Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs
Abstract
:1. Introduction
2. Results
2.1. Cells Overexpressing ABCB1 or ABCG2 Are Not Resistant to Erdafitinib
2.2. Erdafitinib Reverses Multidrug Resistance Mediated by ABCB1
2.3. Erdafitinib Restores the Intracellular Drug Accumulation in ABCB1-Overexpressing Cells
2.4. Erdafitinib Restores the Effect of Drug-Induced Apoptosis in ABCB1-Overexpressing Multidrug-Resistant Cancer Cells
2.5. Erdafitinib Stimulates the ATPase Activity of ABCB1
2.6. Docking Analysis of Erdafitinib with The Structure of ABCB1
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Culture Conditions
4.3. Cell Viability Assay
4.4. Fluorescent Substrate Accumulation and Flow Cytometry Analysis
4.5. Immunoblotting
4.6. Apoptosis Assay
4.7. ATPase Assay
4.8. In Silico Docking of Erdafitinib in The Drug-Binding Pockets of ABCB1
4.9. Quantification and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gottesman, M.M.; Ambudkar, S.V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 2001, 33, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-P.; Hsieh, C.-H.; Wu, Y.-S. The Emergence of Drug Transporter-Mediated Multidrug Resistance to Cancer Chemotherapy. Mol. Pharm. 2011, 8, 1996–2011. [Google Scholar] [CrossRef]
- Kovalev, A.A.; Tsvetaeva, D.A.; Grudinskaja, T.V. Role of ABC-cassette transporters (MDR1, MRP1, BCRP) in the development of primary and acquired multiple drug resistance in patients with early and metastatic breast cancer. Exp. Oncol. 2013, 35, 287–290. [Google Scholar]
- Ross, D.D.; Karp, J.E.; Chen, T.T.; Doyle, L.A. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 2000, 96, 365–368. [Google Scholar] [CrossRef]
- Steinbach, D.; Sell, W.; Voigt, A.; Hermann, J.; Zintl, F.; Sauerbrey, A. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 2002, 16, 1443–1447. [Google Scholar] [CrossRef]
- Uggla, B.; Ståhl, E.; Wågsäter, D.; Paul, C.; Karlsson, M.-G.; Sirsjö, A.; Tidefelt, U. BCRP mRNA expression v. clinical outcome in 40 adult AML patients. Leuk. Res. 2005, 29, 141–146. [Google Scholar] [CrossRef]
- Matthews, C.; Catherwood, M.A.; Larkin, A.; Clynes, M.; Morris, T.C.; Alexander, H.D. MDR-1, but not MDR-3 gene expression, is associated with unmutated IgVHgenes and poor prognosis chromosomal aberrations in chronic lymphocytic leukemia. Leuk. Lymphoma 2006, 47, 2308–2313. [Google Scholar] [CrossRef]
- Schwarzenbach, H. Expression of MDR1/P-Glycoprotein, the Multidrug Resistance Protein MRP, and the Lung-Resistance Protein LRP in Multiple Myeloma. Med. Oncol. 2002, 19, 87–104. [Google Scholar] [CrossRef]
- Tsubaki, M.; Satou, T.; Itoh, T.; Imano, M.; Komai, M.; Nishinobo, M.; Yamashita, M.; Yanae, M.; Yamazoe, Y.; Nishida, S. Overexpression of MDR1 and survivin, and decreased Bim expression mediate multidrug-resistance in multiple myeloma cells. Leuk. Res. 2012, 36, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.G.; Gump, J.L.; Zhang, C.; Cook, J.M.; Marchion, D.; Hazlehurst, L.; Munster, P.; Schell, M.J.; Dalton, W.S.; Sullivan, D.M. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 2006, 108, 3881–3889. [Google Scholar] [CrossRef]
