S100A4 Is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma
Abstract
:1. Introduction
2. Results
2.1. S100A4, a Biomarker for Neoplastic Transformation, EMT, and In Vitro Invasiveness
2.2. S100A4, Biomarker of In Vivo Invasiveness
2.3. S100A4 Increases with the Development Stage of MM Liver Metastases
2.4. S100A4, Biomarker for Colonization of the Spleen by MM Tumor Cells
3. Discussion
4. Materials and Methods
4.1. Biocollection of F344 Rat Mesothelial Cell Lines
4.2. Total RNA Isolation and Real-Time PCR
4.3. Malignant Mesothelioma Tumors
4.4. Sample Preparation for SWATH-MS Analysis
4.5. Relative Quantification by SWATH Acquisition and Statistical Analysis
4.6. MRI-Based Staging of the M5-T1 MM Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Materials
References
- Fei, F.; Qu, J.; Zhang, M.; Li, Y.; Zhang, S. S100A4 in cancer progression and metastasis: A systematic review. Oncotarget 2017, 8, 73219–73239. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cao, X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016, 30, 668–681. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.T.; Forst, B.; Cremers, N.; Quagliata, L.; Ambartsumian, N.; Grum-Schwensen, B.; Klingelhöffer, J.; Abdul-Al, A.; Hermann, P.; Osterland, M.; et al. A link between inflammation and metastasis: Serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 2015, 34, 424–435. [Google Scholar] [CrossRef]
- Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 2016, 35, 645–654. [Google Scholar]
- Pezzuto, A.; Carico, E. Role of HIF-1 in cancer progression: Novel insights. A review. Curr. Mol. Med. 2018, 18, 343–351. [Google Scholar] [CrossRef]
- Bresnick, A.R.; Weber, D.J.; Zimmer, D.B. S100 proteins in cancer. Nat. Rev. Cancer 2015, 15, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Amatangelo, M.D.; Goodyear, S.; Varma, D.; Stearns, M.E. C-Myc expression and MEK1-induced Erk2 nuclear localization are required for TGF-beta induced epithelial-mesenchymal transition and invasion in prostate cancer. Carcinogenesis 2012, 33, 1965–1975. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liu, J.; Yang, B.; Gao, X.; Gao, L.L.; Kong, Q.Y.; Zhang, P.; Li, H. Inversed expression patterns of S100A4 and E-cadherin in cervical cancers: Implication in epithelial-mesenchymal transition. Anat. Rec. 2017, 300, 2184–2191. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.-H.; Park, H.J.; George, J.; Yamamoto, K.; Gallup, A.D.; Graber, J.H.; Chen, Y.; Jiang, W.; Steindler, D.A.; Neilson, E.G.; et al. S100A4 is a biomarker and regulator of glioma stem cells that is critical for mesenchymal transition in glioblastoma. Cancer Res. 2017, 77, 5360–5373. [Google Scholar] [CrossRef] [Green Version]
- Weidenfeld, K.; Barkan, D. EMT and stemness in tumor dormancy and outgrowth: Are they intertwined processes? Front. Oncol. 2018, 8, 381. [Google Scholar] [CrossRef]
- Klebe, S.; Brownlee, N.A.; Mahar, A.; Burchette, J.L.; Sporn, T.A.; Vollmer, R.T.; Roggli, V.L. Sarcomatoid mesothelioma: A clinical-pathological correlation of 326 cases. Mod. Pathol. 2010, 23, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Pinton, G.; Manente, A.G.; Tavian, D.; Moro, L.; Mutti, L. Therapies currently in phase II trials for malignant pleural mesothelioma. Exp. Opin. Investig. Drugs 2013, 22, 1255–1263. [Google Scholar] [CrossRef]
