Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment
Abstract
:1. Introduction
2. Results
2.1. System Characterization
2.2. E-Field Manipulation and Mapping
2.3. Single Channel RF Heating
2.4. Dual Channel RF Heating
3. Discussion
3.1. System Characterization
3.2. E-Field Manipulation and Mapping
3.3. Single Channel RF Heating
3.4. Dual Channel RF Heating
4. Materials and Methods
4.1. Hardware Design
4.2. Software Design
4.3. System Characterization
4.4. E-Field Manipulation and Mapping
4.5. Single Channel RF Heating
4.6. Dual Channel RF Heating
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Overgaard, J.; Bentzen, S.M.; Gonzalez Gonzalez, D.; Hulshof, M.C.C.M.; Arcangeli, G.; Dahl, O.; Mella, O. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995, 345, 540–543. [Google Scholar] [CrossRef]
- Horsman, M.R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. (R Coll. Radiol.) 2007, 19, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Lee Titsworth, W.; Murad, G.J.A.; Hoh, B.L.; Rahman, M. Fighting fire with fire: The revival of thermotherapy for gliomas. Anticancer Res. 2014, 34, 565–574. [Google Scholar]
- Leopold, K.A.; Dewhirst, M.; Samulski, T.; Harrelson, J.; Tucker, J.A.; George, S.L.; Dodge, R.K.; Grant, W.; Clegg, S.; Prosnitz, L.R.; et al. Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas. Int. J. Radiat. Oncol. Biol. Phys. 1992, 22, 989–998. [Google Scholar] [CrossRef]
- Kapp, D.S. Efficacy of adjuvant hyperthermia in the treatment of superficial recurrent breast cancer: Confirmation and future directions. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 1117–1121. [Google Scholar] [CrossRef]
- Vernon, C.C.; Hand, J.W.; Field, S.B.; Machin, D.; Whaley, J.B.; van der Zee, J.; van Putten, W.L.; van Rhoon, G.C.; van Dijk, J.D.; González González, D.; et al. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. International Collaborative Hyperthermia Group. Int. J. Radiat. Oncol. Biol. Phys. 1996, 35, 731–744. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, B. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol./Hematol. 2002, 43, 33–56. [Google Scholar] [CrossRef]
- Oldenborg, S.; van Os, R.; Oei, B.; Poortmans, P. Impact of Technique and Schedule of Reirradiation Plus Hyperthermia on Outcome after Surgery for Patients with Recurrent Breast Cancer. Cancers 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Adibzadeh, F.; Sumser, K.; Curto, S.; Yeo, D.T.B.; Shishegar, A.A.; Paulides, M.M. Systematic review of pre-clinical and clinical devices for magnetic resonance-guided radiofrequency hyperthermia. Int. J. Hyperth. 2020, 37, 15–27. [Google Scholar] [CrossRef]
- Stauffer, P.R. Evolving technology for thermal therapy of cancer. Int. J. Hyperth. 2005, 21, 731–744. [Google Scholar] [CrossRef]
- Trefná, H.D.; Crezee, H.; Schmidt, M.; Marder, D.; Lamprecht, U.; Ehmann, M.; Hartmann, J.; Nadobny, J.; Gellermann, J.; van Holthe, N.; et al. Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. Int. J. Hyperth. 2017, 33, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulides, M.M.; Stauffer, P.R.; Neufeld, E.; Maccarini, P.F.; Kyriakou, A.; Canters, R.A.M.; Diederich, C.J.; Bakker, J.F.; van Rhoon, G.C. Simulation techniques in hyperthermia treatment planning. Int. J. Hyperth. 2013, 29, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Kok, H.P.; Wust, P.; Stauffer, P.R.; Bardati, F.; van Rhoon, G.C.; Crezee, J. Current state of the art of regional hyperthermia treatment planning: A review. Radiat. Oncol. 