Classic and Variants APLs, as Viewed from a Therapy Response
Abstract
:1. Introduction
2. Current Understanding of Classic APL Pathogenesis and Treatment Response
3. Mutations that Cooperate with Deregulated RARA Signaling to Drive APL and/or Therapy Resistance
4. Novel Retinoic Acid Receptors Fusions in APL
4.1. PML-Independent RARA Fusions Involved in APL
4.1.1. ZBTB16-RARA t(11;17)(q23;q21)
4.1.2. BCoR-RARA t(X;17)(p11;q21)
4.1.3. FIP1L1-RARA t(4;17)(q12;q21)
4.1.4. FNDC3B-RARA t(3;17)(q26;q21)
4.1.5. GTF2I-RARA t(7;17)(q11;q21)
4.1.6. IRF2BP2-RARA t(1;17)(q42;q21)
4.1.7. NABP1-RARA t(2;17)(q32;q21)
4.1.8. NPM-RARA t(5;17)(q35;q21)
4.1.9. NuMA-RARA t(11;17)(q13;q21)
4.1.10. PRKAR1A-RARA t(17; 17)(q21; q24) or del(17)(q21q24)
4.1.11. STAT5b-RARA t(17; 17)(q21; q21) or dup(17)(q12q21)
4.1.12. STAT3-RARA t(17;17)(q21;q21) or dup(17)(q12q21)
4.1.13. TBLR1-RARA t(3;17)(q26;q21)
4.1.14. TFG-RARA t(3;14;17)(q12;q11;q21)
4.2. RARB and RARG Fusions Involved in APL-Like Leukemias
4.2.1. TBLR1-RARB t(3;3)(q26;q24)
4.2.2. CPSF6-RARγ t(12;12)(q13;q15)
4.2.3. The NPM1-RARG-NPM1 (Karyotype Non-Determined)
4.2.4. NUP98-RARG t(11;12)(p15;q13)
4.2.5. PML-RARG t(12;15)(q13;q22)
4.3. Available Data for Therapy Response in Variant APLs
5. Are New Genetic Findings of APL-Like AMLs Shedding A New Light in Its Pathogenesis?
6. Conclusions: Deregulated Retinoic Acid Signaling in Other Malignancies?
Funding
Conflicts of Interest
References
- Dinmohamed, A.G.; Visser, O. Incidence of acute promyelocytic leukemia across Europe: Results of RARECAREnet-a population-based study. Stem Cell Investig. 2019, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- De The, H.; Chomienne, C.; Lanotte, M.; Degos, L.; Dejean, A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990, 347, 558–561. [Google Scholar] [CrossRef]
- De Thé, H.; Lavau, C.; Marchio, A.; Chomienne, C.; Degos, L.; Dejean, A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 1991, 66, 675–684. [Google Scholar] [CrossRef]
- Borrow, J.; Goddart, A.; Sheer, D.; Solomon, E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science 1990, 249, 1577–1580. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.; Pandolfi, P.; Biondi, A.; Rambaldi, A.; Mencarelli, A.; Lo Coco, F.; Diverio, D.; Pegoraro, L.; Avanzi, G.; Tabilio, A.; et al. Rearrangement and aberrant expression of the retinoic acid receptor a gene in acute promyelocytic leukemia. J. Exp. Med. 1990, 172, 1571–1575. [Google Scholar] [CrossRef]
- De The, H.; Pandolfi, P.P.; Chen, Z. Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell 2017, 32, 552–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, G.A.; Kats, L.; Pandolfi, P.P. Synergy against PML-RARa: Targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J. Exp. Med. 2013, 210, 2793–2802. [Google Scholar] [CrossRef] [PubMed]
- Noguera, N.I.; Catalano, G.; Banella, C.; Divona, M.; Faraoni, I.; Ottone, T.; Arcese, W.; Voso, M.T. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Sahin, U.; de The, H.; Lallemand-Breitenbach, V. PML nuclear bodies: Assembly and oxidative stress-sensitive sumoylation. Nucleus 2014, 5, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Sahin, U.; Lallemand-Breitenbach, V.; de The, H. PML nuclear bodies: Regulation, function and therapeutic perspectives. J. Pathol. 2014, 234, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Vernier, M.; Bourdeau, V.; Gaumont-Leclerc, M.F.; Moiseeva, O.; Begin, V.; Saad, F.; Mes-Masson, A.M.; Ferbeyre, G. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011, 25, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Lowenberg, B.; Naoe, T.; Lengfelder, E.; Dohner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Degos, L.; Dombret, H.; Chomienne, C.; Daniel, M.T.; Miclea, J.M.; Chastang, C.; Castaigne, S.; Fenaux, P. All-trans retinoic acid as a differentiating agent in the treatment of acute promyelocytic leukemia. Blood 1995, 85, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Estey, E.; Garcia-Manero, G.; Ferrajoli, A.; Faderl, S.; Verstovsek, S.; Jones, D.; Kantarjian, H. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006, 107, 3469–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo-Coco, F.; Di Donato, L.; Schlenk, R.F. Targeted Therapy Alone for Acute Promyelocytic Leukemia. N. Engl. J. Med. 2016, 374, 1197–1198. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Zhu, H.H.; Hu, J.; Lo-Coco, F.; Jin, J. The simpler, the better: Oral arsenic for acute promyelocytic leukemia. Blood 2019, 134, 597–605. [Google Scholar] [CrossRef]
- Zhu, H.H.; Wu, D.P.; Du, X.; Zhang, X.; Liu, L.; Ma, J.; Shao, Z.H.; Ren, H.Y.; Hu, J.D.; Xu, K.L.; et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: A non-inferiority, randomised phase 3 trial. Lancet Oncol. 2018, 19, 871–879. [Google Scholar] [CrossRef]
- De The, H. Differentiation therapy revisited. Nat. Rev. Cancer 2018, 18, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Nervi, C.; Ferrara, F.F.; Fanelli, M.; Rippo, M.R.; Tomassini, B.; Ferrucci, P.F.; Ruthardt, M.; Gelmetti, V.; Gambacorti-Passerini, C.; Diverio, D.; et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARalpha fusion protein. Blood 1998, 92, 2244–2251. [Google Scholar] [PubMed]