- Kannan, P.; Telu, S.; Shukla, S.; Ambudkar, S.V.; Pike, V.W.; Halldin, C.; Gottesman, M.M.; Innis, R.B.; Hall, M.D. The “Specific” P-Glycoprotein Inhibitor Tariquidar Is Also a Substrate and an Inhibitor for Breast Cancer Resistance Protein (BCRP/ABCG2). ACS Chem. Neurosci. 2010, 2, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weidner, L.D.; Zoghbi, S.S.; Lu, S.; Shukla, S.; Ambudkar, S.V.; Pike, V.W.; Mulder, J.; Gottesman, M.M.; Innis, R.B.; Hall, M.D. The Inhibitor Ko143 Is Not Specific for ABCG2. J. Pharmacol. Exp. Ther. 2015, 354, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, Y.; Takada, T.; Suzuki, H. Inhibitors of Human ABCG2: From Technical Background to Recent Updates with Clinical Implications. Front. Pharmacol. 2019, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Qin, Z.; Zhang, W.-D.; Cheng, G.; Yehuda, G.A.; Ashby, C.R.; Chen, Z.-S.; Cheng, X.-D.; Qin, J.-J.; Jinyun, D.; et al. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist. Updat. 2020, 49, 100681. [Google Scholar] [CrossRef] [PubMed]
- Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem. 2017, 142, 271–289. [Google Scholar] [CrossRef]
- Wu, S.; Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer 2018, 17, 25. [Google Scholar] [CrossRef]
- Perera, T.P.; Jovcheva, E.; Mevellec, L.; Vialard, J.; De Lange, D.; Verhulst, T.; Paulussen, C.; Van De Ven, K.; King, P.; Freyne, E.; et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small molecule FGFR family inhibitor. Mol. Cancer Ther. 2017, 16, 1010–1020. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, T.; Fukudo, M.; Terada, T.; Kamba, T.; Nakamura, E.; Ogawa, O.; Inui, K.-I.; Katsura, T. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab. Pharmacokinet. 2012, 27, 631–639. [Google Scholar] [CrossRef]
- Sato, H.; Siddig, S.; Uzu, M.; Suzuki, S.; Nomura, Y.; Kashiba, T.; Gushimiyagi, K.; Sekine, Y.; Uehara, T.; Arano, Y.; et al. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur. J. Pharmacol. 2015, 746, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Wang, L.; Clark, R.E.; Pirmohamed, M.; Chen, G.; Zeng, W.; Miyazato, A.; Billings, E.; Maciejewski, J.P.; Kajigaya, S.; et al. Active transport of imatinib into and out of cells: Implications for drug resistance. Blood 2004, 104, 3739–3745. [Google Scholar] [CrossRef] [Green Version]
- Breedveld, P.; Pluim, D.; Cipriani, G.; Wielinga, P.; Van Tellingen, O.; Schinkel, A.H.; Schellens, J. The Effect of Bcrp1 (Abcg2) on theIn vivoPharmacokinetics and Brain Penetration of Imatinib Mesylate (Gleevec): Implications for the Use of Breast Cancer Resistance Protein and P-Glycoprotein Inhibitors to Enable the Brain Penetration of Imatinib in Patients. Cancer Res. 2005, 65, 2577–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, H.; Van Tol, H.; Brok, M.; Wiemer, E.A.C.; De Bruijn, E.A.; Guetens, G.; De Boeck, G.; Sparreboom, A.; Verweij, J.; Nooter, K. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Boil. Ther. 2005, 4, 747–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, T.; Shiozawa, K.; Hassel, B.A.; Ross, D.D. Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL–expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006, 108, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Mahon, F.-X.; Belloc, F.; Lagarde, V.; Chollet, C.; Moreau-Gaudry, F.; Reiffers, J.; Goldman, J.M.; Melo, J.V. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003, 101, 2368–2373. [Google Scholar] [CrossRef]
