Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT)
Abstract
:1. Introduction
2. The Samples
- Centralization of the techniques which are more complex to implement;
- Optimization of the resources, always keeping an eye on the economy of scale;
- Need to implement multidisciplinary activities;
- Improvement of the hands-on training activities;
- Activation of the procedures needed to make the figure of the pathologist with specific expertise in the field of lung cancer more widespread.
3. The Test
- Informed consent and privacy.
- Tissue versus liquid biopsy.
- CGP technologies: sequencing of the whole exome versus targeted sequencing panels.
- Organization of a laboratory that performs CGP tests.
- Outsourcing or in-house testing.
- Validation and verification of CGP tests.
- Interpretation of CGP test results (integration of data in the clinical context).
- Management of incidental findings.
- Mutational report: structure and minimum information to be included.
3.1. Informed Consent and Privacy
3.2. The Sample: Tissue vs Liquid Biopsy
3.3. Comprehensive Genomic Profiling Technologies
3.4. Organization of a Laboratory Performing CGP Tests
3.5. Outsourcing or In-House Testing and CGP Validation/Verification
- Public data on the failure rate.
- Public data on the validation procedures.
- Any other certification.
- Adherence to national and international external quality control schemes.
3.6. Interpretation of CGP Test Results
3.7. Management of Incidental Findings
3.8. Mutational Report: Structure and Minimal Required Information
- A section for the pathological evaluation of the sample’s adequacy for testing.
- The list of genes included in the panel used for testing, detailing the coverage reached in the genes.
- The depth coverage reached by the sequencing run and the sensitivity limits of the panel.
- The allelic frequency of the variant(s) identified in the sample.
- The correct nomenclature of the alterations detected, which should follow the Human Genome Variation Society (HGVS) guidelines.
4. Clinical Applicability
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Alessandro Morabito, Thoracic Medical Oncology, Istituto Nazionale Tumori, “Fondazione G. Pascale”—IRCCS, Napoli, Italy. [email protected].
- Lucio Crinò, Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, via Maroncelli, Meldola (FC), Italy. [email protected].
- Domenico Galetta, SSD Oncologia Medica Patologia Toracica IRCCS Oncologico Giovanni Paolo II, Viale Orazio Flacco, 65, 70124, Bari, Italy. [email protected].
- Antonio Rossi, Division of Medical Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (Foggia), Italy. [email protected].
- Lucio Buffoni, Oncology Department, San Luigi Hospital University of Turin, Orbassano, Turin, Italy. [email protected].
- Filippo de Marinis, Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy. [email protected].
- Francesco Grossi, Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy. [email protected].
- Federico Cappuzzo, Department of Oncology and Hematology, AUSL Romagna, Ravenna, Italy. [email protected].
- Cesare Gridelli, Division of Medical Oncology, “S. G. Moscati” Hospital, Avellino, Italy. [email protected].
- Andrea Ardizzoni, Medical Oncology Unit, Sant’Orsola-Malpighi Hospital, Bologna, Italy. [email protected].
- Stefano Gasparini, Pulmonary Diseases Unit, Azienda Ospedali Riuniti, Ancona, Italy. [email protected].
- Alfonso Marchianò, Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. [email protected].
- Juliana Guarize, Division of Thoracic Surgery, European Institute of Oncology, Milan, Italy. [email protected].
- Giovanni Galluccio, Endoscopy, San Camillo Forlanini Hospital, Rome, Italy Email: [email protected].
- Rocco Trisolini, Interventional Pulmonology Unit, Policlinico Sant’Orsola-Malpighi and Ospedale Maggiore, Bologna, Italy, [email protected].
- Nicola Fusco, Division of Pathology, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, University of Milan, Milan, Italy. [email protected].
- Mauro Papotti, Department of Oncology, University of Turin, at Città della Salute Hospital, Torino, Italy. [email protected].
- Antonio Marchetti, Laboratory of Diagnostic Molecular Oncology, Center for Advanced Studies and Technology (CAST), University of Chieti, Chieti, Italy. [email protected].
- Nicola Normanno, Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, “Fondazione G. Pascale” - IRCCS, Napoli, Italy. [email protected].
- Massimo Barberis, Department of Pathology, European Institute of Oncology, Milan, Italy. [email protected].
- Paolo Graziano, UOC di Anatomia Patologica, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy. [email protected].
- Simonetta Buglioni, Department of Pathology, “Regina Elena” National Cancer Institute, Rome, Italy. [email protected].
- Giulio Rossi, Pathology Unit, Azienda USL Romagna, St. Maria delle Croci Hospital, Ravenna, Italy. [email protected].
