used to reconstruct a segmented patient
model. This model was combined with the CFMA model reconstructed using the method described
above, at a resolution of at 2 × 1 × 2 mm3. The electromagnetic field distribution in the patient
was calculated using the finite difference time domain method [28]. Perfectly matched layer (PML)
boundary conditions were used to avoid reflections at the model boundaries [29]. From the electric
field distribution, the SAR was calculated using

SAR =
σ

2 = ρ
‖
→

E‖
2
, (20)

with σ (S m−1) the electrical conductivity and = ρ (kg m−3) the tissue density. The temperature
distribution was calculated using Pennes’ bioheat equation [30]:

c = ρ
∂T
∂t

= ∇·(ktis∇T) − cbWb(T − Tart)+ = ρ·SAR, (21)

with c the specific heat capacity (J kg−1 ◦C−1). The heat conduction in tissue is represented by the term
∇·(ktis∇T), with ktis (W m−1 ◦C−1) the thermal conductivity. The second term models the perfusion,
with cb the specific heat capacity of blood, Wb (kg m−3 s−1) the volumetric perfusion rate and Tart

the local arterial or body core temperature. Tissue properties were taken from the literature [26,27].
The water bolus was modelled as a fixed temperature boundary condition (Dirichlet). Steady-state
tissue temperature distributions for two different water bolus temperatures (43 ◦C and 40 ◦C) were
calculated. Absorbed power was scaled such that the overall maximum tissue temperature did not
exceed 44 ◦C, which is the maximum tissue temperature allowed in the clinic during superficial
hyperthermia to avoid thermal damage [5]. A target area of 15 cm × 15 cm was assumed and different
target depths of 1, 2 and 3 cm from the skin were considered. Temperature volume histograms were
determined for each target depth and the T90 values were compared. The T90 is the temperature at
least achieved in 90% of the target volume, and is an important predictive parameter for hyperthermia
treatment outcome.
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3. Results

3.1. Curvature Reconstruction

Figure 6 shows the real curvatures of a mimicked treatment series of four sessions using the
Alderson phantom for which the 5H applicator was bent four times around the phantom’s chest, as well
as the modeled curvature from the reconstructed treatment planning model. The overall maximum
variation and the average maximum variation in curvature between Session 1 (i.e., the reference session)
and Sessions 2–4 were found to be 4.60 mm and 3.67 ± 0.69 mm, respectively. The variation ranged
between 2.98 and 4.60 mm. The maximum deviation between the modeled curvature and Session
1 was 4.35 mm, which falls well within the range of the inter-session variation. A slight translation
could be necessary to also closely match the curvature position to the model curvature, e.g., for Session
3. This supports the need to ensure reproducible positioning for successive treatment sessions; see
Discussion Section.
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reconstructed treatment planning model.

Maximum and average deviations between the real applicator curvature and the curvature
estimation by two polynomial functions for each session are shown in Table 1. The average deviation
along the curvature was typically less than 1.5 mm and the maximum deviation was at most 4 mm,
varying between 2.47 mm and 4.12 mm.

Table 1. Average and maximum deviations between the real and estimated applicator curvature for a
mimicked treatment series of four sessions for the 5H applicator positioned on the chest of the Alderson
radiation therapy phantom.

Session Avg. Deviation (mm) Max. Deviation (mm)

1 1.47 ± 1.45 4.12
2 1.53 ± 1.01 3.25
3 0.81 ± 0.85 2.47
4 1.10 ± 0.99 3.43

Maximum and average deviations between the real applicator curvature after a clinical treatment
session and the estimated curvature by two polynomial functions for each of the five applicator sizes
1H–5H, are shown in Table 2. Here, the average deviation along the curvature was typically less than
1 mm and the maximum deviation was less than 2 mm, varying between 0.48 mm and 1.98 mm.
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Table 2. Average and maximum deviations between the real applicator curvature after a treatment
session and the estimated curvature.