- Minnema-Luiting, J.; Vroman, H.; Aerts, J.; Cornelissen, R. Heterogeneity in immune cell content in malignant pleural mesothelioma. Int. J. Mol. Sci. 2018, 19, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonelli, M.A.; Fumarola, C.; La Monica, S.; Alfieri, R. New therapeutic strategies for malignant pleural mesothelioma. Biochem. Pharmacol. 2017, 123, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Marchevsky, A.M. Application of immunohistochemistry to the diagnosis of malignant mesothelioma. Arch. Pathol. Lab. Med. 2008, 132, 397–401. [Google Scholar]
- Chen, Z.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. Diagnostic and prognostic biomarkers for malignant mesothelioma: An update. Trans. Lung Cancer Res. 2017, 6, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Nader, J.S.; Abadie, J.; Deshayes, S.; Boissard, A.; Blandin, S.; Blanquart, C.; Boisgerault, N.; Coqueret, O.; Guette, C.; Grégoire, M.; et al. Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma. Oncotarget 2018, 9, 16311–16329. [Google Scholar] [CrossRef] [Green Version]
- Roulois, D.; Deshayes, S.; Guilly, M.-N.; Nader, J.S.; Liddell, C.; Robard, M.; Hulin, P.; Ouacher, A.; Le Martelot, V.; Fonteneau, J.F.; et al. Characterization of preneoplastic and neoplastic rat mesothelial cell lines: The involvement of TETs, DNMTs, and 5-hydroxymethylcytosine. Oncotarget 2016, 7, 34664–34687. [Google Scholar] [CrossRef] [Green Version]
- Hoenerhoff, M.J.; Hong, H.H.; Ton, T.-V.; Lahousse, S.A.; Sills, R.C. A review of the molecular mechanisms of chemically-induced neoplasia in rat and mouse models in National Toxicology Program bioassays and their relevance to human cancer. Toxicol. Pathol. 2009, 37, 835–848. [Google Scholar] [CrossRef]
- Van Nimwegen, M.J.; Verkoeijen, S.; Kuppen, P.J.K.; Velthuis, J.H.L.; van de Water, B. An improved method to study NK-independent mechanisms of MTLn3 breast cancer lung metastasis. Clin. Exp. Metastasis 2007, 24, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Liao, A.; Broeg, K.; Fox, T.; Tan, S.-F.; Watters, R.; Shah, M.V.; Zhang, L.Q.; Li, Y.; Ryland, L.; Yang, J.; et al. Therapeutic efficacy of FTY720 in a rat model of NK-cell leukemia. Blood 2011, 118, 2793–2800. [Google Scholar] [CrossRef] [Green Version]
- Mangraviti, A.; Raghavan, T.; Volpin, F.; Skuli, D.; Gullotti, D.; Zhou, J.; Asnaghi, L.; Sankey, E.; Liu, A.; Wang, Y.; et al. HIF-1-targeting acriflavine provides long term survival and radiological tumor response in brain cancer therapy. Sci. Rep. 2017, 7, 14978. [Google Scholar] [CrossRef] [Green Version]
- Zeisberg, M.; Neilson, E.G. Biomarkers of epithelial-mesenchymal transitions. J. Clin. Investig. 2009, 119, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-C.; Cui, F.-J.; Kim, Y. Hydrogen peroxide promotes epithelial to mesenchymal transition and stemness in human malignant mesothelioma cells. Asian Pac. J. Cancer Prev. 2013, 14, 3625–3630. [Google Scholar] [CrossRef] [Green Version]
- Briand, F.; Nader, J.; Deshayes, S.; Grégoire, M.; Pouliquen, D.L. Differential expression of Hif1a, growth factors and cytokines related to EMT in an experimental biocollection of rat preneoplastic mesothelial cell lines. In Proceedings of the 8th International Meeting on Epithelial-Mesenchymal Transition, Houston, TX, USA, 7–10 December 2017. TEMTIA and Metastasis Research Center, Dept of Cancer Biology, MD Anderson Cancer Center, Abstract #52. [Google Scholar]
- The Human Protein Atlas, Version: 19.3, Updated 2020-03-06. Royal Institute of Technology, UU, Science for Life Laboratory, Sweden. Available online: https://www.proteinatlas.org/ENSG00000196154-S100A4/pathology/renal+cancer (accessed on 31 March 2020).