- Mahon, F.-X.; Hayette, S.; Lagarde, V.; Belloc, F.; Turcq, B.; Nicolini, F.; Belanger, C.; Manley, P.W.; Leroy, C.; Etienne, G.; et al. Evidence that Resistance to Nilotinib May Be Due to BCR-ABL, Pgp, or Src Kinase Overexpression. Cancer Res. 2008, 68, 9809–9816. [Google Scholar] [CrossRef] [Green Version]
- Hiwase, D.K.; Saunders, V.; Hewett, D.; Frede, A.; Zrim, S.; Dang, P.; Eadie, L.; To, L.B.; Melo, J.; Kumar, S.; et al. Dasatinib Cellular Uptake and Efflux in Chronic Myeloid Leukemia Cells: Therapeutic Implications. Clin. Cancer Res. 2008, 14, 3881–3888. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, S.-H.; Lu, Y.-J.; Li, Y.-Q.; Huang, Y.-H.; Hsieh, C.; Wu, C.-P. Osimertinib (AZD9291) Attenuates the Function of Multidrug Resistance-Linked ATP-Binding Cassette Transporter ABCB1 in Vitro. Mol. Pharm. 2016, 13, 2117–2125. [Google Scholar] [CrossRef]
- Kartner, N.; Riordan, J.R.; Ling, V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983, 221, 1285–1288. [Google Scholar] [CrossRef]
- Bates, S.E.; Medina-Pérez, W.Y.; Kohlhagen, G.; Antony, S.; Nadjem, T.; Robey, R.; Pommier, Y. ABCG2 Mediates Differential Resistance to SN-38 (7-Ethyl-10-hydroxycamptothecin) and Homocamptothecins. J. Pharmacol. Exp. Ther. 2004, 310, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Maliepaard, M.; Van Gastelen, M.A.; De Jong, L.A.; Pluim, D.; Van Waardenburg, R.C.; Ruevekamp-Helmers, M.C.; Floot, B.G.; Schellens, J.H. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 1999, 59, 4559–4563. [Google Scholar]
- Dai, C.-L.; Tiwari, A.K.; Wu, C.-P.; Su, X.-D.; Wang, S.-R.; Liu, D.-G.; Ashby, C.R.; Huang, Y.; Robey, R.; Liang, Y.-J.; et al. Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res. 2008, 68, 7905–7914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuestas, M.L.; Castillo, A.I.; Sosnik, A.; Mathet, V.L. Downregulation of mdr1 and abcg2 genes is a mechanism of inhibition of efflux pumps mediated by polymeric amphiphiles. Bioorg Med. Chem. Lett. 2012, 22, 6577–6579. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, K.; Bhullar, J.; Shukla, S.; Burcu, M.; Chen, Z.-S.; Ambudkar, S.V.; Baer, M. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms. Biochem. Pharmacol. 2012, 85, 514–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Liu, S.-T.; Zhao, B.-X.; Yang, F.-H.; Wang, Y.-T.; Liang, Q.-Y.; Sun, Y.-B.; Liu, Y.; Song, Z.-H.; Cai, Y.; et al. Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1. Oncotarget 2015, 6, 26142–26160. [Google Scholar] [CrossRef] [PubMed]
- Holló, Z.; Homolya, L.; Davis, C.; Sarkadi, B. Calcein accumulation as a fluorometric functional assay of the multidrug transporter. Biochim. Biophys. Acta (BBA) Biomembr. 1994, 1191, 384–388. [Google Scholar] [CrossRef]