2015, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curto, S.; Aklan, B.; Mulder, T.; Mils, O.; Schmidt, M.; Lamprecht, U.; Peller, M.; Wessalowski, R.; Lindner, L.H.; Fietkau, R.; et al. Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers 2019, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schooneveldt, G.; Dobšíček Trefná, H.; Persson, M.; de Reijke, T.M.; Blomgren, K.; Kok, H.P.; Crezee, H. Hyperthermia Treatment Planning Including Convective Flow in Cerebrospinal Fluid for Brain Tumour Hyperthermia Treatment Using a Novel Dedicated Paediatric Brain Applicator. Cancers 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Kok, H.P.; Groen, J.; Bakker, A.; Crezee, J. Modelling Curved Contact Flexible Microstrip Applicators for Patient-Specific Superficial Hyperthermia Treatment Planning. Cancers 2020, 12, 656. [Google Scholar] [CrossRef] [Green Version]
- Oberacker, E.; Kuehne, A.; Oezerdem, C.; Nadobny, J.; Weihrauch, M.; Beck, M.; Zschaeck, S.; Diesch, C.; Eigentler, T.W.; Waiczies, H.; et al. Radiofrequency applicator concepts for thermal magnetic resonance of brain tumors at 297 MHz (7.0 Tesla). Int. J. Hyperth. 2020, 37, 549–563. [Google Scholar] [CrossRef]
- Niendorf, T.; Oezerdem, C.; Ji, Y.; Oberacker, E.; Kuehne, A.; Waiczies, H.; Winter, L. Radiative RF antenna arrays for cardiac, brain and thermal magnetic resonance at ultrahigh and extreme magnetic field strengths: Concepts, electromagnetic field simulations and applications. In Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 11–15 September 2017; pp. 1567–1570, ISBN 978-1-5090-4451-1. [Google Scholar]
- Winter, L.; Oezerdem, C.; Hoffmann, W.; van de Lindt, T.; Periquito, J.; Ji, Y.; Ghadjar, P.; Budach, V.; Wust, P.; Niendorf, T. Thermal magnetic resonance: Physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiat. Oncol. 2015, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Winter, L.; Özerdem, C.; Hoffmann, W.; Santoro, D.; Müller, A.; Waiczies, H.; Seemann, R.; Graessl, A.; Wust, P.; Niendorf, T. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: Electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLoS ONE 2013, 8, e61661. [Google Scholar] [CrossRef]
- Winter, L.; Niendorf, T. Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond. MAGMA 2016, 29, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Oberacker, E.; Kuehne, A.; Nadobny, J.; Zschaeck, S.; Weihrauch, M.; Waiczies, H.; Ghadjar, P.; Wust, P.; Niendorf, T.; Winter, L. Radiofrequency applicator concepts for simultaneous MR imaging and hyperthermia treatment of glioblastoma multiforme. Curr. Directions Biomed. Eng. 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Eigentler, T.W.; Winter, L.; Han, H.; Oberacker, E.; Kuehne, A.; Waiczies, H.; Schmitter, S.; Boehmert, L.; Prinz, C.; Trefna, H.D.; et al. Wideband Self-Grounded Bow-Tie Antenna for Thermal MR. NMR Biomed. 2020, 41, e4274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuehne, A.; Oberacker, E.; Waiczies, H.; Niendorf, T. Solving the Time- and Frequency-Multiplexed Problem of Constrained Radiofrequency Induced Hyperthermia. Cancers 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Hoffmann, W.; Pham, M.; Dunn, A.E.; Han, H.; Özerdem, C.; Waiczies, H.; Rohloff, M.; Endemann, B.; Boyer, C.; et al. High peak and high average radiofrequency power transmit/receive switch for thermal magnetic resonance. Magn. Reson. Med. 2018, 80, 2246–2255. [Google Scholar] [CrossRef]
- Ji, Y.; Winter, L.; Navarro, L.; Ku, M.-C.; Periquito, J.S.; Pham, M.; Hoffmann, W.; Theune, L.E.; Calderón, M.; Niendorf, T. Controlled Release of Therapeutics from Thermoresponsive Nanogels: A Thermal Magnetic Resonance Feasibility Study. Cancers 2020, 12. [Google Scholar] [CrossRef]