- Pouliquen, D.L.; Nawrocki-Raby, B.; Nader, J.; Blandin, S.; Robard, M.; Birembaut, P.; Grégoire, M. Evaluation of intracavitary administration of curcumin for the treatment of sarcomatoid mesothelioma. Oncotarget 2017, 8, 57552–57573. [Google Scholar] [CrossRef] [Green Version]
- Guazzelli, A.; Meysami, P.; Bakker, E.; Bonanni, E.; Demonacos, C.; Krstic-Demonacos, M.; Mutti, L. What can independent research for mesothelioma achieve to treat this orphan disease? Exp. Opin. Investig. Drugs 2019, 28, 719–732. [Google Scholar] [CrossRef]
- Panou, V.; Vyberg, M.; Weinreich, U.M.; Meristoudis, C.; Falkmer, U.G.; Røe, O.D. The established and future biomarkers of malignant pleural mesothelioma. Cancer Treat. Rev. 2015, 41, 486–495. [Google Scholar] [CrossRef]
- Cristaudo, A.; Bonotti, A.; Guglielmi, G.; Fallahi, P.; Foddis, R. Serum mesothelin and other biomarkers: What have we learned in the last decades? J. Thorac. Dis. 2018, 10, S353–S359. [Google Scholar] [CrossRef] [Green Version]
- Sudo, H.; Tsuji, A.B.; Sugyo, A.; Abe, M.; Hino, O.; Saga, T. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma. Int. J. Oncol. 2014, 44, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhang, Q.; Sun, Q.; Tang, J.; Chen, J.; Ji, N.; Zheng, Y.; Fang, F.; Lei, W.; Li, P.; et al. Genome evolution analysis of recurrent testicular malignant mesothelioma by whole-genome sequencing. Cell Physiol. Biochem. 2018, 45, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Fassina, A.; Cappellesso, R.; Guzzardo, V.; Dalla Via, L.; Piccolo, S.; Ventura, L.; Fassan, M. Epithelial-mesenchymal transition in malignant mesothelioma. Mod. Pathol. 2012, 25, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Destek, S.; Gul, V.O. S100A4 may be a good prognostic marker and a therapeutic target for colon cancer. J. Oncol. 2018, 1828791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, A.; Cerciello, F.; Bigosch, C.; Bausch-Fluck, D.; Felley-Bosco, E.; Ossola, R.; Soltermann, A.; Stahel, R.A.; Wollscheid, B. Proteomic surfaceome analysis of mesothelioma. Lung Cancer 2012, 75, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundt, F.; Johansson, H.J.; Forshed, J.; Arslan, S.; Metintas, M.; Dobra, K.; Lehtiö, J.; Hjerpe, A. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma. Mol. Cell. Proteom. 2014, 13, 701–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosserueschkamp, F.; Bracht, T.; Diehl, H.; Kuepper, C.; Ahrens, M.; Kallenbach-Thieltges, A.; Mosig, A.; Eisenacher, M.; Marcus, K.; Behrens, T.; et al. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics. Sci. Rep. 2017, 7, 44829. [Google Scholar] [CrossRef]
- White, R.; Pulford, E.; Elliot, D.J.; Thurgood, L.A.; Klebe, S. Quantitative mass spectrometry to identify protein markers for diagnosis of malignant pleural mesothelioma. J. Proteom. 2019, 192, 374–382. [Google Scholar]
- Creaney, J.; Dick, I.M.; Leon, J.S.; Robinson, B.W.S. A proteomic analysis of the malignant mesothelioma secretome using iTRAQ. Cancer Genom. Proteom. 2017, 14, 103–118. [Google Scholar]