- Zhu, J.; Gianni, M.; Kopf, E.; Honore, N.; Chelbi-Alix, M.; Koken, M.; Quignon, F.; Rochette-Egly, C.; de The, H. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RAR alpha) and oncogenic RAR alpha fusion proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 14807–14812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isakson, P.; Bjoras, M.; Boe, S.O.; Simonsen, A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010, 116, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.-T.; Koken, M.; Romagné, O.; Barbey, S.; Bazarbachi, A.; Stadler, M.; Guillemin, M.-C.; Degos, L.; Chomienne, C.; de Thé, H. PML protein expression in hematopoietic and acute promyelocytic leukemia cells. Blood 1993, 82, 1858–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitaliano-Prunier, A.; Halftermeyer, J.; Ablain, J.; de Reynies, A.; Peres, L.; Le Bras, M.; Metzger, D.; de The, H. Clearance of PML/RARA-bound promoters suffice to initiate APL differentiation. Blood 2014, 124, 3772–3780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanne, M.; Lallemand-Breitenbach, V.; Ferhi, O.; Koken, M.; Le Bras, M.; Duffort, S.; Peres, L.; Berthier, C.; Soilihi, H.; Raught, B.; et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010, 18, 88–98. [Google Scholar] [CrossRef]
- Zhang, X.W.; Yan, X.J.; Zhou, Z.R.; Yang, F.F.; Wu, Z.Y.; Sun, H.B.; Liang, W.X.; Song, A.X.; Lallemand-Breitenbach, V.; Jeanne, M.; et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 2010, 328, 240–243. [Google Scholar] [CrossRef]
- Lallemand-Breitenbach, V.; Zhu, J.; Puvion, F.; Koken, M.; Honore, N.; Doubeikovsky, A.; Duprez, E.; Pandolfi, P.P.; Puvion, E.; Freemont, P.; et al. Role of Promyelocytic Leukemia (PML) Sumolation in Nuclear Body Formation, 11S Proteasome Recruitment, and As2O3-induced PML or PML/Retinoic Acid Receptor alpha Degradation. J. Exp. Med. 2001, 193, 1361–1372. [Google Scholar] [CrossRef]
- Lallemand-Breitenbach, V.; Jeanne, M.; Benhenda, S.; Nasr, R.; Lei, M.; Peres, L.; Zhou, J.; Zhu, J.; Raught, B.; de The, H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 2008, 10, 547–555. [Google Scholar] [CrossRef]
- Tatham, M.H.; Geoffroy, M.C.; Shen, L.; Plechanovova, A.; Hattersley, N.; Jaffray, E.G.; Palvimo, J.J.; Hay, R.T. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 2008, 10, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Koken, M.H.M.; Quignon, F.; Chelbi-Alix, M.K.; Degos, L.; Wang, Z.Y.; Chen, Z.; de The, H. Arsenic-induced PML targeting onto nuclear bodies: Implications for the treatment of acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997, 94, 3978–3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ablain, J.; Rice, K.; Soilihi, H.; de Reynies, A.; Minucci, S.; de The, H. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 2014, 20, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Nasr, R.; Guillemin, M.C.; Ferhi, O.; Soilihi, H.; Peres, L.; Berthier, C.; Rousselot, P.; Robledo-Sarmiento, M.; Lallemand-Breitenbach, V.; Gourmel, B.; et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat. Med. 2008, 14, 1333–1342. [Google Scholar] [CrossRef]
- Korf, K.; Wodrich, H.; Haschke, A.; Ocampo, C.; Harder, L.; Gieseke, F.; Pollmann, A.; Dierck, K.; Prall, S.; Staege, H.; et al. The PML domain of PML-RARalpha blocks senescence to promote leukemia. Proc. Natl. Acad. Sci. USA 2014, 111, 12133–12138. [Google Scholar] [CrossRef] [Green Version]
- Lehmann-Che, J.; Bally, C.; de The, H. Therapy resistance in APL. N. Engl. J. Med. 2014, 371, 1171–1172. [Google Scholar]
- Iaccarino, L.; Ottone, T.; Divona, M.; Cicconi, L.; Cairoli, R.; Voso, M.T.; Lo-Coco, F. Mutations affecting both the rearranged and the unrearranged PML alleles in refractory acute promyelocytic leukaemia. Br. J. Haematol. 2016, 172, 909–913. [Google Scholar] [CrossRef]
- Mathews, V.; George, B.; Lakshmi, K.M.; Viswabandya, A.; Bajel, A.; Balasubramanian, P.; Shaji, R.V.; Srivastava, V.M.; Srivastava, A.; Chandy, M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: Durable remissions with minimal toxicity. Blood 2006, 107, 2627–2632. [Google Scholar] [CrossRef]
- Madan, V.; Shyamsunder, P.; Han, L.; Mayakonda, A.; Nagata, Y.; Sundaresan, J.; Kanojia, D.; Yoshida, K.; Ganesan, S.; Hattori, N.; et al. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 2016, 30, 1672–1681. [Google Scholar] [CrossRef]
- Lehmann-Che, J.; Bally, C.; Letouze, E.; Berthier, C.; Yuan, H.; Jollivet, F.; Ades, L.; Cassinat, B.; Hirsch, P.; Pigneux, A.; et al. Dual origin of relapses in retinoic-acid resistant acute promyelocytic leukemia. Nat. Commun. 2018, 9, 2047. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Shih, L.Y.; Kato, M.; Kawamata, N.; Yamamoto, G.; Sanada, M.; Okamoto, R.; Miller, C.W.; Liang, D.C.; Ogawa, S.; et al. Hidden abnormalities and novel classification of t(15;17) acute promyelocytic leukemia (APL) based on genomic alterations. Blood 2009, 113, 1741–1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.S.; Ley, T.J.; Link, D.C.; Miller, C.A.; Larson, D.E.; Koboldt, D.C.; Wartman, L.D.; Lamprecht, T.L.; Liu, F.; Xia, J.; et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012, 150, 264–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, M.; Carbonell-Caballero, J.; Garcia-Alonso, L.; Such, E.; Jimenez-Almazan, J.; Vidal, E.; Barragan, E.; Lopez-Pavia, M.; LLop, M.; Martin, I.; et al. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations. PLoS ONE 2016, 11, e0148346. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, J.W.; Xue, H.L.; Shen, S.H.; Chen, J.; Tang, Y.J.; Yu, L.S.; Liang, H.H.; Gu, L.J.; Tang, J.Y.; et al. The genetics and clinical characteristics of children morphologically diagnosed as acute promyelocytic leukemia. Leukemia 2019, 33, 1387–1399. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, L.; Ottone, T.; Alfonso, V.; Cicconi, L.; Divona, M.; Lavorgna, S.; Travaglini, S.; Ferrantini, A.; Falconi, G.; Baer, C.; et al. Mutational landscape of patients with acute promyelocytic leukemia at diagnosis and relapse. Am. J. Hematol. 2019, 94, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.E. Retinoic acid resistance in acute promyelocytic leukemia. Leuk. Off. J. Leuk. Soc. Am. Leuk. Res. Fund UK 2002, 16, 1940–1958. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, R.E.; Moser, B.K.; Racevskis, J.; Poire, X.; Bloomfield, C.D.; Carroll, A.J.; Ketterling, R.P.; Roulston, D.; Schachter-Tokarz, E.; Zhou, D.C.; et al. Treatment-influenced associations of PML-RARalpha mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia. Blood 2012, 120, 2098–2108. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.H.; Qin, Y.Z.; Huang, X.J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med. 2014, 370, 1864–1866. [Google Scholar] [CrossRef]