- Young, I.R.; Hand, J.W.; Oatridge, A.; Prior, M.V. Modeling and observation of temperature changes in vivo using MRI. Magn. Reson. Med. 1994, 32, 358–369. [Google Scholar] [CrossRef]
- Gellermann, J.; Wlodarczyk, W.; Feussner, A.; Fähling, H.; Nadobny, J.; Hildebrandt, B.; Felix, R.; Wust, P. Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int. J. Hyperth. 2005, 21, 497–513. [Google Scholar] [CrossRef]
- Winter, L.; Oberacker, E.; Paul, K.; Ji, Y.; Oezerdem, C.; Ghadjar, P.; Thieme, A.; Budach, V.; Wust, P.; Niendorf, T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int. J. Hyperth. 2016, 32, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Guérin, B.; Villena, J.F.; Polimeridis, A.G.; Adalsteinsson, E.; Daniel, L.; White, J.K.; Rosen, B.R.; Wald, L.L. Computation of ultimate SAR amplification factors for radiofrequency hyperthermia in non-uniform body models: Impact of frequency and tumour location. Int. J. Hyperth. 2018, 34, 87–100. [Google Scholar] [CrossRef]
- Togni, P.; Rijnen, Z.; Numan, W.C.M.; Verhaart, R.F.; Bakker, J.F.; van Rhoon, G.C.; Paulides, M.M. Electromagnetic redesign of the HYPERcollar applicator: Toward improved deep local head-and-neck hyperthermia. Phys. Med. Biol. 2013, 58, 5997–6009. [Google Scholar] [CrossRef]
- Paulides, M.M.; Bakker, J.F.; Neufeld, E.; van der Zee, J.; Jansen, P.P.; Levendag, P.C.; van Rhoon, G.C. The HYPERcollar: A novel applicator for hyperthermia in the head and neck. Int. J. Hyperth. 2007, 23, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Takook, P.; Persson, M.; Trefna, H.D. Performance Evaluation of Hyperthermia Applicators to Heat Deep-Seated Brain Tumors. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 18–24. [Google Scholar] [CrossRef]
- Paulides, M.M.; Vossen, S.H.J.A.; Zwamborn, A.P.M.; van Rhoon, G.C. Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, K.D.; Geimer, S.; Tang, J.W.; Boyse, W.E. Optimization of pelvic heating rate distributions with electromagnetic phased arrays. Int. J. Hyperth. 1999, 15, 157–186. [Google Scholar]
- Seebass, M.; Beck, R.; Gellermann, J.; Nadobny, J.; Wust, P. Electromagnetic phased arrays for regional hyperthermia: Optimal frequency and antenna arrangement. Int. J. Hyperth. 2001, 17, 321–336. [Google Scholar] [CrossRef]
- Takook, P.; Dobsicek Trefna, H.; Zeng, X.; Fhager, A.; Persson, M. A Computational Study Using Time Reversal Focusing for Hyperthermia Treatment Planning. PIER B 2017, 73, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Zastrow, E.; Hagness, S.C.; van Veen, B.D.; Medow, J.E. Time-multiplexed beamforming for noninvasive microwave hyperthermia treatment. IEEE Trans. Biomed. Eng. 2011, 58, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Kok, H.P.; van Stam, G.; Bel, A.; Crezee, J. A mixed frequency approach to optimize locoregional RF hyperthermia. In Proceedings of the 2015 European Microwave Conference (EuMC 2015), Paris, France, 7–10 September 2015; IEEE: Piscataway, NJ, USA; pp. 773–776, ISBN 978-2-8748-7039-2. [Google Scholar]
- Bellizzi, G.G.; Crocco, L.; Battaglia, G.M.; Isernia, T. Multi-Frequency Constrained SAR Focusing for Patient Specific Hyperthermia Treatment. IEEE J. Electromagn. RF Microw. Med. Biol. 2017, 1, 74–80. [Google Scholar] [CrossRef]
- Bakker, J.F.; Paulides, M.M.; Westra, A.H.; Schippers, H.; van Rhoon, G.C. Design and test of a 434 MHz multi-channel amplifier system for targeted hyperthermia applicators. Int. J. Hyperth. 2010, 26, 158–170. [Google Scholar] [CrossRef]