Applicator Avg. Deviation (mm) Max. Deviation (mm)

1H 0.99 ± 0.43 1.5
2H 0.28 ± 0.19 0.48
3H 0.96 ± 0.68 1.98
4H 0.59 ± 0.37 1.21
5H 0.68 ± 0.46 1.72

Comparing the deviations between the real and estimated applicator curvatures to the variation
between treatment sessions, we can conclude that the error of approximating the applicator curvature
by two polynomial functions is typically smaller than the variation in treatment curvature during a
treatment series and thus that this reconstruction method is suitable for clinical use.

3.2. Treatment Planning Example

Figure 7 shows an illustration of the process of treatment planning for superficial hyperthermia,
using the method described in this paper. The coordinates of points P1–P6 are selected manually on the
CT scan with the dummy applicator, an action which takes only up to 5 min. After tissue segmentation
and reconstruction of the 3H CFMA based on the selected points, a patient and applicator model for
treatment planning were obtained within less than 5 min. Using this model the electric field distribution
in the patient was calculated on the GPU, which took ~30 min for 50,000 time steps (computational
volume 223 × 205 × 216 voxels, plus 16 layers PML) on a standard PC with an NVIDIA® GeForce® GTX
760 graphics card. This allows to compare predictions for different treatment strategies, e.g., different
water bolus temperatures. Steady-state thermal simulations can be performed within 1 min on the
GPU. As an example, temperature predictions with a water bolus temperature of 40 ◦C and 43 ◦C are
shown. The amount of applied power was scaled such that the maximum tissue temperature does not
exceed the maximum allowed tissue temperature of 44 ◦C. The total amount of power absorbed in the
patient was 47.5 W and 37 W, for a bolus temperature of 40 ◦C and 43 ◦C, respectively. With a bolus
temperature of 40 ◦C instead of 43 ◦C, the skin temperature is reduced, thereby shifting the maximum
tissue temperature to a slightly deeper location (approximately 1 cm below the skin), and increasing the
effective heating depth. The 40 ◦C water bolus therefore also allows a higher amount of applied power.
Whether a relatively high or low bolus temperature is more effective depends on the target depth.
The T90 is an important parameter for treatment quality and the temperature volume histograms
show that for a target depth smaller than 2 cm, a 43 ◦C water bolus yields a higher T90 than a 40 ◦C
water bolus. When the target depth is larger than 2 cm, 40 ◦C becomes more effective; predicted T90
values for a target depth of 3 cm are 38.55 ◦C and 38.81 ◦C, for a water temperature of 43 ◦C and
40 ◦C, respectively.

This type of 3D temperature predictions become possible with the method described in this paper.
Accompanying the limited thermometry available during clinical treatments, these predictions can be
very helpful to further optimize superficial hyperthermia treatments for individual patients.
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method described in this paper. Location of reference points P1–P6 is given in Figure 4.

4. Discussion

This paper presented a new method to reconstruct the clinical position, curvature and orientation
of a class of bendable hyperthermia applicators (CFMAs). The method reconstructs the applicator
based on only six user-defined coordinates selected manually on a dummy applicator on a standard
CT scan, and the deviation along the curvature was typically less than 1.5 mm, which is less than
the clinical variation in curvature among successive treatment sessions (~5 mm). The method is
user-friendly and suitable for routine application in clinical patient-specific treatment planning, as
was illustrated by a treatment planning example. For clinical treatment planning the tumor should
also be delineated manually by a radiation oncologist, similar to treatment planning for locoregional
hyperthermia and radiotherapy, which allows detailed evaluation and optimization of tumor heating.
The tumor volume is then considered a separate tissue type to which adequate dielectric and thermal
properties are assigned. The developed reconstruction method could also be applicable to other flexible
or curved hyperthermia applicators with similar (mechanical) properties, such as the 70 MHz CFMA
(SRPC “Istok”, Moscow).