- Giancarlo Pruneri, Department of Pathology, IRCCS Istituto Nazionale Tumori, Milan, Italy; University of Milan, School of Medicine, Milan, Italy. [email protected].
- Daniele Calistri, Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy. [email protected].
References
- Yuan, J.; Hegde, P.S.; Clynes, R.; Foukas, P.G.; Harari, A.; Kleen, T.O.; Kvistborg, P.; Maccalli, C.; Maecker, H.T.; Page, D.B.; et al. Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J. Immunother. Cancer 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, A.T.; Riely, G.J.; Bang, Y.J.; Kim, D.W.; Camidge, D.R.; Solomon, B.J.; Varella-Garcia, M.; Iafrate, A.J.; Shapiro, G.I.; Usari, T.; et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): Updated results, including overall survival, from PROFILE 1001. Ann. Oncol. 2019, 30, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Paez, J.G.; Janne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Taylor, B.S.; Baselga, J. Implementing genome-driven oncology. Cell 2017, 168, 584–599. [Google Scholar] [CrossRef]
- Skoulidis, F.; Heymach, J.V. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy. Nat. Rev. Cancer 2019, 19, 495–509. [Google Scholar] [CrossRef]
- Massard, C.; Michiels, S.; Ferte, C.; Le Deley, M.C.; Lacroix, L.; Hollebecque, A.; Verlingue, L.; Ileana, E.; Rosellini, S.; Ammari, S.; et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: Results of the MOSCATO 01 Trial. Cancer Discov. 2017, 7, 586–595. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Kung, H.J.; Mack, P.C.; Gandara, D.R. Genotyping and genomic profiling of non-small-cell lung cancer: Implications for current and future therapies. J. Clin. Oncol. 2013, 31, 1039–1049. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 2019, 25, 389–402. [Google Scholar] [CrossRef]
- Hirsch, F.R.; Wynes, M.W.; Gandara, D.R.; Bunn, P.A., Jr. The tissue is the issue: Personalized medicine for non-small cell lung cancer. Clin. Cancer Res. 2010, 16, 4909–4911. [Google Scholar] [CrossRef] [Green Version]
- Thunnissen, E.; Kerr, K.M.; Herth, F.J.; Lantuejoul, S.; Papotti, M.; Rintoul, R.C.; Rossi, G.; Skov, B.G.; Weynand, B.; Bubendorf, L.; et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 2012, 76, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Gomes, M.M.; Tsao, M.S.; Allen, C.J.; Geddie, W.; Sekhon, H. Fine-needle aspiration biopsy versus core-needle biopsy in diagnosing lung cancer: A systematic review. Curr. Oncol. 2012, 19, e16–e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasufuku, K.; Chiyo, M.; Koh, E.; Moriya, Y.; Iyoda, A.; Sekine, Y.; Shibuya, K.; Iizasa, T.; Fujisawa, T. Endobronchial ultrasound guided transbronchial needle aspiration for staging of lung cancer. Lung Cancer 2005, 50, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Schmid-Bindert, G.; Wang, Y.; Jiang, H.; Sun, H.; Henzler, T.; Wang, H.; Pilz, L.R.; Ren, S.; Zhou, C. EBUS-TBNA provides highest RNA yield for multiple biomarker testing from routinely obtained small biopsies in non-small cell lung cancer patients—A comparative study of three different minimal invasive sampling methods. PLoS ONE 2013, 8, e77948. [Google Scholar] [CrossRef]
- van der Heijden, E.H.; Casal, R.F.; Trisolini, R.; Steinfort, D.P.; Hwangbo, B.; Nakajima, T.; Guldhammer-Skov, B.; Rossi, G.; Ferretti, M.; Herth, F.F.; et al. Guideline for the acquisition and preparation of conventional and endobronchial ultrasound-guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration 2014, 88, 500–517. [Google Scholar] [CrossRef]
- Magnini, D.; Fuso, L.; Varone, F.; D’Argento, E.; Martini, M.; Pecoriello, A.; Di Noia, V.; Arciuolo, D.; Fadda, G.; Rindi, G.; et al. Molecular Testing in EBUS-TBNA Specimens of Lung Adenocarcinoma: A Study of Concordance Between Cell Block Method and Liquid-Based Cytology in Appraising Sample Cellularity and EGFR Mutations. Mol. Diagn. 2018, 22, 723–728. [Google Scholar] [CrossRef]