- Lou, Y.; Ma, Y.; Sun, J.; Ye, X.; Pan, H.; Wang, Y.; Qian, W.; Meng, H.; Mai, W.; He, J.; et al. Evaluating frequency of PML-RARA mutations and conferring resistance to arsenic trioxide-based therapy in relapsed acute promyelocytic leukemia patients. Ann. Hematol. 2015, 94, 1829–1837. [Google Scholar] [CrossRef]
- Shen, Y.; Fu, Y.K.; Zhu, Y.M.; Lou, Y.J.; Gu, Z.H.; Shi, J.Y.; Chen, B.; Chen, C.; Zhu, H.H.; Hu, J.; et al. Mutations of Epigenetic Modifier Genes as a Poor Prognostic Factor in Acute Promyelocytic Leukemia Under Treatment With All-Trans Retinoic Acid and Arsenic Trioxide. EBioMedicine 2015, 2, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Lucena-Araujo, A.R.; Coelho-Silva, J.L.; Pereira-Martins, D.A.; Silveira, D.R.; Koury, L.C.; Melo, R.A.M.; Bittencourt, R.; Pagnano, K.; Pasquini, R.; Nunes, E.C.; et al. Combining gene mutation with gene expression analysis improves outcome prediction in acute promyelocytic leukemia. Blood 2019, 134, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Cao, Y.; Bai, X.; Zhuang, W. The clinical significance of FLT3 ITD mutation on the prognosis of adult acute promyelocytic leukemia. Hematology 2018, 23, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Picharski, G.L.; Andrade, D.P.; Fabro, A.; Lenzi, L.; Tonin, F.S.; Ribeiro, R.C.; Figueiredo, B.C. The Impact of Flt3 Gene Mutations in Acute Promyelocytic Leukemia: A Meta-Analysis. Cancers 2019, 11, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esnault, C.; Rahme, R.; Rice, K.L.; Berthier, C.; Gaillard, C.; Quentin, S.; Maubert, A.L.; Kogan, S.; de The, H. FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. Blood 2019, 133, 1495–1506. [Google Scholar] [CrossRef]
- Cicconi, L.; Divona, M.; Ciardi, C.; Ottone, T.; Ferrantini, A.; Lavorgna, S.; Alfonso, V.; Paoloni, F.; Piciocchi, A.; Avvisati, G.; et al. PML-RARalpha kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia 2016, 30, 1987–1992. [Google Scholar] [CrossRef]
- Poire, X.; Moser, B.K.; Gallagher, R.E.; Laumann, K.; Bloomfield, C.D.; Powell, B.L.; Koval, G.; Gulati, K.; Holowka, N.; Larson, R.A.; et al. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): Prognostic significance of FLT3 mutations and complex karyotype. Leuk. Lymphoma 2014, 55, 1523–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W.; Zhang, G. Molecular Characteristics and Clinical Significance of 12 Fusion Genes in Acute Promyelocytic Leukemia: A Systematic Review. Acta Haematol. 2016, 136, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Baba, S.M.; Pandith, A.A.; Shah, Z.A.; Baba, R.A. Pathogenetic implication of fusion genes in acute promyelocytic leukemia and their diagnostic utility. Clin. Genet. 2019, 95, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Liquori, A.; Ibanez, M.; Sargas, C.; Sanz, M.A.; Barragan, E.; Cervera, J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers 2020, 12, 624. [Google Scholar] [CrossRef] [Green Version]
- Conserva, M.R.; Redavid, I.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. RARG Gene Dysregulation in Acute Myeloid Leukemia. Front. Mol. Biosci. 2019, 6, 114. [Google Scholar] [CrossRef]
- Chen, Z.; Brand, N.; Chen, A.; Chen, S.; Tong, J.; Wang, Z.; Waxman, S.; Zelent, A. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor a locus due to a variant t(11,17) translocation in acute promyelocytic leukemia. EMBO J. 1993, 12, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Tsuzuki, S.; Tsuzuki, M.; Handa, K.; Inaguma, Y.; Emi, N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 2010, 116, 4274–4283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Mori, A.; Darmanin, S.; Hashino, S.; Tanaka, J.; Asaka, M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica 2008, 93, 1414–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, J.; Acquadro, F.; Perez-Pons de la Villa, C.; Garcia-Sanchez, F.; Alvarez, S.; Cigudosa, J.C. FIP1L1/RARA with breakpoint at FIP1L1 intron 13: A variant translocation in acute promyelocytic leukemia. Haematologica 2011, 96, 1565–1566. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.K.; Wang, A.Z.; Wong, T.H.Y.; Wan, T.S.K.; Cheung, J.S.; Raghupathy, R.; Chan, N.P.H.; Ng, M.H.L. FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute promyelocytic leukemia. Blood 2017, 129, 2705–2709. [Google Scholar] [CrossRef]
- Li, J.; Zhong, H.Y.; Zhang, Y.; Xiao, L.; Bai, L.H.; Liu, S.F.; Zhou, G.B.; Zhang, G.S. GTF2I-RARA is a novel fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid. Br. J. Haematol. 2015, 168, 904–908. [Google Scholar] [CrossRef]
- Jovanovic, J.V.; Chillon, M.C.; Vincent-Fabert, C.; Dillon, R.; Voisset, E.; Gutierrez, N.C.; Sanz, R.G.; Lopez, A.A.; Morgan, Y.G.; Lok, J.; et al. The cryptic IRF2BP2-RARA fusion transforms hematopoietic stem/progenitor cells and induces retinoid-sensitive acute promyelocytic leukemia. Leukemia 2017, 31, 747–751. [Google Scholar] [CrossRef]