- Robey, R. Pheophorbide a Is a Specific Probe for ABCG2 Function and Inhibition. Cancer Res. 2004, 64, 1242–1246. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-P.; Shukla, S.; Calcagno, A.M.; Hall, M.D.; Gottesman, M.M.; Ambudkar, S.V. Evidence for dual mode of action of a thiosemicarbazone, NSC73306: A potent substrate of the multidrug resistance linked ABCG2 transporter. Mol. Cancer Ther. 2007, 6, 3287–3296. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J.R.; Ling, V. Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J. Boil. Chem. 1979, 254, 12701–12705. [Google Scholar]
- Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular and pharmacologocial aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambudkar, S.V.; Kimchi-Sarfaty, C.; Sauna, Z.E.; Gottesman, M.M. P-glycoprotein: From genomics to mechanism. Oncogene 2003, 22, 7468–7485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillet, J.-P.; Gottesman, M.M. Mechanisms of Multidrug Resistance in Cancer. Adv. Struct. Saf. Stud. 2009, 596, 47–76. [Google Scholar] [CrossRef]
- Hsiao, S.-H.; Lusvarghi, S.; Huang, Y.-H.; Ambudkar, S.V.; Hsu, S.-C.; Wu, C.-P. The FLT3 inhibitor midostaurin selectively resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic agents. Cancer Lett. 2019, 445, 34–44. [Google Scholar] [CrossRef]
- Wu, Z.-X.; Teng, Q.-X.; Cai, C.-Y.; Wang, J.-Q.; Lei, Z.-N.; Yang, Y.; Fan, Y.-F.; Zhang, J.-Y.; Li, J.; Chen, Z.-S. Tepotinib reverses ABCB1-mediated multidrug resistance in cancer cells. Biochem. Pharmacol. 2019, 166, 120–127. [Google Scholar] [CrossRef]
- Wu, C.P.; Lusvarghi, S.; Wang, J.C.; Hsiao, S.H.; Huang, Y.H.; Hung, T.H.; Ambudkar, S.V. Avapritinib: A Selective Inhibitor of KIT and PDGFRalpha that Reverses ABCB1 and ABCG2-Mediated Multidrug Resistance in Cancer Cell Lines. Mol. Pharm. 2019, 1, 3040–3052. [Google Scholar] [CrossRef]
- Alemany, R.; Moura, D.; Redondo, A.; Martinez-Trufero, J.; Calabuig, S.; Saus, C.; Obrador-Hevia, A.; Ramos, R.F.; Villar, V.H.; Valverde, C.; et al. Nilotinib as Coadjuvant Treatment with Doxorubicin in Patients with Sarcomas: A Phase I Trial of the Spanish Group for Research on Sarcoma. Clin. Cancer Res. 2018, 24, 5239–5249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruszfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus Capecitabine for HER2-Positive Advanced Breast Cancer. N. Engl. J. Med. 2006, 355, 2733–2743. [Google Scholar] [CrossRef] [Green Version]
- Cetin, B.; Benekli, M.; Türker, I.; Koral, L.; Ulaş, A.; Dane, F.; Öksüzoğlu, B.; Kaplan, M.A.; Koca, D.; Boruban, C.; et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer: A multicentre study of Anatolian Society of Medical Oncology (ASMO). J. Chemother. 2013, 26, 300–305. [Google Scholar] [CrossRef]
- Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; et al. Erlotinib Plus Gemcitabine Compared With Gemcitabine Alone in Patients With Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1966. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Yuan, J.-Q.; Di, M.-Y.; Zheng, D.-Y.; Chen, J.-Z.; Ding, H.; Wu, X.-Y.; Huang, Y.-F.; Mao, C.; Tang, J. Gemcitabine Plus Erlotinib for Advanced Pancreatic Cancer: A Systematic Review with Meta-Analysis. PLoS ONE 2013, 8, e57528. [Google Scholar] [CrossRef] [Green Version]
- Tsuruo, T.; Iida, H.; Naganuma, K.; Tsukagoshi, S.; Sakurai, Y. Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Res. 1983, 43, 808–813. [Google Scholar] [PubMed]
- Tsuruo, T.; Iida, H.; Yamashiro, M.; Tsukagoshi, S.; Sakurai, Y. Enhancement of vincristine- and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharmacol. 1982, 31, 3138–3140. [Google Scholar] [CrossRef]
- Zhang, G.-N.; Zhang, Y.-K.; Wang, Y.-J.; Gupta, P.; Ashby, C.R.; Alqahtani, S.; Deng, T.; Bates, S.E.; Kaddoumi, A.; Wurpel, J.N.; et al. Epidermal growth factor receptor (EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer: In vitro and in vivo. Cancer Lett. 2018, 424, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.-Y.; Zhai, H.; Lei, Z.-N.; Tan, C.-P.; Chen, B.-L.; Du, Z.-Y.; Wang, J.-Q.; Zhang, Y.-K.; Wang, Y.-J.; Gupta, P.; et al. Benzoyl indoles with metabolic stability as reversal agents for ABCG2-mediated multidrug resistance. Eur. J. Med. Chem. 2019, 179, 849–862. [Google Scholar] [CrossRef]
- Mi, Y.-J.; Liang, Y.-J.; Huang, H.-B.; Zhao, H.-Y.; Wu, C.-P.; Wang, F.; Tao, L.-Y.; Zhang, C.-Z.; Dai, C.-L.; Tiwari, A.K.; et al. Apatinib (YN968D1) reverses multidrug resistance by inhibiting the efflux function of multiple ATP-binding cassette transporters. Cancer Res. 2010, 70, 7981–7991. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Chen, Z.-S.; Ambudkar, S.V. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist. Updat. 2012, 15, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.; Fojo, A.; Chin, J.; Roninson, I.; Richert, N.; Pastan, I.; Gottesman, M. Human multidrug-resistant cell lines: Increased mdr1 expression can precede gene amplification. Science 1986, 232, 643–645. [Google Scholar] [CrossRef]
- Honjo, Y.; Hrycyna, C.A.; Yan, Q.W.; Medina-Pérez, W.Y.; Robey, R.W.; Van De Laar, A.; Litman, T.; Dean, M.; Bates, S.E. Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 2001, 61, 6635–6639. [Google Scholar]
- Henrich, C.J.; Bokesch, H.R.; Dean, M.; Bates, S.E.; Robey, R.; Goncharova, E.I.; Wilson, J.A.; McMahon, J.B. A High-Throughput Cell-Based Assay for Inhibitors of ABCG2 Activity. J. Biomol. Screen. 2006, 11, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, M.; Tominaga, H.; Shiga, M.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A Combined Assay of Cell Viability and in Vitro Cytotoxicity with a Highly Water-Soluble Tetrazolium Salt, Neutral Red and Crystal Violet. Boil. Pharm. Bull. 1996, 19, 1518–1520. [Google Scholar] [CrossRef] [Green Version]