- Righi, L.; Franzi, F.; Montarolo, F.; Gatti, G.; Bongiovanni, M.; Sessa, F.; La Rosa, S. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA)-from morphology to molecular testing. J. Thorac Dis. 2017, 9, S395–S404. [Google Scholar] [CrossRef] [Green Version]
- Fenizia, F.; De Luca, A.; Pasquale, R.; Sacco, A.; Forgione, L.; Lambiase, M.; Iannaccone, A.; Chicchinelli, N.; Franco, R.; Rossi, A.; et al. EGFR mutations in lung cancer: From tissue testing to liquid biopsy. Future Oncol. 2015, 11, 1611–1623. [Google Scholar] [CrossRef]
- Esposito Abate, R.; Pasquale, R.; Fenizia, F.; Rachiglio, A.M.; Roma, C.; Bergantino, F.; Forgione, L.; Lambiase, M.; Sacco, A.; Piccirillo, M.C.; et al. The role of circulating free DNA in the management of NSCLC. Expert Rev. Anticancer 2019, 19, 19–28. [Google Scholar] [CrossRef]
- Stetson, D.; Ahmed, A.; Xu, X.; Nuttall, B.R.B.; Lubinski, T.J.; Johnson, J.H.; Barrett, J.C.; Dougherty, B.A. Orthogonal Comparison of Four Plasma NGS Tests With Tumor Suggests Technical Factors are a Major Source of Assay Discordance. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Watson, C.J.; Papula, A.L.; Poon, G.Y.P.; Wong, W.H.; Young, A.L.; Druley, T.E.; Fisher, D.S.; Blundell, J.R. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science 2020, 367, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Rodon, J.; Barretina, J.; Tabernero, J. Genomic medicine frontier in human solid tumors: Prospects and challenges. J. Clin. Oncol. 2013, 31, 1874–1884. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, H.; Sanchez-Vega, F.; La, K.; Chatila, W.; Jonsson, P.; Halpenny, D.; Plodkowski, A.; Long, N.; Sauter, J.L.; Rekhtman, N.; et al. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018, 36, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Heyer, E.E.; Deveson, I.W.; Wooi, D.; Selinger, C.I.; Lyons, R.J.; Hayes, V.M.; O’Toole, S.A.; Ballinger, M.L.; Gill, D.; Thomas, D.M.; et al. Diagnosis of fusion genes using targeted RNA sequencing. Nat. Commun. 2019, 10, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deans, Z.C.; Costa, J.L.; Cree, I.; Dequeker, E.; Edsjo, A.; Henderson, S.; Hummel, M.; Ligtenberg, M.J.; Loddo, M.; Machado, J.C.; et al. Integration of next-generation sequencing in clinical diagnostic molecular pathology laboratories for analysis of solid tumours; an expert opinion on behalf of IQN Path ASBL. Virchows Arch. 2017, 470, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Rolfo, C.; Manca, P.; Salgado, R.; Van Dam, P.; Dendooven, A.; Machado Coelho, A.; Ferri Gandia, J.; Rutten, A.; Lybaert, W.; Vermeij, J.; et al. Multidisciplinary molecular tumour board: A tool to improve clinical practice and selection accrual for clinical trials in patients with cancer. ESMO Open 2018, 3, e000398. [Google Scholar] [CrossRef] [Green Version]
- Dumbrava, E.I.; Brusco, L.; Daniels, M.; Wathoo, C.; Shaw, K.; Lu, K.; Zheng, X.; Strong, L.; Litton, J.; Arun, B.; et al. Expanded analysis of secondary germline findings from matched tumor/normal sequencing identifies additional clinically significant mutations. JCO Precis. Oncol. 2019, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, H.L.; Schroeder, B.; Turner, C.; Shriver, C.D.; Ellsworth, D.L.; Ellsworth, R.E. Management of Incidental Findings in the Era of Next-generation Sequencing. Curr. Genom. 2015, 16, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Van Allen, E.M.; Omberg, L.; Wagle, N.; Amin-Mansour, A.; Sokolov, A.; Byers, L.A.; Xu, Y.; Hess, K.R.; Diao, L.; et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 2014, 32, 644–652. [Google Scholar] [CrossRef]
- Van Allen, E.M.; Wagle, N.; Stojanov, P.; Perrin, D.L.; Cibulskis, K.; Marlow, S.; Jane-Valbuena, J.; Friedrich, D.C.; Kryukov, G.; Carter, S.L.; et al. Whole-exome sequencing and clinical interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer medicine. Nat. Med. 2014, 20, 682–688. [Google Scholar] [CrossRef] [PubMed]
- NCCN. Non-Small Cell Lung Cancer Guidelines v.2.2020. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl_blocks.pdf (accessed on 28 April 2020).