- Shimomura, Y.; Mitsui, H.; Yamashita, Y.; Kamae, T.; Kanai, A.; Matsui, H.; Ishibashi, T.; Tanimura, A.; Shibayama, H.; Oritani, K.; et al. New variant of acute promyelocytic leukemia with IRF2BP2-RARA fusion. Cancer Sci. 2016, 107, 1165–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazharuddin, S.; Chattopadhyay, A.; Levy, M.Y.; Redner, R.L. IRF2BP2-RARA t(1;17)(q42.3;q21.2) APL blasts differentiate in response to all-trans retinoic acid. Leuk. Lymphoma 2018, 59, 2246–2249. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, F.; Hu, H.; Wen, J.; Su, J.; Zhou, Q.; Qu, W. A rare case of acute promyelocytic leukemia with IRF2BP2-RARA fusion; and literature review. OncoTargets Ther. 2019, 12, 6157–6163. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.C.; Jain, N.; Mehrotra, M.; Zhagn, J.; Protopopov, A.; Zuo, Z.; Pemmaraju, N.; DiNardo, C.; Hirsch-Ginsberg, C.; Wang, S.A.; et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J. Natl. Compr. Cancer Netw. 2015, 13, 19–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, D.; Shin, S.Y.; Park, C.J.; Jang, S.; Chi, H.S.; Lee, K.H.; Lee, J.O.; Seo, E.J. OBFC2A/RARA: A novel fusion gene in variant acute promyelocytic leukemia. Blood 2013, 121, 1432–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redner, R.L.; Rush, E.A.; Faas, S.; Rudert, W.A.; Corey, S.J. The t(5-17) variant of acute promyelocytic leukemia expresses a nucleophosmin retinoic acid receptor fusion. Blood 1996, 87, 882–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, R.A.; Catzavelos, C.; Kamel-Reid, S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat. Genet. 1997, 17, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Wells, R.A.; Hummel, J.L.; De Koven, A.; Zipursky, A.; Kirby, M.; Dube, I.; Kamel-Reid, S. A new variant translocation in acute promyelocytic leukaemia: Molecular characterization and clinical correlation. Leukemia 1996, 10, 735–740. [Google Scholar] [PubMed]
- Catalano, A.; Dawson, M.A.; Somana, K.; Opat, S.; Schwarer, A.; Campbell, L.J.; Iland, H. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood 2007, 110, 4073–4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Wen, L.; Wang, N.; Liu, T.; Xu, Y.; Ruan, C.; Wu, D.; Chen, S. Identification of novel recurrent STAT3-RARA fusions in acute promyelocytic leukemia lacking t(15;17)(q22;q12)/PML-RARA. Blood 2018, 131, 935–939. [Google Scholar] [CrossRef]
- Arnould, C.; Philippe, C.; Bourdon, V.; Gregoire, M.J.; Berger, R.; Jonveaux, P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBLR1 fuses to retinoid acid receptor alpha in a variant t(3;17)(q26;q21) translocation of acute promyelocytic leukemia. Blood 2014, 124, 936–945. [Google Scholar] [CrossRef] [Green Version]
- Osumi, T.; Watanabe, A.; Okamura, K.; Nakabayashi, K.; Yoshida, M.; Tsujimoto, S.I.; Uchiyama, M.; Takahashi, H.; Tomizawa, D.; Hata, K.; et al. Acute promyelocytic leukemia with a cryptic insertion of RARA into TBL1XR1. Genes Chromosom. Cancer 2019, 58, 820–823. [Google Scholar] [CrossRef]
- Chong, M.L.; Cheng, H.; Xu, P.; You, H.; Wang, M.; Wang, L.; Ho, H.H. TFG-RARA: A novel fusion gene in acute promyelocytic leukemia that is responsive to all-trans retinoic acid. Leuk. Res. 2018, 74, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Osumi, T.; Tsujimoto, S.I.; Tamura, M.; Uchiyama, M.; Nakabayashi, K.; Okamura, K.; Yoshida, M.; Tomizawa, D.; Watanabe, A.; Takahashi, H.; et al. Recurrent RARB Translocations in Acute Promyelocytic Leukemia Lacking RARA Translocation. Cancer Res. 2018, 78, 4452–4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Wen, L.; Yuan, H.; Wang, Y.; Yao, L.; Xu, Y.; Cen, J.; Ruan, C.; Wu, D.; Chen, S. Identification of novel recurrent CPSF6-RARG fusions in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2018, 131, 1870–1873. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.Z.; Huang, X.J.; Zhu, H.H. Identification of a novel CPSF6-RARG fusion transcript in acute myeloid leukemia resembling acute promyelocytic leukemia. Leukemia 2018, 32, 2285–2287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jiang, M.; Borthakur, G.; Luan, S.; Huang, X.; Tang, G.; Xu, Q.; Ji, D.; Boyer, A.D.; Li, F.; et al. Acute myeloid leukemia with a novel CPSF6-RARG variant is sensitive to homoharringtonine and cytarabine chemotherapy. Am. J. Hematol. 2020, 95, E48–E51. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Zhang, Y.; Teng, W.; Cao, P.; Ma, X.; Liu, M.; Tian, Y.; Wang, T.; Nie, D.; et al. A novel NPM1-RARG-NPM1 chimeric fusion in acute myeloid leukaemia resembling acute promyelocytic leukaemia but resistant to all-trans retinoic acid and arsenic trioxide. Br. J. Cancer 2019, 120, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Such, E.; Cervera, J.; Valencia, A.; Barragan, E.; Ibanez, M.; Luna, I.; Fuster, O.; Perez-Sirvent, M.L.; Senent, L.; Sempere, A.; et al. A novel NUP98/RARG gene fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood 2011, 117, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhang, S.; Li, K.; Chen, X.H.; Li, Y.C.; Sun, Y.; Liu, L.F.; Yu, H.Y.; Zhu, H.H. A novel entity of acute myeloid leukaemia with recurrent RARG-rearrangement resembling acute promyelocytic leukaemia. Leuk. Res. 2019, 77, 14–16. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Wang, J.; Suo, S.; Ling, Q.; Yu, W.; Jin, J. RARgamma-rearrangements resemble acute promyelocytic leukemia and benefit from 3 + 7 regimen. Leuk. Lymphoma 2019, 60, 1831–1834. [Google Scholar] [CrossRef]
- Ha, J.S.; Do, Y.R.; Ki, C.S.; Lee, C.; Kim, D.H.; Lee, W.; Ryoo, N.H.; Jeon, D.S. Identification of a novel PML-RARG fusion in acute promyelocytic leukemia. Leukemia 2017, 31, 1992–1995. [Google Scholar] [CrossRef]
- Licht, J.D. Reconstructing a disease: What essential features of the retinoic acid receptor fusion oncoproteins generate acute promyelocytic leukemia? Cancer Cell 2006, 9, 73–74. [Google Scholar] [CrossRef] [Green Version]