- Yang, H.; Geng, Y.-H.; Wang, P.; Zhou, Y.-T.; Yang, H.; Huo, Y.-F.; Zhang, H.-Q.; Li, Y.; He, H.-Y.; Tian, X.-X.; et al. Extracellular ATP promotes breast cancer invasion and Epithelial-Mesenchymal Transition via Hypoxia-inducible factor 2α signaling. Cancer Sci. 2019, 110, 2456–2470. [Google Scholar] [CrossRef]
- Pezzuto, A.; Perrone, G.; Orlando, N.; Citarella, F.; Ciccozzi, M.; Scarlata, S.; Tonini, G. A close relationship between HIF-1α expression and bone metastases in advanced NSCLC, a retrospective analysis. Oncotarget 2019, 10, 7071–7079. [Google Scholar]
- Yoshimura, H.; Otsuka, A.; Michishita, M.; Yamamoto, M.; Ashizawa, M.; Zushi, M.; Moriya, M.; Azakami, D.; Ochiai, K.; Matsuda, Y.; et al. Expression and roles of S100A4 in anaplastic cells of canine mammary carcinomas. Vet. Pathol. 2019, 56, 389–398. [Google Scholar] [CrossRef]
- Lukanidin, E.; Sleeman, J.P. Buiding the niche: The role of the S100 proteins in metastatic growth. Semin. Cancer Biol. 2012, 22, 216–225. [Google Scholar] [CrossRef]
- Mahmood, M.Q.; Ward, C.; Muller, H.K.; Sohal, S.S.; Walters, E.H. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): A mutual association with airway disease. Mod. Oncol. 2017, 34, 45. [Google Scholar] [CrossRef]
- Gradl, D.; Kühl, M.; Wedlich, D. The Wnt/Wg signal transducer-catenin controls fibronectin expression. Mol. Cell. Biol. 1999, 19, 5576–5587. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D.J. Wnt signaling pathway in non-small cell lung cancer. J. Natl. Cancer Inst. 2014, 106, djt356. [Google Scholar] [CrossRef]
- Pezzuto, A.; Cappuzzo, F.; D’Arcangelo, M.; Ciccozzi, M.; Navarini, L.; Guerrini, S.; Ricci, A.; D’Ascanio, M.; Carico, E. Prognostic value of p16 protein in patients with surgically treated non-small cell lung cancer; relationship with Ki-67 and PD-L1. Anticancer Res. 2020, 40, 983–990. [Google Scholar] [CrossRef]
- Chapel, D.B.; Stewart, R.; Furtado, L.V.; Husain, A.N.; Krausz, T.; Deftereos, G. Tumor PD-L1 expression in malignant pleural and peritoneal mesothelioma by Dako PD-L1 22C3 pharmDx and Dako PD-L1 28-8 pharmDx assays. Hum. Pathol. 2019, 87, 11–17. [Google Scholar] [CrossRef]
- Arnold, D.T.; Maskell, N.A. Biomarkers in mesothelioma. Ann. Clin. Biochem. 2018, 55, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Hiratsuka, S.; Watanabe, A.; Aburatani, H.; Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 2006, 8, 1369–1375. [Google Scholar] [CrossRef]
- Hiratsuka, S.; Watanabe, A.; Sakurai, Y.; Akashi-Takamura, S.; Ishibashi, S.; Miyake, K.; Shibuya, M.; Akira, S.; Aburatani, H.; Maru, Y. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 2008, 10, 1349–1355. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Vogl, T.; Roth, J. S100 proteins expressed in phagocytes: A novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 2007, 81, 28–37. [Google Scholar] [CrossRef]
- Shabani, F.; Farasat, A.; Mahdavi, M.; Gheibi, N. Calprotectin (S100A8/S100A9): A key protein between inflammation and cancer. Inflamm. Res. 2018, 67, 801–812. [Google Scholar] [CrossRef]
- Leanderson, T.; Liberg, D.; Ivars, F. S100A9 as a pharmacological target molecule in inflammation and cancer. Endocr. Metab. Immune Disord. Drug Targets 2015, 15, 97–104. [Google Scholar] [CrossRef]