- Gribar, J.; Ramachandra, M.; Hrycyna, C.; Dey, S.; Ambudkar, S. Functional characterization of glycosylation-deficient human P-glycoprotein using a vaccinia virus expression system. J. Membr. Boil. 2000, 173, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-P.; Hsiao, S.-H.; Sim, H.-M.; Luo, S.-Y.; Tuo, W.-C.; Cheng, H.-W.; Li, Y.-Q.; Huang, Y.-H.; Ambudkar, S.V. Human ABCB1 (P-glycoprotein) and ABCG2 mediate resistance to BI 2536, a potent and selective inhibitor of Polo-like kinase 1. Biochem. Pharmacol. 2013, 86, 904–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, H.A.; Maylock, C.A.; Williams, J.A.; Paweletz, C.P.; Shu, H.; Shacter, E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat. Immunol. 2002, 4, 87–91. [Google Scholar] [CrossRef]
- Ambudkar, S.V. Drug-stimulatable ATPase activity in crude membranes of human MDR1-transfected mammalian cells. Methods Enzymol. 1998, 292, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-P.; Hsiao, S.-H.; Luo, S.-Y.; Tuo, W.-C.; Su, C.-Y.; Li, Y.-Q.; Huang, Y.-H.; Hsieh, C.-H. Overexpression of Human ABCB1 in Cancer Cells Leads to Reduced Activity of GSK461364, a Specific Inhibitor of Polo-like Kinase 1. Mol. Pharm. 2014, 11, 3727–3736. [Google Scholar] [CrossRef]
- Wu, C.-P.; Hsieh, C.-H.; Hsiao, S.-H.; Luo, S.-Y.; Su, C.-Y.; Li, Y.-Q.; Huang, Y.-H.; Huang, C.-W.; Hsu, S.-C. Human ATP-Binding Cassette Transporter ABCB1 Confers Resistance to Volasertib (BI 6727), a Selective Inhibitor of Polo-like Kinase 1. Mol. Pharm. 2015, 12, 3885–3895. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Kowal, J.; Broude, E.; Roninson, I.; Locher, K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 2019, 363, 753–756. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.F.; Leggas, M.; Schuetz, J.D.; Panetta, J.C.; Cheshire, P.J.; Peterson, J.; Daw, N.; Jenkins, J.J.; Gilbertson, R.; Germain, G.S.; et al. Gefitinib Enhances the Antitumor Activity and Oral Bioavailability of Irinotecan in Mice. Cancer Res. 2004, 64, 7491–7499. [Google Scholar] [CrossRef] [Green Version]
- Leggas, M.; Panetta, J.C.; Zhuang, Y.; Schuetz, J.D.; Johnston, B.; Bai, F.; Sorrentino, B.; Zhou, S.; Houghton, P.J.; Stewart, C.F. Gefitinib Modulates the Function of Multiple ATP-Binding Cassette Transporters In vivo. Cancer Res. 2006, 66, 4802–4807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, S.; Wu, C.-P.; Ambudkar, S.V. Development of inhibitors of ATP-binding cassette drug transporters—Present status and challenges. Expert Opin. Drug Metab. Toxicol. 2008, 4, 205–223. [Google Scholar] [CrossRef] [PubMed]
Cell Line | Type | Transporter Expressed | IC50 (μM) † |
---|---|---|---|
KB-3-1 | epidermal | - | 3.18 ± 0.48 |
KB-V-1 | epidermal | ABCB1 | 4.92 ± 1.19 |
OVCAR-8 | ovarian | - | 10.80 ± 2.83 |
NCI-ADR-RES | ovarian | ABCB1 | 6.21 ± 1.15 |
H460 | lung | - | 3.46 ± 0.37 |
H460-MX20 | lung | ABCG2 | 4.66 ± 0.71 |
S1 | colon | - | 4.31 ± 1.19 |
S1-M1-80 | colon | ABCG2 | 5.60 ± 1.21 |
pcDNA-HEK293 | - | - | 6.02 ± 1.25 |
MDR19-HEK293 | - | ABCB1 | 6.51 ± 1.27 |
R482-HEK293 | - | ABCG2 | 5.16 ± 0.80 |
Treatment | Concentration (μM) | Mean IC50 † ± SD and (FR ‡) | |
---|---|---|---|
OVCAR-8 (Parental) [nM] | NCI-ADR-RES (Resistant) [μM] | ||
Paclitaxel | - | 3.74 ± 0.67 (1.0) | 7.96 ± 1.46 (1.0) |
+ erdafitinib | 0.1 | 3.57 ± 0.62 (1.0) | 6.08 ± 0.88 (1.3) |