The small deviations in curvature we encountered will not have a significant impact on the SAR
and temperature distributions, since from previous experiments we know that a strong variation in
curvature is required to significantly influence the effective heating depth (EHD). The EHD is ~1.5 cm for
a straight CFMA [9,19], and this increases with only 1–2 mm for a mild curvature (κ = 3.98 m−1) [19,21].
An approximately three times sharper curvature of 11.21 m−1 yields a substantial increase in EHD
of ~1 cm [19,21]. Therefore, a small deviation in the curvature description of only a few mm is not
expected to have a clinically relevant influence on the SAR pattern.

Routine clinical application of hyperthermia treatment planning is now applied for loco-regional
hyperthermia treatment of deep-seated tumors treated with phased arrays of RF applicators, for which



Cancers 2020, 12, 656 12 of 15

the position of the patient anatomy within the applicator array is reconstructed with the required
spatial resolution of ±1 cm at ~70 MHz [31]. Routine application of treatment planning is lagging
behind for hyperthermia of superficially located tumors due to the absence of sufficiently reliable
reconstruction methods of the applicator position with respect to the anatomy, which require a
five-fold better spatial resolution at the frequencies used for superficial hyperthermia (typically 434
and 915 MHz). This reconstruction method allows clinical use of hyperthermia treatment planning to
further optimize treatment quality for superficial heating, which is important in view of the thermal
dose–effect relationship. As illustrated, simulations can help to optimize treatment parameters, such
as the water bolus temperature and applied power. The water bolus temperature is an important
parameter for superficial tumor heating, since it determines the thermal penetration depth and thereby
the heating effectiveness [32,33]. Since the skin is often also part of the target region, therapeutic skin
temperatures should still be guaranteed, which indicates an optimal bolus temperature, depending
also on the tumor depth. Simulations are an effective tool to optimize such treatment parameters for
individual patients.

Furthermore, treatment planning can also be applied to determine whether effective heating of
a specified tumor target with relatively deep infiltration is feasible with the available hyperthermia
applicator; i.e., whether sufficient target coverage will be realized at depth. According to the
hyperthermia guidelines published by the European Society of Hyperthermic Oncology, superficial
heating can be used for lesions up to 4 cm depth, based on the penetration depth of electromagnetic
energy at the applied frequencies [5]. However, heating up to a slightly larger depth might be feasible
since bending a CFMA increases the penetration depth [21,34]. Simulations might help to determine
whether superficial hyperthermia is adequate or whether a system with a lower operating frequency,
and thus a larger penetration depth, should be applied, e.g., a 70 MHz CFMA [35] or the 70 MHz AMC-2
system [36]. These systems have been developed for heating superficial tumors with deep infiltration.

Adequate applicator positioning is important, as also indicated in a volunteer study by
Arunachalam et al., which demonstrated minimal displacement over treatment for a curved
thermobrachytherapy surface applicator [37]. For reliable treatment planning with the type of
applicators evaluated in the present study, the treatment position and orientation of the applicator
during the successive treatment sessions of a patient should be similar to the position and orientation of
the dummy applicator on the pre-treatment CT scan. Reproducible positioning of the applicator at the
start of each treatment session is thus essential. In our current clinical practice, where treatment planning
was not yet available because of the lack of an applicator reconstruction method for curved applicators,
applicators are positioned manually by eye, such that the tumor area is covered by the EFS region of the
applicator. Reproducibility can be improved by using three or four temporary tattoos or other markers
indicating the corners of the applicator. If necessary, additional laser-aided positioning can be applied
to improve the positioning accuracy, as commonly used in radiotherapy. More sophisticated techniques
capable of on-line position tracking also could be explored to ensure reproducible positioning, as for
example used in clinical radiotherapy to improve the set-up accuracy by optically monitoring the
patient’s surface and comparing it to the planned reference surface [38]. Such a position tracking
system would allow both reproducible positioning as well as on-line capturing of the outer shape of the
antenna and the exact antenna position for treatment planning when the coordinates of the six points
required for antenna reconstruction are transmitted to the planning software. An additional advantage
of using a position tracking system would be the possibility of real-time feedback on the positioning
error, which would allow more accurate repositioning in successive treatment sessions. Evaluation of
different methods for accurate and reproducible positioning is a subject of ongoing research.