- Kamashev, D.E.; Vitoux, D.; De Thé, H. PML/RARA-RXR oligomers mediate retinoid- and rexinoid- /cAMP in APL cell differentiation. J. Exp. Med. 2004, 199, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Martens, J.H.; Brinkman, A.B.; Simmer, F.; Francoijs, K.J.; Nebbioso, A.; Ferrara, F.; Altucci, L.; Stunnenberg, H.G. PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute Promyelocytic Leukemia. Cancer Cell 2010, 17, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Nasr, R.; Peres, L.; Riaucoux-Lormiere, F.; Honore, N.; Berthier, C.; Kamashev, D.; Zhou, J.; Vitoux, D.; Lavau, C.; et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell 2007, 12, 23–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, S.; Bartelmez, S.; Heyman, R.; Damm, K.; Evans, R.; Collins, S.J. A mutated retinoic acid receptor a exhibiting dominant- negative activity alters the lineage development of a multipotent hematopoietic cell line. Genes Dev. 1993, 6, 2258–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, M.; Jackson, G.; Taylor, P. The incidence of acute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia 2000, 14, 722–726. [Google Scholar] [CrossRef] [Green Version]
- Suliman, B.A.; Xu, D.; Williams, B.R. The promyelocytic leukemia zinc finger protein: Two decades of molecular oncology. Front. Oncol. 2012, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Bhaumik, M.; Tribioli, C.; Rego, E.M.; Ivins, S.; Zelent, A.; Pandolfi, P.P. Two critical hits for promyelocytic leukemia. Mol. Cell 2000, 6, 1131–1141. [Google Scholar] [CrossRef]
- Guidez, F.; Parks, S.; Wong, H.; Jovanovic, J.V.; Mays, A.; Gilkes, A.F.; Mills, K.I.; Guillemin, M.C.; Hobbs, R.M.; Pandolfi, P.P.; et al. RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2007, 104, 18694–18699. [Google Scholar] [CrossRef] [Green Version]
- Licht, J.D.; Chomienne, C.; Goy, A.; Chen, A.; Scott, A.A.; Head, D.R.; Michaux, J.L.; Wu, Y.; DeBlasio, A.; Miller, W.H., Jr.; et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995, 85, 1083–1094. [Google Scholar] [CrossRef] [Green Version]
- Koken, M.H.M.; Daniel, M.-T.; Gianni, M.; Zelent, A.; Licht, J.; Buzyn, A.; Minard, P.; Degos, L.; Varet, B.; de The, H. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant tt(11;17)(q23;q21) APL patient. Oncogene 1999, 18, 1113–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, E.M.; He, L.Z.; Warrell, R.P., Jr.; Wang, Z.G.; Pandolfi, P.P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc. Natl. Acad. Sci. USA 2000, 97, 10173–10178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.Z.; Tolentino, T.; Grayson, P.; Zhong, S.; Warrell, R.P., Jr.; Rifkind, R.A.; Marks, P.A.; Richon, V.M.; Pandolfi, P.P. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J. Clin. Investig. 2001, 108, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Petti, M.C.; Fazi, F.; Gentile, M.; Diverio, D.; De Fabritiis, P.; De Propris, M.S.; Fiorini, R.; Spiriti, M.A.; Padula, F.; Pelicci, P.G.; et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: In vitro and in vivo studies. Blood 2002, 100, 1065–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, J.H.; Lowenberg, B. Acute promyelocytic leukemia with a PLZF-RARalpha fusion protein. Semin. Hematol. 2001, 38, 37–41. [Google Scholar] [CrossRef]
- Kitamura, K.; Hoshi, S.; Koike, M.; Kiyoi, H.; Saito, H.; Naoe, T. Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br. J. Haematol. 2000, 108, 696–702. [Google Scholar] [CrossRef]
- Astolfi, A.; Fiore, M.; Melchionda, F.; Indio, V.; Bertuccio, S.N.; Pession, A. BCOR involvement in cancer. Epigenomics 2019, 11, 835–855. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, M.G.; Oswald, E.; Yu, W.; Xue, F.; MacKerell, A.D., Jr.; Melnick, A.M. The Expanding Role of the BCL6 Oncoprotein as a Cancer Therapeutic Target. Clin. Cancer Res. 2017, 23, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, S.; Ichikawa, S.; Ishikawa, I.; Takahashi, T.; Fujiwara, T.; Harigae, H. Successful treatment of acute promyelocytic leukemia with a t(X;17)(p11.4;q21) and BCOR-RARA fusion gene. Cancer Genet. 2015, 208, 162–163. [Google Scholar] [CrossRef]
- Cools, J.; DeAngelo, D.J.; Gotlib, J.; Stover, E.H.; Legare, R.D.; Cortes, J.; Kutok, J.; Clark, J.; Galinsky, I.; Griffin, J.D.; et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 2003, 348, 1201–1214. [Google Scholar] [CrossRef]
- Iwasaki, J.; Kondo, T.; Darmanin, S.; Ibata, M.; Onozawa, M.; Hashimoto, D.; Sakamoto, N.; Teshima, T. FIP1L1 presence in FIP1L1-RARA or FIP1L1-PDGFRA differentially contributes to the pathogenesis of distinct types of leukemia. Ann. Hematol. 2014, 93, 1473–1481. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, K.; Kondo, C.; Johmura, Y.; Nishizuka, M.; Imagawa, M. The novel gene fad104, containing a fibronectin type III domain, has a significant role in adipogenesis. FEBS Lett. 2004, 577, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Lin, Y.W.; Chen, Y.C.; Liao, C.C.; Jou, Y.S.; Hsu, M.T.; Chen, C.F. FNDC3B promotes cell migration and tumor metastasis in hepatocellular carcinoma. Oncotarget 2016, 7, 49498–49508. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.L. Pathophysiology of TFII-I: Old Guard Wearing New Hats. Trends Mol. Med. 2017, 23, 501–511. [Google Scholar] [CrossRef]
- Yan, W.; Li, J.; Zhang, Y.; Yin, Y.; Cheng, Z.; Wang, J.; Hu, G.; Liu, S.; Wang, Y.; Xu, Y.; et al. RNF8 is responsible for ATRA resistance in variant acute promyelocytic leukemia with GTF2I/RARA fusion, and inhibition of the ubiquitin-proteasome pathway contributes to the reversion of ATRA resistance. Cancer Cell Int. 2019, 19, 84. [Google Scholar] [CrossRef] [Green Version]