- Gupta, A.; Connelly, C.; Frampton, G.; Chmielecki, J.; Ali, S.; Suh, J.; Schrock, A.; Ross, J.; Stephens, P.; Miller, V. P2.03b-068 The Druggable Mutation Landscape of Lung Adenocarcinoma. J. Thorac. Oncol. 2017, 12, S977. [Google Scholar] [CrossRef] [Green Version]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, N.A.; Arcila, M.E.; Gandara, D.R.; West, H. Biomarker Testing for Patients With Advanced Non-Small Cell Lung Cancer: Real-World Issues and Tough Choices. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Pennell, N.A.; Mutebi, A.; Zhou, Z.-Y.; Ricculli, M.L.; Tang, W.; Wang, H.; Guerin, A.; Arnhart, T.; Dalal, A.; Sasane, M.; et al. Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic Non–Small-Cell Lung Cancer Using a Decision Analytic Model. JCO Precis. Oncol. 2019, 3, 1–9. [Google Scholar] [CrossRef]
- Willemsen, A.; Krausz, S.; Ligtenberg, M.J.L.; Grunberg, K.; Groen, H.J.M.; Voest, E.E.; Cuppen, E.; van Laarhoven, H.W.M.; van Herpen, C.M.L. Molecular tumour boards and molecular diagnostics for patients with cancer in the Netherlands: Experiences, challenges, and aspirations. Br. J. Cancer 2019, 121, 34–36. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv192–iv237. [Google Scholar] [CrossRef]
- Peters, S.; Ramalingam, S.S.; Paz-Ares, L.; Caro, R.B.; Zurawski, B.; Kim, S.W.; Alexandru, A.; Lupinacci, L.; Jimenez, E.D.; Sakai, H.; et al. Nivolumab (NIVO) plus low-dose ipilimumab (IPI) vs platinum-doublet chemotherapy (chemo) as first-line (1L) treatment (tx) for advanced non-small cell lung cancer (NSCLC): CheckMate 227 part 1 final analysis. Ann. Oncol. 2019, 30, 913. [Google Scholar] [CrossRef]
- Aguilar, E.J.; Ricciuti, B.; Gainor, J.F.; Kehl, K.L.; Kravets, S.; Dahlberg, S.; Nishino, M.; Sholl, L.M.; Adeni, A.; Subegdjo, S.; et al. Outcomes to first-line pembrolizumab in patients with non-small-cell lung cancer and very high PD-L1 expression. Ann. Oncol. 2019, 30, 1653–1659. [Google Scholar] [CrossRef] [Green Version]
- Edahiro, R.; Kanazu, M.; Kurebe, H.; Mori, M.; Fujimoto, D.; Taniguchi, Y.; Suzuki, H.; Hirano, K.; Yokoyama, T.; Morita, M.; et al. Clinical outcomes in non-small cell lung cancer patients with an ultra-high expression of programmed death ligand-1 treated using pembrolizumab as a first-line therapy: A retrospective multicenter cohort study in Japan. PLoS ONE 2019, 14, e0220570. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Garassino, M.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; Speranza, G.; Reck, M.; Hui, R.; Boyer, M.; Cristescu, R.; et al. Evaluation of TMB in KEYNOTE-189: Pembrolizumab Plus Chemotherapy vs Placebo Plus Chemotherapy for Nonsquamous NSCLC. J. Thorac. Oncol. 2019, 14, S216–S217. [Google Scholar] [CrossRef]
- Langer, C.; Gadgeel, S.; Borghaei, H.; Patnaik, A.; Powell, S.; Gentzler, R.; Yang, J.C.; Gubens, M.; Sequist, L.; Awad, M.; et al. KEYNOTE-021: TMB and Outcomes for Carboplatin and Pemetrexed With or Without Pembrolizumab for Nonsquamous NSCLC. J. Thorac. Oncol. 2019, 14, S216. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Langer, C.J.; Novello, S.; Halmos, B.; Cheng, Y.; Gadgeel, S.M.; Hui, R.; Sugawara, S.; Borghaei, H.; Cristescu, R.; et al. Pembrolizumab (pembro) plus platinum-based chemotherapy (chemo) for metastatic NSCLC: Tissue TMB (tTMB) and outcomes in KEYNOTE-021, 189, and 407. Ann. Oncol. 2019, 30, 917. [Google Scholar] [CrossRef]
- Reck, M.; Rodriguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csoszi, T.; Fulop, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Update on the Phase III NEPTUNE Trial of Imfinzi Plus Tremelimumab in Stage IV Non-Small Cell Lung Cancer. Available online: https://www.astrazeneca.com/media-centre/press-releases/2019/update-on-the-phase-iii-neptune-trial-of-imfinzi-plus-tremelimumab-in-stage-iv-non-small-cell-lung-cancer-21082019.html (accessed on 28 April 2020).