5. Conclusions

The developed method is the first to allow reconstruction of CFMAs for hyperthermia treatment
planning. The uncertainty in the approximation of the applicator curvature is typically less than 4 mm.
As part of the clinically used treatment planning software Plan2Heat, the integrated module can be
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applied for routine superficial hyperthermia treatment planning to further improve treatment quality,
for example by optimizing the water bolus temperature for patient-specific tumor depths. Predictive
parameters for hyperthermia treatment outcome can easily be evaluated and compared for various
input parameters.

Author Contributions: Conceptualization, H.P.K. and J.C.; methodology, H.P.K., J.G. and J.C.; software, H.P.K.
and J.G.; validation, H.P.K. and J.G.; formal analysis, H.P.K. and J.G.; investigation, H.P.K., J.G. and A.B.; data
curation, H.P.K. and J.G.; writing—original draft preparation, H.P.K.; writing—review and editing, H.P.K., J.G.,
A.B. and J.C.; visualization, H.P.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia
in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497. [CrossRef]

2. Vernon, C.C.; Hand, J.W.; Field, S.B.; Machin, D.; Whaley, J.B.; Van der Zee, J.; van Putten, W.L.J.;
Van Rhoon, G.C.; van Dijk, J.D.P.; González, D.; et al. Radiotherapy with or without hyperthermia
in the treatment of superficial localized breast cancer: Results from five randomized controlled trials.
International Collaborative Hyperthermia Group. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 731–744.
[PubMed]

3. Bakker, A.; Holman, R.; Rodrigues, D.B.; Dobsicek Trefna, H.; Stauffer, P.R.; van Tienhoven, G.; Rasch, C.R.N.;
Crezee, H. Analysis of clinical data to determine the minimum number of sensors required for adequate skin
temperature monitoring of superficial hyperthermia treatments. Int. J. Hyperth. 2018, 34, 910–917. [CrossRef]
[PubMed]

4. Bakker, A.; Van der Zee, J.; van tienhoven, G.; Kok, H.P.; Rasch, C.R.N.; Crezee, H. Temperature and thermal
dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and
thermal toxicity: A systematic review. Int. J. Hyperth. 2019, 36, 1024–1039. [CrossRef]

5. Trefna, H.D.; Crezee, H.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Hartmann, J.; Nadobny, J.;
Gellermann, J.; van Holthe, N.; et al. Quality assurance guidelines for superficial hyperthermia clinical trials:
I. Clinical requirements. Int. J. Hyperth. 2017, 33, 471–482. [CrossRef] [PubMed]

6. Kok, H.P.; Wust, P.; Stauffer, P.R.; Bardati, F.; van Rhoon, G.C.; Crezee, J. Current state of the art of regional
hyperthermia treatment planning: A review. Radiat. Oncol. 2015, 10, 196. [CrossRef]

7. Prasad, B.; Kim, J.K.; Kim, S. Role of Simulations in the Treatment Planning of Radiofrequency Hyperthermia
Therapy in Clinics. J. Oncol. 2019, 2019, 9685476. [CrossRef]

8. Kok, H.P.; Crezee, J. A comparison of the heating characteristics of capacitive and radiative superficial
hyperthermia. Int. J. Hyperth. 2017, 33, 378–386. [CrossRef]

9. Kok, H.P.; De Greef, M.; Correia, D.; Zum Vörde Sive Vörding, P.J.; Van Stam, G.; Gelvich, E.A.; Bel, A.;
Crezee, J. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia.
Int. J. Hyperth. 2009, 25, 462–476. [CrossRef]