- Ramalho-Oliveira, R.; Oliveira-Vieira, B.; Viola, J.P.B. IRF2BP2: A new player in the regulation of cell homeostasis. J. Leukoc. Biol. 2019, 106, 717–723. [Google Scholar] [CrossRef]
- Ashton, N.W.; Bolderson, E.; Cubeddu, L.; O’Byrne, K.J.; Richard, D.J. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol. Biol. 2013, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Box, J.K.; Paquet, N.; Adams, M.N.; Boucher, D.; Bolderson, E.; O’Byrne, K.J.; Richard, D.J. Nucleophosmin: From structure and function to disease development. BMC Mol. Biol. 2016, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falini, B.; Mecucci, C.; Tiacci, E.; Alcalay, M.; Rosati, R.; Pasqualucci, L.; La Starza, R.; Diverio, D.; Colombo, E.; Santucci, A.; et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 2005, 352, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Pollock, S.L.; Rush, E.A.; Redner, R.L. NPM-RAR, not the RAR-NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation. Leuk. Lymphoma 2014, 55, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Sportoletti, P.; Grisendi, S.; Majid, S.M.; Cheng, K.; Clohessy, J.G.; Viale, A.; Teruya-Feldstein, J.; Pandolfi, P.P. Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 2008, 111, 3859–3862. [Google Scholar] [CrossRef] [PubMed]
- Hummel, J.L.; Wells, R.A.; Dube, I.D.; Licht, J.D.; Kamel-Reid, S. Deregulation of NPM and PLZF in a variant t(5;17) case of acute promyelocytic leukemia. Oncogene 1999, 18, 633–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhao, W.L.; Xiong, S.M.; Su, X.Y.; Zhao, M.; Wang, C.; Gao, Y.R.; Niu, C.; Cao, Q.; Gu, B.W.; et al. Molecular cytogenetic characterization and clinical relevance of additional, complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia 2001, 15, 1359–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicci, C.; Ottaviani, E.; Luatti, S.; Grafone, T.; Tonelli, M.; Motta, M.R.; Malagola, M.; Marzocchi, G.; Martinelli, G.; Baccarani, M.; et al. Molecular and cytogenetic characterization of a new case of t(5;17)(q35;q21) variant acute promyelocytic leukemia. Leukemia 2005, 19, 470–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kikuma, T.; Nakamachi, Y.; Noguchi, Y.; Okazaki, Y.; Shimomura, D.; Yakushijin, K.; Yamamoto, K.; Matsuoka, H.; Minami, H.; Itoh, T.; et al. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int. J. Hematol. 2015, 102, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Okazuka, K.; Masuko, M.; Seki, Y.; Hama, H.; Honma, N.; Furukawa, T.; Toba, K.; Kishi, K.; Aizawa, Y. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int. J. Hematol. 2007, 86, 246–249. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Ogiso, Y.; Yoshikawa, K.; Tanaka, M.; Matsuda, K.; Ishii, E. Myelomonocytic differentiation associated with NPM1-RARA rearrangement. Br. J. Haematol. 2017, 179, 183. [Google Scholar] [CrossRef] [Green Version]
- Di Pietro, F.; Echard, A.; Morin, X. Regulation of mitotic spindle orientation: An integrated view. EMBO Rep. 2016, 17, 1106–1130. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, C.D.C.; Faucz, F.R.; Voutetakis, A.; Stratakis, C.A. Carney Complex. Exp. Clin. Endocrinol. Diabetes 2019, 127, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Zeisig, B.B.; Kwok, C.; Zelent, A.; Shankaranarayanan, P.; Gronemeyer, H.; Dong, S.; So, C.W. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 2007, 12, 36–51. [Google Scholar] [CrossRef]
- Qiu, J.J.; Lu, X.; Zeisig, B.B.; Ma, Z.; Cai, X.; Chen, S.; Gronemeyer, H.; Tweardy, D.J.; So, C.W.; Dong, S. Leukemic transformation by the APL fusion protein PRKAR1A-RAR{alpha} critically depends on recruitment of RXR{alpha}. Blood 2010, 115, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlova, A.; Wagner, C.; de Araujo, E.D.; Bajusz, D.; Neubauer, H.A.; Herling, M.; Gunning, P.T.; Keseru, G.M.; Moriggl, R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers 2019, 11, 1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusakabe, M.; Suzukawa, K.; Nanmoku, T.; Obara, N.; Okoshi, Y.; Mukai, H.Y.; Hasegawa, Y.; Kojima, H.; Kawakami, Y.; Ninomiya, H.; et al. Detection of the STAT5B-RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur. J. Haematol. 2008, 80, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, E.; Nakamura, M.; Nanri, T.; Kawakita, T.; Horikawa, K.; Mitsuya, H.; Asou, N. Acute promyelocytic leukemia harboring a STAT5B-RARA fusion gene and a G596V missense mutation in the STAT5B SH2 domain of the STAT5B-RARA. Eur. J. Haematol. 2009, 83, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Strehl, S.; Konig, M.; Boztug, H.; Cooper, B.W.; Suzukawa, K.; Zhang, S.J.; Chen, H.Y.; Attarbaschi, A.; Dworzak, M.N. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia 2013, 27, 1606–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Y.; Hao, J.; Liu, Z.Y.; Weng, X.Q.; Sheng, Y.; Jiang, C.L.; Zhu, Y.M.; Chen, B.; Xiong, S.M.; Li, J.M.; et al. Novel STAT5B-RARA fusion transcript in acute promyelocytic leukemia: Identification and treatment response. Leuk. Lymphoma 2015, 56, 2731–2734. [Google Scholar] [CrossRef] [PubMed]
- Kluk, M.J.; Abo, R.P.; Brown, R.D.; Kuo, F.C.; Dal Cin, P.; Pozdnyakova, O.; Morgan, E.A.; Lindeman, N.I.; DeAngelo, D.J.; Aster, J.C. Myeloid neoplasm demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000307. [Google Scholar] [CrossRef] [Green Version]
- Ciangola, G.; Gurnari, C.; Paterno, G.; Mirabile, M.; Angelini, M.; Lavorgna, S.; Ottone, T.; Travaglini, S.; Cicconi, L.; LoCoco, F. STAT5b-RARa-positive acute myeloid leukemia: Diagnostic and therapeutic challenges of a rare AML subtype. Leuk. Res. 2019, 78, 21–23. [Google Scholar] [CrossRef]