- Hellmann, M.D.; Callahan, M.K.; Awad, M.M.; Calvo, E.; Ascierto, P.A.; Atmaca, A.; Rizvi, N.A.; Hirsch, F.R.; Selvaggi, G.; Szustakowski, J.D.; et al. Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer. Cancer Cell 2018, 33, 853–861 e854. [Google Scholar] [CrossRef] [PubMed]
- Buttner, R.; Longshore, J.W.; Lopez-Rios, F.; Merkelbach-Bruse, S.; Normanno, N.; Rouleau, E.; Penault-Llorca, F. Implementing TMB measurement in clinical practice: Considerations on assay requirements. ESMO Open 2019, 4, e000442. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [Green Version]
- Ott, P.A.; Bang, Y.J.; Piha-Paul, S.A.; Razak, A.R.A.; Bennouna, J.; Soria, J.C.; Rugo, H.S.; Cohen, R.B.; O’Neil, B.H.; Mehnert, J.M.; et al. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J. Clin. Oncol. 2019, 37, 318–327. [Google Scholar] [CrossRef]
- Robbins, P.B.; Krieger, T.; Pearson, I.; Bell, J.; Doherty, J.P. Use of TMB and PD-L1 to predict outcomes of checkpoint inhibitor treatment. J. Clin. Oncol. 2019, 37, 19. [Google Scholar] [CrossRef]
Items | Problems Discussed | Indications |
---|---|---|
The sample | Need for reliable data in a cost and time effective manner. Need to optimize the use of samples for histological and molecular analyses. Need for standardization of operational procedures. Need for an increased efficiency of the sample management. | Centralization of the more complex techniques Optimization of the resources Implementation of multidisciplinary activities Improvement of the training activities Activation of the procedures to spread the figure of the pathologist with specific expertise in lung cancer |
The test | Informed consent and privacy | Updated for CGP analysis; a shared format should be adopted. |
Tissue versus liquid biopsy | Tissue is mandatory at diagnosis and onset and should be considered the golden standard. Liquid biopsy useful for real-time monitoring of the therapies; its use should be carefully evaluated. | |
Comprehensive genomic profiling (CGP) technologies | CGP should be considered after appropriate clinical evaluation and assessment of the adequacy of the sample material. CGP should be performed in specialized laboratories. | |
Organization of a laboratory that performs CGP tests | Prerequisites: – structural adequacy; – availability of latest-generation CE-IVD certified instruments and of orthogonal technologies for validation; – qualified and trained personnel; – compliance of the standard operating procedures (SOPs) for the management and traceability of samples and data. | |
Outsourcing or in-house testing and CGP validation/verification | In-house tests require: – extensive internal validation of non-certified tests; – participation to external quality assessment schemes; – periodic evaluation of test performances. Test outsourcing requires: – verification that the tests ensure specific quality criteria | |
Result interpretation | Implementation of molecular tumor boards (MTBs); planning of a dedicated pathway for patients with germline mutations. | |
Mutational report | A structured CPG report must include. – pathological evaluation of the sample; – details on the methods used for testing; – appropriate reporting of the obtained results; – biological and pathological interpretation of the findings | |
The clinical applicability | Use of CGP analysis upfront: when and how | CGP should be offered to all metastatic non-squamous NSCLC patients, to give the patients the access to targeted drugs within clinical practice and in clinical trials. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Normanno, N.; Barberis, M.; De Marinis, F.; Gridelli, C.; on the behalf of the AIOT Expert Panel. Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT). Cancers 2020, 12, 1627. https://doi.org/10.3390/cancers12061627
Normanno N, Barberis M, De Marinis F, Gridelli C, on the behalf of the AIOT Expert Panel. Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT). Cancers. 2020; 12(6):1627. https://doi.org/10.3390/cancers12061627
Chicago/Turabian StyleNormanno, Nicola, Massimo Barberis, Filippo De Marinis, Cesare Gridelli, and on the behalf of the AIOT Expert Panel. 2020. "Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT)" Cancers 12, no. 6: 1627. https://doi.org/10.3390/cancers12061627
APA StyleNormanno, N., Barberis, M., De Marinis, F., Gridelli, C., & on the behalf of the AIOT Expert Panel. (2020). Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT). Cancers, 12(6), 1627. https://doi.org/10.3390/cancers12061627