10. De Bruijne, M.; Wielheesen, D.H.; Van der Zee, J.; Chavannes, N.; Van Rhoon, G.C. Benefits of superficial
hyperthermia treatment planning: Five case studies. Int. J. Hyperth. 2007, 23, 417–429. [CrossRef]

11. Trujillo-Romero, C.J.; Paulides, M.M.; Drizdal, T.; van Rhoon, G.C. Impact of silicone and metal port-a-cath
implants on superficial hyperthermia treatment quality. Int. J. Hyperth. 2015, 31, 15–22. [CrossRef] [PubMed]

12. Bakker, A.; Kolff, M.W.; Holman, R.; van Leeuwen, C.M.; Korshuize-van Straten, L.; de Kroon-Oldenhof, R.;
Rasch, C.R.N.; van Tienhoven, G.; Crezee, H. Thermal Skin Damage during Reirradiation and Hyperthermia
Is Time-Temperature Dependent. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 392–399. [CrossRef] [PubMed]

13. Rietveld, P.J.; van Putten, W.L.; Van der Zee, J.; Van Rhoon, G.C. Comparison of the clinical effectiveness of
the 433 MHz Lucite cone applicator with that of a conventional waveguide applicator in applications of
superficial hyperthermia. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 681–687. [CrossRef]

14. Van Rhoon, G.C.; Rietveld, P.J.; van der Zee, J. A 433 MHz Lucite cone waveguide applicator for superficial
hyperthermia. Int. J. Hyperth. 1998, 14, 13–27. [CrossRef]

http://dx.doi.org/10.1016/S1470-2045(02)00818-5
http://www.ncbi.nlm.nih.gov/pubmed/8690639
http://dx.doi.org/10.1080/02656736.2018.1466000
http://www.ncbi.nlm.nih.gov/pubmed/29658357
http://dx.doi.org/10.1080/02656736.2019.1665718
http://dx.doi.org/10.1080/02656736.2016.1277791
http://www.ncbi.nlm.nih.gov/pubmed/28049386
http://dx.doi.org/10.1186/s13014-015-0503-8
http://dx.doi.org/10.1155/2019/9685476
http://dx.doi.org/10.1080/02656736.2016.1268726
http://dx.doi.org/10.1080/02656730903008493
http://dx.doi.org/10.1080/02656730701502077
http://dx.doi.org/10.3109/02656736.2014.985748
http://www.ncbi.nlm.nih.gov/pubmed/25495267
http://dx.doi.org/10.1016/j.ijrobp.2017.02.009
http://www.ncbi.nlm.nih.gov/pubmed/28463159
http://dx.doi.org/10.1016/S0360-3016(98)00443-X
http://dx.doi.org/10.3109/02656739809018211


Cancers 2020, 12, 656 14 of 15

15. Puric, E.; Heuberger, J.; Lomax, N.; Timm, O.; Bodis, S. The Benefit of Thermoradiotherapy in the Treatment
of Superficially Localized Tumors: Experience with Bsd 500 Microwave Hyperthermia System. Strahlenther.
Onkol. 2009, 185, 648.

16. Johnson, J.E.; Neuman, D.G.; Maccarini, P.F.; Juang, T.; Stauffer, P.R.; Turner, P. Evaluation of a dual-arm
Archimedean spiral array for microwave hyperthermia. Int. J. Hyperth. 2006, 22, 475–490. [CrossRef]

17. Gelvich, E.A.; Mazokhin, V.N. Contact flexible microstrip applicators (CFMA) in a range from microwaves
up to short waves. IEEE Trans. Biomed. Eng. 2002, 49, 1015–1023. [CrossRef]

18. Gabriele, P.; Ferrara, T.; Baiotto, B.; Garibaldi, E.; Marini, P.G.; Penduzzu, G.; Giovannini, V.; Bardati, F.;
Guiot, C. Radio hyperthermia for re-treatment of superficial tumours. Int. J. Hyperth. 2009, 25, 189–198.
[CrossRef]