- Björk, P.; Källberg, E.; Wellmar, U.; Riva, M.; Olsson, A.; He, Z.; Törngren, M.; Liberg, D.; Ivars, F.; Leanderson, T. Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS ONE 2013, 8, e63012. [Google Scholar] [CrossRef]
- Markowitz, J.; Carson, W.E. Review of S100A9 biology and its role in cancer. Biochim. Biophys. Acta 2013, 1835, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Hage-Sleiman, R.; Herveau, S.; Matera, E.-L.; Laurier, J.-F.; Dumontet, C. Silencing of Tubulin Binding Cofactor C modifies microtubule dynamics and cell cycle distribution and enhances sensitivity to gemcitabine in breast cancer cells. Mol. Cancer Ther. 2011, 10, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, S.A.; Cherry, E.M.; Bayless, K.J. Akt, 14-3-3 ζ, and vimentin mediate a drug-resistant invasive phenotype in diffuse large B-cell lymphoma. Leuk. Lymphoma 2011, 52, 849–864. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Z.; Ma, Y.; Wang, H.; Ma, J.; He, X.; Zhang, D. Combined expression of S100A4 and annexin A2 predicts disease progression and overall survival in patients with urothelial carcinoma. Urol. Oncol. 2014, 32, 798–805. [Google Scholar] [CrossRef]
- Peng, B.; Guo, C.; Guan, H.; Liu, S.; Sun, M.-Z. Annexin A5 as a potential marker in tumors. Clin. Chim. Acta 2014, 427, 42–48. [Google Scholar] [CrossRef]
- Sun, C.-B.; Zhao, A.-Y.; Ji, S.; Han, X.-Q.; Sun, Z.-C.; Wang, M.-C.; Zheng, F.-C. Expression of annexin A5 in serum and tumor tissue of patients with colon cancer and its clinical significance. World J. Gastroenterol. 2017, 23, 7168–7173. [Google Scholar] [CrossRef]
- Sun, X.; Liu, S.; Wang, J.; Wei, B.; Guo, C.; Chen, C.; Sun, M.-Z. Annexin A5 regulates hepatocarcinoma malignancy via CRKI/II-DOCK180-RAC1 integrin and MEK-ERK pathways. Cell Death Dis. 2018, 9, 637. [Google Scholar] [CrossRef]
- Kim, J.-K.; Louhghalam, A.; Lee, G.; Schafer, B.W.; Wirtz, D.; Kim, D.-H. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 2017, 8, 2123. [Google Scholar] [CrossRef]
- Zuo, L.; Zhao, H.; Yang, R.; Wang, L.; Ma, H.; Xu, X.; Zhou, P.; Kong, L. Lamin A/C might be involved in the EMT signaling pathway. Gene 2018, 663, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Taheri, F.; Isbilir, B.; Müller, G.; Krieger, J.W.; Chirico, G.; Langowski, J.; Tóth, K. Random motion of chromatin is influenced by lamin A interconnections. Biophys. J. 2018, 114, 2465–2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contrepois, K.; Coudereau, C.; Benayoun, B.A.; Schuler, N.; Roux, P.-F.; Bischof, O.; Courbeyre, R.; Carvalho, C.; Thuret, J.-Y.; Ma, Z.; et al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 2017, 8, 14995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.H.; Glennie, M.J.; et al. Guidelines for the welfare and use of animals in cancer research. Br. J. Cancer 2010, 102, 1555–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valo, I.; Raro, P.; Boissard, A.; Maarouf, A.; Jézéquel, P.; Verriele, V.; Campone, M.; Coqueret, O.; Guette, C. OLFM4 expression in ductal carcinoma in situ and in invasive breast cancer cohorts by a SWATH-based proteomic approach. Proteomics 2019, 1800446. [Google Scholar] [CrossRef] [PubMed]
Category | Group | Subgroup | Name | Differential Gene Expression |