- Wang, A.; Cai, X.; Qiang, P.; Duan, Q. Successful treatment of a patient with acute promyelocytic leukemia with a STAT5B/RARA fusion gene using decitabine. Leuk. Lymphoma 2018, 59, 763–765. [Google Scholar] [CrossRef]
- Liang, N.; Jakobsson, T.; Fan, R.; Treuter, E. The Nuclear Receptor-Co-repressor Complex in Control of Liver Metabolism and Disease. Front. Endocrinol. 2019, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Tseng, S.H. Targeting tropomyosin-receptor kinase fused gene in cancer. Anticancer Res. 2014, 34, 1595–1600. [Google Scholar] [PubMed]
- Hernandez, L.; Bea, S.; Bellosillo, B.; Pinyol, M.; Falini, B.; Carbone, A.; Ott, G.; Rosenwald, A.; Fernandez, A.; Pulford, K.; et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: Identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am. J. Pathol. 2002, 160, 1487–1494. [Google Scholar] [CrossRef]
- Kastner, P.; Mark, M.; Chambon, P. Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 1995, 83, 859–869. [Google Scholar] [CrossRef] [Green Version]
- Samarut, E.; Rochette-Egly, C. Nuclear retinoic acid receptors: Conductors of the retinoic acid symphony during development. Mol. Cell. Endocrinol. 2012, 348, 348–360. [Google Scholar] [CrossRef]
- Duong, V.; Rochette-Egly, C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim. Biophys. Acta 2011, 1812, 1023–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinelli, A.; Bossi, D.; Pelicci, P.G.; Minucci, S. A redundant oncogenic potential of the retinoic receptor (RAR) alpha, beta and gamma isoforms in acute promyelocytic leukemia. Leukemia 2007, 21, 647–650. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.A.; Tricarico, C.; Skidmore, Z.L.; Uy, G.L.; Lee, Y.S.; Hassan, A.; O’Laughlin, M.D.; Schmidt, H.; Tian, L.; Duncavage, E.J.; et al. A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion. Blood Adv. 2018, 2, 1295–1299. [Google Scholar] [CrossRef]
- Takeda, A.; Yaseen, N.R. Nucleoporins and nucleocytoplasmic transport in hematologic malignancies. Semin. Cancer Biol. 2014, 27, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.J.; Zeisig, B.B.; Li, S.; Liu, W.; Chu, H.; Song, Y.; Giordano, A.; Schwaller, J.; Gronemeyer, H.; Dong, S.; et al. Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia. Leukemia 2015, 29, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, M.D.; Ghisi, M.; Oxley, E.P.; Ngo, S.; Cimmino, L.; Esnault, C.; Liu, R.; Salmon, J.M.; Bell, C.C.; Ahmed, N.; et al. Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell 2019, 25, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Matunis, M.J.; Dejean, A. Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 1998, 17, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.Q.; Shi, X.G.; Tang, W.; Xiong, S.M.; Zhu, J.; Cai, X.; Han, Z.G.; Ni, J.H.; Shi, G.Y.; Jia, P.M.; et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997, 89, 3345–3353. [Google Scholar] [PubMed]
- Wong, C.-W.; Privalsky, M.L. Transcriptional silencing is defined by isoform- and heterodimer-specific interactions between nuclear hormone receptors and corepressors. Mol. Cell. Biol. 1998, 18, 5724–5733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, S.H.; David, G.; Wong, C.W.; Dejean, A.; Privalsky, M.L. SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 1997, 94, 9028–9033. [Google Scholar] [CrossRef] [Green Version]
- Kwok, C.; Zeisig, B.B.; Dong, S.; So, C.W. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell 2006, 9, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Breitman, T.R.; Selonick, S.E.; Collins, S.J. Induction of differentiation of the human promyelocytic leukemia cell line(HL-60) by retinoic acid. Proc. Natl. Acad. Sci. USA 1980, 77, 2936. [Google Scholar] [CrossRef] [Green Version]
- Robertson, K.; Emami, B.; Collins, S. Retinoic acid resistant HL60 cells harbour a point mutation in the RAR ligand binding domain that confers dominant negative activities. Blood 1992, 80, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Kastner, P.; Lawrence, H.J.; Waltzinger, C.; Ghyselinck, N.B.; Chambon, P.; Chan, S. Positive and negative regulation of granulopoiesis by endogenous RARalpha. Blood 2001, 97, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Redner, R.L.; Cooke, M.P.; Lavau, C. Overexpression of wild-type retinoic acid receptor alpha (RAR alpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RAR alpha-fusion genes. Blood 1999, 94, 793–802. [Google Scholar] [CrossRef]
- McKeown, M.R.; Corces, M.R.; Eaton, M.L.; Fiore, C.; Lee, E.; Lopez, J.T.; Chen, M.W.; Smith, D.; Chan, S.M.; Koenig, J.L.; et al. Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-APL AML, Including an RARalpha Dependency Targetable by SY-1425, a Potent and Selective RARalpha Agonist. Cancer Discov. 2017, 7, 1136–1153. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Dohner, K.; Kneba, M.; Gotze, K.; Hartmann, F.; Del Valle, F.; Kirchen, H.; Koller, E.; Fischer, J.T.; Bullinger, L.; et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B. Haematologica 2009, 94, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Frohling, S.; Hartmann, F.; Fischer, J.T.; Glasmacher, A.; del Valle, F.; Grimminger, W.; Gotze, K.; Waterhouse, C.; Schoch, R.; et al. Phase III study of all-trans retinoic acid in previously untreated patients 61 years or older with acute myeloid leukemia. Leukemia 2004, 18, 1798–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senapati, P.; Dey, S.; Sudarshan, D.; Das, S.; Kumar, M.; Kaypee, S.; Mohiyuddin, A.; Kodaganur, G.S.; Kundu, T.K. Oncogene c-fos and mutant R175H p53 regulate expression of Nucleophosmin implicating cancer manifestation. FEBS J. 2018, 285, 3503–3524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsimberidou, A.M.; Tirado-Gomez, M.; Andreeff, M.; O’Brien, S.; Kantarjian, H.; Keating, M.; Lopez-Berestein, G.; Estey, E. Single-agent liposomal all-trans retinoic acid can cure some patients with untreated acute promyelocytic leukemia: An update of The University of Texas MD Anderson Cancer Center Series. Leuk. Lymphoma 2006, 47, 1062–1068. [Google Scholar] [CrossRef]