19. Lamaitre, G.; Van Dijk, J.D.P.; Gelvich, E.A.; Wiersma, J.; Schneider, C.J. SAR characteristics of three types
of Contact Flexible Microstrip Applicators for superficial hyperthermia. Int. J. Hyperth. 1996, 12, 255–269.
[CrossRef]

20. Florack, L.M.J.; Ter Haar Romeney, B.M.; Koenderink, J.J.; Viergever, M.A. Cartesian Differential Invariants
in Scale-Space. J. Math. Imaging Vis. 1993, 3, 327–348. [CrossRef]

21. Kok, H.P.; Correia, D.; De Greef, M.; Van Stam, G.; Bel, A.; Crezee, J. SAR deposition by curved CFMA-434
applicators for superficial hyperthermia: Measurements and simulations. Int. J. Hyperth. 2010, 26, 171–184.

22. Linthorst, M.; Drizdal, T.; Joosten, H.; van Rhoon, G.C.; van der Zee, J. Procedure for creating a
three-dimensional (3D) model for superficial hyperthermia treatment planning. Strahlenther. Onkol.
2011, 187, 835–841. [CrossRef] [PubMed]

23. Drizdal, T.; Paulides, M.M.; Linthorst, M.; van Rhoon, G.C. Reconstruction of applicator positions from
multiple-view images for accurate superficial hyperthermia treatment planning. Phys. Med. Biol. 2012, 57,
2491–2503. [CrossRef] [PubMed]

24. Kok, H.P.; Kotte, A.N.T.J.; Crezee, J. Planning, optimisation and evaluation of hyperthermia treatments.
Int. J. Hyperth. 2017, 33, 593–607. [CrossRef] [PubMed]

25. Hornsleth, S.N.; Mella, O.; Dahl, O. A new segmentation algorithm for finite difference based treatment
planning systems. In Hyperthermic Oncology; Franconi, C., Arcangeli, G., Cavaliere, R., Eds.; Tor Vergata:
Rome, Italy, 1996; Volume 2, pp. 521–523.

26. Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys.
Med. Biol. 1996, 41, 2231–2249. [CrossRef] [PubMed]

27. ESHO Taskgroup Committee. Treatment Planning and Modelling in Hyperthermia, a Task Group Report of the
European Society for Hyperthermic Oncology; Tor Vergata: Rome, Italy, 1992.

28. Taflove, A.; Hagness, S.C. Computational Electrodynamics, 2nd ed.; Artech House: Boston, MA, USA; London,
UK, 2000.

29. Berenger, J.P. A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves. J. Comput. Phys. 1994,
114, 185–200. [CrossRef]

30. Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl.
Physiol. 1948, 1, 93–122. [CrossRef]

31. Canters, R.A.; Franckena, M.; Paulides, M.M.; Van Rhoon, G.C. Patient positioning in deep hyperthermia:
Influences of inaccuracies, signal correction possibilities and optimization potential. Phys. Med. Biol. 2009,
54, 3923–3936. [CrossRef]

32. Van der Gaag, M.L.; de Bruijne, M.; Samaras, T.; Van der Zee, J.; Van Rhoon, G.C. Development of a guideline
for the water bolus temperature in superficial hyperthermia. Int. J. Hyperth. 2006, 22, 637–656. [CrossRef]

33. Arunachalam, K.; Maccarini, P.F.; Craciunescu, O.I.; Schlorff, J.L.; Stauffer, P.R. Thermal characteristics of
thermobrachytherapy surface applicators for treating chest wall recurrence. Phys. Med. Biol. 2010, 55,
1949–1969. [CrossRef]

34. Correia, D.; Kok, H.P.; De Greef, M.; Bel, A.; Van Wieringen, N.; Crezee, J. Body conformal antennas
for superficial hyperthermia: The impact of bending Contact Flexible Microstrip Applicators on their
electromagnetic behavior. IEEE Trans. Biomed. Eng. 2009, 56, 2917–2926. [CrossRef] [PubMed]