---|---|---|---|---|
Preneoplastic (PN) | Epithelioid morphology (PN-[Epith]) C1 | Subnormal (Sbnl) | F1-0e | Pdpnhigh Ezrhigh Cdh1high Acta2low Mychigh Igf1low TGFb1low Il10low |
F1-0f | ||||
M2-0 | ||||
Preneoplastic epithelioid (PNep) | F2-0 | Pdpnhigh Ezrhigh Cdh1med Acta2low Myclow Igf1high TGFb1low Il10high | ||
F2-3 | ||||
F2-4 | ||||
F3-1 | ||||
M3-1 | ||||
Preneoplastic intermediary (PNint) | F1-2 | Pdpnhigh Ezrhigh Cdh1med Acta2med TGFb1high Il10low | ||
F5-2 | ||||
Sarcomatoid morphology (PNsarc) C2 | Sarcomatoid hypoxia low (PNsarc1) | F1-1 | Cdh1low Acta2high Tgfb1high Zebhigh Hif1alow CCl7low Vegfalow | |
F2-2 | ||||
M2-1 | ||||
M3-2 | ||||
Sarcomatoid hypoxia high (PNsarc2) | F1-3 | Cdh1low Acta2high Tgfb1high Zebhigh Hif1ahigh CCl7high Vegfahigh | ||
F2-1 | ||||
F5-3 | ||||
M1-1 | ||||
M2-3 | ||||
Miscellaneous (PNmisc) | M2-2 | Acta2med Ezrmed Tgfb1high | ||
M4-1 | ||||
F2-5 | ||||
F3-2 | ||||
Neoplastic (N) C3 | Non-invasive C5 | M5-T2 | Cdkn2alow Lgals3high Vegfahigh | |
Invasive C4 | F4-T2 | Cdkn2alow Lgals3high Vegfalow | ||
F5-T1 | ||||
M5-T1 |
Code | Name | C3 vs. C1 | C3 vs. C2 | C4 vs. C5 | T1 vs. T2 |
---|---|---|---|---|---|
ACADL | Long-chain specific acyl-CoA dehydrogenase, mitochondrial | ↓ | ↓ | ↓ | ↑ |
ACON | Aconitate hydratase, mitochondrial | ↓ | ↓ | ↓ | ↓ |
ACTN4 | Alpha-actinin-4 | ↑ | ↓ | ↓ | ↓ |
ANXA2 | Annexin A2 | ↑ | ↑ | ↑ | ↓ |
ANXA5 | Annexin A5 | ↑ | ↑ | ↑ | ↑ |
ATPO | ATP synthase subunit O, mitochondrial | ↑ | ↑ | ↓ | ↑ |
BAF | Barrier-to-autointegration factor | ↑ | ↑ | ↑ | ↑ |
DPYL2 | Dihydropyrimidinase-related protein 2 | ↓ | ↓ | ↓ | ↓ |
EDF1 | Endothelial differentiation-related factor 1 | ↑ | ↑ | ↓ | ↓ |
EMAL2 | Echinoderm microtubule-associated protein-like 2 | ↓ | ↓ | ↓ | ↓ |
FKB1A | Peptidyl-prolyl cis-trans isomerase FKBP1A | ↑ | ↑ | ↓ | ↓ |
GSHR | Glutathione reductase | ↑ | ↑ | ↑ | ↑ |
H2AJ | Histone H2A.J | ↑ | ↑ | ↑ | ↑ |
H31 | Histone H3.1 | ↓ | ↓ | ↑ | ↑ |
HYOU1 | Hypoxia up-regulated protein 1 | ↓ | ↑ | ↓ | ↓ |
ICAL | Calpastatin | ↓ | ↓ | ↑ | ↑ |
IF6 | Eukaryotic translation initiation factor 6 | ↓ | ↓ | ↓ | ↑ |
LMNA | Prelamin-A/C | ↑ | ↑ | ↑ | ↑ |
LUZP1 | Leucine zipper protein 1 | ↓ | ↓ | ↓ | ↓ |
MOES | Moesin | ↑ | ↑ | ↓ | ↓ |
MYH10 | Myosin-10 | ↓ | ↓ | ↓ | ↓ |
NCAM1 | Neural cell adhesion molecule 1 | ↑ | ↑ | ↓ | ↓ |
NDKB | Nucleoside diphosphate kinase B | ↑ | ↑ | ↓ | ↓ |
NDRG1 | Protein NDRG1 | ↓ | ↓ | ↓ | ↑ |
OPLA | 5-oxoprolinase | ↓ | ↓ | ↓ | ↓ |
PA1B2 | Platelet-activating factor acetylhydrolase IB subunit beta | ↑ | ↑ | ↓ | ↓ |
PHB | Prohibitin | ↓ | ↓ | ↑ | ↑ |
PRDX3 | Thioredoxin-dependent peroxide reductase, mitochondrial | ↑ | ↑ | ↓ | ↓ |
RLA0 | 60S acidic ribosomal protein P0 | ↑ | ↑ | ↑ | ↓ |
RTCB | tRNA-splicing ligase RtcB homolog | ↓ | ↓ | ↓ | ↑ |
S10A4 | Protein S100-A4 | ↑ | ↑ | ↑ | ↑ |
SEPT2 | Septin-2 | ↓ | ↓ | ↓ | ↓ |
STABP | STAM-binding protein OS = Rattus norvegicus | ↓ | ↓ | ↓ | ↑ |
TBCA | Tubulin-specific chaperone A | ↓ | ↓ | ↑ | ↑ |
TBG1 | Tubulin gamma-1 chain | ↓ | ↓ | ↑ | ↑ |
TCTP | Translationally-controlled tumor protein | ↑ | ↑ | ↓ | ↓ |
TYB10 | Thymosin beta-10 | ↑ | ↑ | ↓ | ↓ |
UB2V2 | Ubiquitin-conjugating enzyme E2 variant 2 | ↑ | ↑ | ↓ | ↓ |