- Jakubiuk-Tomaszuk, A.; Murcia Pienkowski, V.; Zietkiewicz, S.; Rydzanicz, M.; Kosinska, J.; Stawinski, P.; Szuminski, M.; Ploski, R. Syndromic chorioretinal coloboma associated with heterozygous de novo RARA mutation affecting an amino acid critical for retinoic acid interaction. Clin. Genet. 2019, 96, 371–375. [Google Scholar] [CrossRef]
- Tan, J.; Ong, C.K.; Lim, W.K.; Ng, C.C.; Thike, A.A.; Ng, L.M.; Rajasegaran, V.; Myint, S.S.; Nagarajan, S.; Thangaraju, S.; et al. Genomic landscapes of breast fibroepithelial tumors. Nat. Genet. 2015, 47, 1341–1345. [Google Scholar] [CrossRef]
- El Hajj, H.; Dassouki, Z.; Berthier, C.; Raffoux, E.; Ades, L.; Legrand, O.; Hleihel, R.; Sahin, U.; Tawil, N.; Salameh, A.; et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 2015, 125, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Martelli, M.P.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Pierangeli, S.; Mulas, F.; Pacini, R.; Tabarrini, A.; Pettirossi, V.; Rossi, R.; et al. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells. Blood 2015, 125, 3455–3465. [Google Scholar] [CrossRef]
- Mugoni, V.; Panella, R.; Cheloni, G.; Chen, M.; Pozdnyakova, O.; Stroopinsky, D.; Guarnerio, J.; Monteleone, E.; Lee, J.D.; Mendez, L.; et al. Vulnerabilities in mIDH2 AML confer sensitivity to APL-like targeted combination therapy. Cell Res. 2019, 29, 446–459. [Google Scholar] [CrossRef]
- Boutzen, H.; Saland, E.; Larrue, C.; de Toni, F.; Gales, L.; Castelli, F.A.; Cathebas, M.; Zaghdoudi, S.; Stuani, L.; Kaoma, T.; et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J. Exp. Med. 2016, 213, 483–497. [Google Scholar] [CrossRef]
- Kozono, S.; Lin, Y.M.; Seo, H.S.; Pinch, B.; Lian, X.; Qiu, C.; Herbert, M.K.; Chen, C.H.; Tan, L.; Gao, Z.J.; et al. Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat. Commun. 2018, 9, 3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Kozono, S.; Kats, L.; Nechama, M.; Li, W.; Guarnerio, J.; Luo, M.; You, M.H.; Yao, Y.; Kondo, A.; et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 2015, 21, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Paubelle, E.; Zylbersztejn, F.; Maciel, T.T.; Carvalho, C.; Mupo, A.; Cheok, M.; Lieben, L.; Sujobert, P.; Decroocq, J.; Yokoyama, A.; et al. Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. Cell Rep. 2020, 30, 739–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fusion Protein | Incidence | Cytogenetic | References (1st Report When >10 Cases) |
---|---|---|---|
X-RARA | |||
PML-RARA | 98% | t(15;17)(q22;q21) | [2] |
ZBTB16-RARA | 1% | t(11;17)(q23;q21) | [61] |
BCoR-RARA | 2 cases | t(X;17)(p11;q21) | [62] |
FIP1L1-RARA | 2 cases | t(4;17)(q12;q21) | [63,64] |
FNDC3B -RARA | 1 case | t(3;17)(q26;q21) | [65] |
GTF2I-RARA | 1 case | t(7;17)(q11;q21) | [66] |
IRF2BP2-RARA | 5 cases | t(1;17)(q42;q21) | [67,68,69,70,71] |
NABP1-RARA | 1 case | t(2;17)(q32;q21) | [72] |
NPM1-RARA | >10 cases | t(5;17)(q35;q21) | [73] |
NuMA-RARA | 1 case | t(11;17)(q13;q21) | [74,75] |
PRKAR1A-RARA | 1 case | del(17)(q21q24) | [76] |
STAT3-RARA | 2 cases | t(17;17)(q21;q21) | [77] |
STAT5b-RARA | >10 cases | t(17;17)(q21;q21) | [78] |
TBLR1-RARA a | 3 cases | t(3;17)(q26;q21) | [79,80] |
TFG-RARA | 1 case | t(3;14;17)(q12;q11;q21) | [81] |
X-RARB | |||
TBLR1-RARB * | 3 cases | t(3;3)(q26;p24) | [82] |
X-RARG | |||
CPSF6-RARG * | 5 cases | t(12;12)(q13;q15) | [83,84,85] |
NPM1-RARG-NPM1 *,a | 1 case | ND | [86] |
NUP98-RARG | 3 cases | t(11;12)(p15;q13) | [87,88,89] |
PML-RARG | 1 case | t(12;15)(q13;q22) | [90] |
Fusion Protein | ATRA Response | ATO Response | Blast Decrease | Blast Differentiation | Self-Renewal of Bone Marrow |
---|---|---|---|---|---|
X-RARA | |||||
PML-RARA | Sensitive | Sensitive | Yes | Yes | Yes |
ZBTB16-RARA * | Resistant | Resistant | Yes | Yes | No |
BCoR-RARA | Resistant | Resistant | ND | Yes a | ND |
FIP1L1-RARA | Sensitive a | ND | Yes a | Yes a | Yes a |
FNDC3B-RARA | Uncertain | ND | No | Yes a | No |
GTF2I-RARA | Resistant | Resistant | No | No | No |
IRF2BP2-RARA | Likely | Resistant | No | Yes a | Yes a |
NABP1-RARA * | Uncertain | ND | No | Yes | ND |
NPM1-RARA | Sensitive | ND | Yes | Yes | Yes |
NuMA-RARA | Likely | ND | ND | Yes | ND |
PRKAR1A-RARA | Uncertain | Uncertain | ND | Yes | ND |
STAT3-RARA | Resistant | Resistant | No | No | ND |
STAT5b-RARA | Resistant | Resistant | No | No | No |
TBLR1-RARA | Resistant | Resistant | No | No | No |
TFG-RARA | Sensitive | ND | Yes | ND | Yes |
X-RARB | |||||
TBLR1-RARB | Resistant | ND | No | No | No |
X-RARG | |||||
CPSF6-RARG | Resistant | Resistant | No | No | No |
NPM1-RARG-NPM1 | Resistant | Resistant | No | No | No |
NUP98-RARG | Resistant | Resistant | No | No | No |
PML-RARG | Resistant | ND | ND | No | ND |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geoffroy, M.-C.; de Thé, H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers 2020, 12, 967. https://doi.org/10.3390/cancers12040967
Geoffroy M-C, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers. 2020; 12(4):967. https://doi.org/10.3390/cancers12040967
Chicago/Turabian StyleGeoffroy, Marie-Claude, and Hugues de Thé. 2020. "Classic and Variants APLs, as Viewed from a Therapy Response" Cancers 12, no. 4: 967. https://doi.org/10.3390/cancers12040967
APA StyleGeoffroy, M. -C., & de Thé, H. (2020). Classic and Variants APLs, as Viewed from a Therapy Response. Cancers, 12(4), 967. https://doi.org/10.3390/cancers12040967