- Wust, P.; Fähling, H.; Helzel, T.; Kniephoff, M.; Wlodarczyk, W.; Mönich, G.; Felix, R. Design and test of a new multi-amplifier system with phase and amplitude control. Int. J. Hyperth. 1998, 14, 459–477. [Google Scholar] [CrossRef]
- Schneider, C.J.; Kuijer, J.P.; Colussi, L.C.; Schepp, C.J.; van Dijk, J.D. Performance evaluation of annular arrays in practice: The measurement of phase and amplitude patterns of radio-frequency deep body applicators. Med. Phys. 1995, 22, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Trefná, H.D.; Togni, P.; Shiee, R.; Vrba, J.; Persson, M. Design of a wideband multi-channel system for time reversal hyperthermia. Int. J. Hyperth. 2012, 28, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, P.F.; Tumeh, A.; Schaefermeyer, T. BSD-2000 approach for deep local and regional hyperthermia: Physics and technology. Strahlenther. Onkol. 1989, 165, 738–741. [Google Scholar]
- Wust, P.; Fähling, H.; Wlodarczyk, W.; Seebass, M.; Gellermann, J.; Deuflhard, P.; Nadobny, J. Antenna arrays in the SIGMA-eye applicator: Interactions and transforming networks. Med. Phys. 2001, 28, 1793–1805. [Google Scholar] [CrossRef]
- Curto, S.; Garcia-Miquel, A.; Suh, M.; Vidal, N.; Lopez-Villegas, J.M.; Prakash, P. Design and characterisation of a phased antenna array for intact breast hyperthermia. Int. J. Hyperth. 2018, 34, 250–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AXIe Consortium. AXIe Specifications. Available online: http://axiestandard.org/axiespecifications.html (accessed on 7 January 2020).
- Vicente, M.; Gorski, T.; Svetek, A.; Tikalsky, J.; Fobes, R.; Dasu, S.; Smith, W. Next generation ATCA control infrastructure for the CMS phase-2 upgrades. In Proceedings of the Topical Workshop on Electronics for Particle Physics—PoS(TWEPP-17), Santa Cruz, CA, USA, 11–14 September 2017; Veneziano, S., Farthouat, P., Hall, G., Kluge, A., Rivetti, A., Smith, W., Marchioro, A., Hahn, F., de La Taille, C., Christiansen, J., et al., Eds.; Sissa Medialab: Trieste, Italy, 2017; p. 102. [Google Scholar]
- Analog Devices Inc. ADL5330: Data Sheet. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ADL5330.pdf (accessed on 7 January 2020).
- Analog Devices Inc. HMC245A: GaAs MMIC SP3T Non-REFLECTIVE SWITCH, DC—3.5 GHz. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/hmc245a.pdf (accessed on 7 January 2020).
- Stakhursky, V.L.; Arabe, O.; Cheng, K.-S.; Macfall, J.; Maccarini, P.; Craciunescu, O.; Dewhirst, M.; Stauffer, P.; Das, S.K. Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm. Phys. Med. Biol. 2009, 54, 2131–2145. [Google Scholar] [CrossRef]
- Wust, P.; Weihrauch, M. Hyperthermia classic commentary: ‘Simulation studies promote technological development of radiofrequency phased array hyperthermia’ by Peter Wust et al., International Journal of Hyperthermia 1996; 12: 477–494. Int. J. Hyperth. 2009, 25, 529–532. [Google Scholar] [CrossRef]
- Pulsar Microwave Corporation. Digital Controlled Phase Shifter: Model: DST-10-480/1S. Available online: https://www.pulsarmicrowave.com/product/digital_phase_shifter/DST-10-480-1S (accessed on 7 January 2020).
- Orzada, S.; Solbach, K.; Gratz, M.; Brunheim, S.; Fiedler, T.M.; Johst, S.; Bitz, A.K.; Shooshtary, S.; Abuelhaija, A.; Voelker, M.N.; et al. A 32-channel parallel transmit system add-on for 7T MRI. PLoS ONE 2019, 14, e0222452. [Google Scholar] [CrossRef]
- Analog Devices Inc. Fundamentals of Direct Digital Synthesis (DDS). Available online: https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf (accessed on 7 January 2020).