+ erdafitinib | 0.2 | 3.66 ± 0.63 (1.0) | 4.76 ± 0.64 * (1.7) |
+ erdafitinib | 0.5 | 3.46 ± 0.63 (1.1) | 2.80 ± 0.34 ** (2.8) |
+ erdafitinib | 1.0 | 3.00 ± 0.48 (1.2) | 0.68 ± 0.10 *** (11.7) |
+ verapamil | 5.0 | 2.92 ± 0.55 (1.3) | 0.31 ± 0.04 *** (25.7) |
[nM] | [μM] | ||
Vincristine | - | 69.30 ± 10.38 (1.0) | 4.36 ± 0.96 (1.0) |
+ erdafitinib | 0.1 | 69.17 ± 12.60 (1.0) | 3.41 ± 0.63 (1.3) |
+ erdafitinib | 0.2 | 64.38 ± 10.45 (1.1) | 3.23 ± 0.61 (1.3) |
+ erdafitinib | 0.5 | 61.65 ± 11.86 (1.1) | 1.73 ± 0.24 * (2.5) |
+ erdafitinib | 1.0 | 54.37 ± 9.90 (1.3) | 0.57 ± 0.06 ** (7.6) |
+ verapamil | 5.0 | 19.20 ± 2.97 ** (3.6) | 0.18 ± 0.04 ** (24.2) |
Treatment | Concentration (μM) | KB-3-1 (Parental) [nM] | KB-V-1 (Resistant) [μM] |
Paclitaxel | - | 1.72 ± 0.66 (1.0) | 2.84 ± 0.54 (1.0) |
+ erdafitinib | 0.1 | 1.71 ± 0.61 (1.0) | 2.31 ± 0.20 (1.2) |
+ erdafitinib | 0.2 | 1.74 ± 0.63 (1.0) | 1.11 ± 0.12 ** (2.6) |
+ erdafitinib | 0.5 | 2.16 ± 0.84 (0.8) | 246.89 ± 39.24 ** [nM] (11.5) |
+ erdafitinib | 1.0 | 2.10 ± 0.81 (0.8) | 83.93 ± 10.28 *** [nM] (33.9) |
+ verapamil | 5.0 | 1.71 ± 0.68 (1.0) | 43.36 ± 5.94 *** [nM] (65.5) |
[nM] | [nM] | ||
Vincristine | - | 0.79 ± 0.30 (1.0) | 954.77 ± 150.75 (1.0) |
+ erdafitinib | 0.1 | 0.76 ± 0.23 (1.0) | 714.49 ± 172.29 (1.3) |
+ erdafitinib | 0.2 | 0.75 ± 0.23 (1.1) | 341.99 ± 75.71 ** (2.8) |
+ erdafitinib | 0.5 | 0.80 ± 0.20 (1.0) | 77.57 ± 19.24 *** (12.3) |
+ erdafitinib | 1.0 | 0.78 ± 0.18 (1.0) | 20.47 ± 4.51 *** (46.6) |
+ verapamil | 5.0 | 0.15 ± 0.05 * (5.3) | 8.74 ± 1.41 *** (109.2) |
Treatment | Concentration (μM) | pcDNA-HEK293 (Parental) [nM] | MDR19-HEK293 (Resistant) [nM] |
Paclitaxel | - | 3.25 ± 0.69 (1.0) | 532.02 ± 75.55 (1.0) |
+ erdafitinib | 0.1 | 2.72 ± 0.56 (1.2) | 254.49 ± 41.07 ** (2.1) |
+ erdafitinib | 0.2 | 2.61 ± 0.53 (1.2) | 110.74 ± 19.20 *** (4.8) |
+ erdafitinib | 0.5 | 2.35 ± 0.50 (1.4) | 29.55 ± 5.21 *** (18.0) |
+ erdafitinib | 1.0 | 2.30 ± 0.50 (1.4) | 10.10 ± 1.58 *** (52.7) |
+ verapamil | 5.0 | 2.13 ± 0.49 (1.5) | 7.87 ± 1.71 *** (67.6) |
[nM] | [nM] | ||
Vincristine | - | 1.89 ± 0.23 (1.0) | 363.39 ± 41.69 (1.0) |
+ erdafitinib | 0.1 | 1.99 ± 0.38 (0.9) | 156.57 ± 21.81 ** (2.3) |
+ erdafitinib | 0.2 | 1.92 ± 0.38 (1.0) | 95.18 ± 19.98 *** (3.8) |
+ erdafitinib | 0.5 | 1.74 ± 0.31 (1.1) | 18.15 ± 2.53 *** (20.0) |
+ erdafitinib | 1.0 | 1.50 ± 0.30 (1.3) | 5.59 ± 0.95 *** (65.0) |
+ verapamil | 5.0 | 0.65 ± 0.18 ** (2.9) | 3.70 ± 0.57 *** (98.2) |
Treatment | Concentration (μM) | Mean IC50 † ± SD and (FR ‡) | |
---|---|---|---|
H460 (Parental) [nM] | H460-MX20 (Resistant) [μM] | ||
Topotecan | - | 64.14 ± 13.91 (1.0) | 1.43 ± 0.26 (1.0) |
+ erdafitinib | 0.1 | 61.83 ± 13.83 (1.0) | 1.29 ± 0.23 (1.1) |
+ erdafitinib | 0.2 | 61.07 ± 15.77 (1.0) | 1.23 ± 0.22 (1.2) |
+ erdafitinib | 0.5 | 56.76 ± 12.36 (1.1) | 1.10 ± 0.19 (1.3) |
+ erdafitinib | 1.0 | 46.20 ± 10.58 (1.4) | 1.13 ± 0.21 (1.3) |
+ Ko143 | 1.0 | 22.94 ± 5.53 ** (2.8) | 99.10 ± 18.86 *** [nM] (14.4) |
[nM] | [nM] | ||
SN-38 | - | 7.48 ± 1.36 (1.0) | 126.16 ± 11.15 (1.0) |