UGGG1 | UDP-glucose:glycoprotein glucosyltransferase 1 | ↓ | ↓ | ↑ | ↑ |
Code | Name | Rats with Tumors vs. Control Rats |
---|---|---|
ACADL | Long-chain specific acyl-CoA dehydrogenase, mitochondrial | ns |
ACON | Aconitate hydratase, mitochondrial | ns |
ACTN4 | Alpha-actinin-4 | ns |
ANXA2 | Annexin A2 | ↑ |
ANXA5 | Annexin A5 | ↑ |
ATPO | ATP synthase subunit O, mitochondrial | ns |
BAF | Barrier-to-autointegration factor | ns |
DPYL2 | Dihydropyrimidinase-related protein 2 | ns |
EDF1 | Endothelial differentiation-related factor 1 | nd |
EMAL2 | Echinoderm microtubule-associated protein-like 2 | ns |
FKB1A | Peptidyl-prolyl cis-trans isomerase FKBP1A | ns |
GSHR | Glutathione reductase | nd |
H2AJ | Histone H2A.J | ns |
H31 | Histone H3.1 | ns |
HYOU1 | Hypoxia up-regulated protein 1 | ns |
ICAL | Calpastatin | ns |
IF6 | Eukaryotic translation initiation factor 6 | ns |
LMNA | Prelamin-A/C | (↑) p = 0.05103 |
LUZP1 | Leucine zipper protein 1 | ns |
MOES | Moesin | ns |
MYH10 | Myosin-10 | ns |
NCAM1 | Neural cell adhesion molecule 1 | nd |
NDKB | Nucleoside diphosphate kinase B | (↑) p = 0.06241 |
NDRG1 | Protein NDRG1 | ↑ |
OPLA | 5-oxoprolinase | ↑ |
PA1B2 | Platelet-activating factor acetylhydrolase IB subunit beta | ns |
PHB | Prohibitin | ns |
PRDX3 | Thioredoxin-dependent peroxide reductase, mitochondrial | ns |
RLA0 | 60S acidic ribosomal protein P0 | ↓ |
RTCB | tRNA-splicing ligase RtcB homolog | ns |
S10A4 | Protein S100-A4 | ↑ |
SEPT2 | Septin-2 | ns |
STABP | STAM-binding protein OS=Rattus norvegicus | ns |
TBCA | Tubulin-specific chaperone A | ↑ |
TBG1 | Tubulin gamma-1 chain | ↑ |
TCTP | Translationally-controlled tumor protein | ns |
TYB10 | Thymosin beta-10 | (↓) p = 0.05936 |
UB2V2 | Ubiquitin-conjugating enzyme E2 variant 2 | ns |
UGGG1 | UDP-glucose:glycoprotein glucosyltransferase 1 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nader, J.S.; Guillon, J.; Petit, C.; Boissard, A.; Franconi, F.; Blandin, S.; Lambot, S.; Grégoire, M.; Verrièle, V.; Nawrocki-Raby, B.; et al. S100A4 Is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma. Cancers 2020, 12, 939. https://doi.org/10.3390/cancers12040939
Nader JS, Guillon J, Petit C, Boissard A, Franconi F, Blandin S, Lambot S, Grégoire M, Verrièle V, Nawrocki-Raby B, et al. S100A4 Is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma. Cancers. 2020; 12(4):939. https://doi.org/10.3390/cancers12040939
Chicago/Turabian StyleNader, Joëlle S., Jordan Guillon, Coralie Petit, Alice Boissard, Florence Franconi, Stéphanie Blandin, Sylvia Lambot, Marc Grégoire, Véronique Verrièle, Béatrice Nawrocki-Raby, and et al. 2020. "S100A4 Is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma" Cancers 12, no. 4: 939. https://doi.org/10.3390/cancers12040939
APA StyleNader, J. S., Guillon, J., Petit, C., Boissard, A., Franconi, F., Blandin, S., Lambot, S., Grégoire, M., Verrièle, V., Nawrocki-Raby, B., Birembaut, P., Coqueret, O., Guette, C., & Pouliquen, D. L. (2020). S100A4 Is a Biomarker of Tumorigenesis, EMT, Invasion, and Colonization of Host Organs in Experimental Malignant Mesothelioma. Cancers, 12(4), 939. https://doi.org/10.3390/cancers12040939