35. Van Wieringen, N.; Wiersma, J.; Zum Vörde Sive Vörding, P.J.; Oldenborg, S.; Gelvich, E.A.; Mazokhin, V.N.;
Van Dijk, J.D.P.; Crezee, H. Characteristics and performance evaluation of the capacitive Contact Flexible
Microstrip Applicator operating at 70 MHz for external hyperthermia. Int. J. Hyperth. 2009, 25, 542–553.
[CrossRef] [PubMed]

http://dx.doi.org/10.1080/02656730600905595
http://dx.doi.org/10.1109/TBME.2002.802053
http://dx.doi.org/10.1080/02656730802669593
http://dx.doi.org/10.3109/02656739609022513
http://dx.doi.org/10.1007/BF01664793
http://dx.doi.org/10.1007/s00066-011-2272-0
http://www.ncbi.nlm.nih.gov/pubmed/22127361
http://dx.doi.org/10.1088/0031-9155/57/9/2491
http://www.ncbi.nlm.nih.gov/pubmed/22493169
http://dx.doi.org/10.1080/02656736.2017.1295323
http://www.ncbi.nlm.nih.gov/pubmed/28540779
http://dx.doi.org/10.1088/0031-9155/41/11/001
http://www.ncbi.nlm.nih.gov/pubmed/8938024
http://dx.doi.org/10.1006/jcph.1994.1159
http://dx.doi.org/10.1152/jappl.1948.1.2.93
http://dx.doi.org/10.1088/0031-9155/54/12/021
http://dx.doi.org/10.1080/02656730601074409
http://dx.doi.org/10.1088/0031-9155/55/7/011
http://dx.doi.org/10.1109/TBME.2009.2029081
http://www.ncbi.nlm.nih.gov/pubmed/19695983
http://dx.doi.org/10.3109/02656730903061591
http://www.ncbi.nlm.nih.gov/pubmed/19848617


Cancers 2020, 12, 656 15 of 15

36. Van Stam, G.; Kok, H.P.; Hulshof, M.; Kolff, M.W.; van Tienhoven, G.; Sijbrands, J.; Bakker, A.; Zum Vorde
Sive Vording, P.J.; Oldenborg, S.; de Greef, M.; et al. A flexible 70 MHz phase-controlled double waveguide
system for hyperthermia treatment of superficial tumours with deep infiltration. Int. J. Hyperth. 2017, 33,
796–809. [CrossRef] [PubMed]

37. Arunachalam, K.; Craciunescu, O.I.; Markewitz, E.J.; Maccarini, P.F.; Schlorff, J.L.; Stauffer, P.R. Preclinical
assessment of comfort and secure fit of thermobrachytherapy surface applicator (TBSA) on volunteer subjects.
J. Appl. Clin. Med. Phys. 2012, 13, 3845. [CrossRef]

38. Laaksomaa, M.; Sarudis, S.; Rossi, M.; Lehtonen, T.; Pehkonen, J.; Remes, J.; Luukkanen, H.; Skytta, T.;
Kapanen, M. AlignRT® and CatalystTM in whole-breast radiotherapy with DIBH: Is IGRT still needed?
J. Appl. Clin. Med. Phys. 2019, 20, 97–104. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/02656736.2017.1313460
http://www.ncbi.nlm.nih.gov/pubmed/28540800
http://dx.doi.org/10.1120/jacmp.v13i5.3845
http://dx.doi.org/10.1002/acm2.12553
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Contact Flexible Microstrip Applicators 
	Generation of a Patient and Applicator Model 
	Applicator Curvature Estimation 
	Curvature Recognition 
	Applicator Position and Orientation 
	Integration in Treatment Planning 
	Validation of the Curvature Approximation 
	Superficial Hyperthermia Treatment Planning 

	Results 
	Curvature Reconstruction 
	Treatment Planning Example 

	Discussion 
	Conclusions 
	References