+ erdafitinib | 0.1 | 7.54 ± 1.41 (1.0) | 122.92 ± 11.13 (1.0) |
+ erdafitinib | 0.2 | 7.24 ± 1.37 (1.0) | 120.46 ± 10.80 (1.0) |
+ erdafitinib | 0.5 | 6.40 ± 1.21 (1.2) | 110.08 ± 10.57 (1.1) |
+ erdafitinib | 1.0 | 5.56 ± 1.13 (1.3) | 100.69 ± 12.37 (1.3) |
+ Ko143 | 1.0 | 3.19 ± 0.91 * (2.3) | 6.79 ± 1.60 *** (18.6) |
Treatment | Concentration (μM) | S1 (Parental) [nM] | S1-M1-80 (Resistant) [μM] |
Topotecan | - | 19.51 ± 2.34 (1.0) | 6.35 ± 1.14 (1.0) |
+ erdafitinib | 0.1 | 20.40 ± 2.54 (1.0) | 8.00 ± 1.60 (0.8) |
+ erdafitinib | 0.2 | 21.80 ± 2.96 (0.9) | 6.25 ± 1.11 (1.0) |
+ erdafitinib | 0.5 | 22.31 ± 2.96 (0.9) | 6.25 ± 1.50 (1.0) |
+ erdafitinib | 1.0 | 23.90 ± 3.55 (0.8) | 6.65 ± 1.53 (1.0) |
+ Ko143 | 1.0 | 20.88 ± 2.52 (0.9) | 0.19 ± 0.05 *** (33.4) |
[nM] | [nM] | ||
SN-38 | - | 3.03 ± 0.23 (1.0) | 1036.58 ± 119.08 (1.0) |
+ erdafitinib | 0.1 | 3.07 ± 0.34 (1.0) | 1083.89 ± 94.65 (1.0) |
+ erdafitinib | 0.2 | 3.23 ± 0.31 (0.9) | 1397.68 ± 195.28 (0.7) |
+ erdafitinib | 0.5 | 3.37 ± 0.34 (0.9) | 1251.31 ± 108.50 (0.8) |
+ erdafitinib | 1.0 | 2.76 ± 0.21 (1.1) | 1128.26 ± 228.23 (0.9) |
+ Ko143 | 1.0 | 2.64 ± 0.19 (1.1) | 42.43 ± 9.66 *** (24.4) |
Treatment | Concentration (μM) | pcDNA-HEK293 (Parental) [nM] | R482-HEK293 (Resistant) [nM] |
Topotecan | - | 25.56 ± 6.29 (1.0) | 295.26 ± 25.68 (1.0) |
+ erdafitinib | 0.1 | 26.19 ± 6.47 (1.0) | 274.81 ± 25.32 (1.1) |
+ erdafitinib | 0.2 | 23.67 ± 5.79 (1.1) | 256.80 ± 27.11 (1.1) |
+ erdafitinib | 0.5 | 22.65 ± 5.25 (1.1) | 240.19 ± 25.26 (1.2) |
+ erdafitinib | 1.0 | 20.77 ± 5.18 (1.2) | 229.64 ± 35.28 (1.3) |
+ Ko143 | 1.0 | 23.80 ± 5.79 (1.1) | 20.59 ± 3.66 *** (14.3) |
[nM] | [nM] | ||
SN-38 | - | 2.93 ± 0.85 (1.0) | 83.53 ± 9.80 (1.0) |
+ erdafitinib | 0.1 | 2.54 ± 0.49 (1.2) | 81.56 ± 12.19 (1.0) |
+ erdafitinib | 0.2 | 2.77 ± 0.72 (1.1) | 91.97 ± 18.20 (0.9) |
+ erdafitinib | 0.5 | 2.45 ± 0.55 (1.2) | 74.69 ± 13.69 (1.1) |
+ erdafitinib | 1.0 | 2.39 ± 0.58 (1.2) | 74.46 ± 14.87 (1.1) |
+ Ko143 | 1.0 | 3.09 ± 0.98 (0.9) | 4.50 ± 0.70 *** (18.6) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-P.; Hung, T.-H.; Hsiao, S.-H.; Huang, Y.-H.; Hung, L.-C.; Yu, Y.-J.; Chang, Y.-T.; Wang, S.-P.; Wu, Y.-S. Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Cancers 2020, 12, 1366. https://doi.org/10.3390/cancers12061366
Wu C-P, Hung T-H, Hsiao S-H, Huang Y-H, Hung L-C, Yu Y-J, Chang Y-T, Wang S-P, Wu Y-S. Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Cancers. 2020; 12(6):1366. https://doi.org/10.3390/cancers12061366
Chicago/Turabian StyleWu, Chung-Pu, Tai-Ho Hung, Sung-Han Hsiao, Yang-Hui Huang, Lang-Cheng Hung, Yi-Jou Yu, Yu-Tzu Chang, Shun-Ping Wang, and Yu-Shan Wu. 2020. "Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs" Cancers 12, no. 6: 1366. https://doi.org/10.3390/cancers12061366
APA StyleWu, C. -P., Hung, T. -H., Hsiao, S. -H., Huang, Y. -H., Hung, L. -C., Yu, Y. -J., Chang, Y. -T., Wang, S. -P., & Wu, Y. -S. (2020). Erdafitinib Resensitizes ABCB1-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Cancers, 12(6), 1366. https://doi.org/10.3390/cancers12061366