- Dooley, W.C.; Vargas, H.I.; Fenn, A.J.; Tomaselli, M.B.; Harness, J.K. Focused microwave thermotherapy for preoperative treatment of invasive breast cancer: A review of clinical studies. Ann. Surg. Oncol. 2010, 17, 1076–1093. [Google Scholar] [CrossRef]
- OpenSUSE Contributors. openSUSE Leap: 15.1. Available online: https://software.opensuse.org/distributions/leap/15_1 (accessed on 7 January 2020).
- Han, H.; Moritz, R.; Oberacker, E.; Waiczies, H.; Niendorf, T.; Winter, L. Open Source 3D Multipurpose Measurement System with Submillimetre Fidelity and First Application in Magnetic Resonance. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liontas, C.A. Alternating projections of auxiliary vector fields for electric field optimization in temperature-guided hyperthermia. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Duan, Q.; Duyn, J.H.; Gudino, N.; de Zwart, J.A.; van Gelderen, P.; Sodickson, D.K.; Brown, R. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications. Med. Phys. 2014, 41, 102303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depoorter, J.; Dewagter, C.; Dedeene, Y.; Thomsen, C.; Stahlberg, F.; Achten, E. The Proton-Resonance-Frequency-Shift Method Compared with Molecular Diffusion for Quantitative Measurement of Two-Dimensional Time-Dependent Temperature Distribution in a Phantom. J. Magn. Reson. Ser. B 1994, 103, 234–241. [Google Scholar] [CrossRef]
- Rieke, V.; Butts Pauly, K. MR thermometry. J. Magn. Reson. Imaging 2008, 27, 376–390. [Google Scholar] [CrossRef]
- Kuroda, K.; Oshio, K.; Chung, A.H.; Hynynen, K.; Jolesz, F.A. Temperature mapping using the water proton chemical shift: A chemical shift selective phase mapping method. Magn. Reson. Med. 1997, 38, 845–851. [Google Scholar] [CrossRef] [PubMed]
Mean | Minimum | Maximum | Standard Deviation | |
---|---|---|---|---|
Frequency switching time (ms) | 2.208 | 1.872 | 2.582 | 0.219 |
Amplitude settling time (μs) | 617 | 320 | 810 | 143 |
Phase settling time (μs) | 196 | 140 | 290 | 40 |
Phase Shift c (°) | Phase Reading a (°) before Shift | Phase Reading b (°) after Shift | Measured Shift b−a (°) | Phase Shift Error (c−(b−a)) mod 360 (°) |
---|---|---|---|---|
300 MHz | ||||
0.5 | 0.5588 | 1.0553 | 0.4965 | 0.0035 |
1 | 0.9936 | 1.9973 | 1.0037 | −0.0037 |
5 | 0.4629 | 5.459 | 4.9961 | 0.0039 |
10 | 1.0537 | 11.0544 | 10.0007 | −0.0007 |
15 | 0.6694 | 15.7225 | 15.0531 | −0.0531 |
45 | 0.6919 | 45.75 | 45.0581 | −0.0581 |
90 | 0.2352 | 90.2764 | 90.0412 | −0.0412 |
100 | 0.4318 | 100.4639 | 100.0321 | −0.0321 |
180 | 0.4238 | 179.5796 | 180.0034 | −0.0034 |
200 | 0.4315 | −159.5768 | −160.0083 | 0.0083 |
270 | 0.6984 | −89.2514 | −89.9498 | −0.0502 |
300 | 0.4575 | −59.5542 | −60.0117 | 0.0117 |
600 MHz | ||||
0.5 | 1.0714 | 1.5928 | 0.5214 | −0.0214 |
1 | 1.0517 | 2.1267 | 1.075 | −0.075 |
5 | 1.1045 | 6.1592 | 5.0547 | −0.0547 |
10 | 1.0741 | 11.2004 | 10.1263 | −0.1263 |
15 | 1.1124 | 16.1507 | 15.0383 | −0.0383 |
45 | 1.19 | 46.254 | 45.064 | −0.064 |
90 | 1.1915 | 91.185 | 89.9935 | 0.0065 |
100 | 1.1294 | 101.1894 | 100.06 | −0.06 |
180 | 1.1242 | −178.8824 | −180.0066 | 0.0066 |
200 | 0.9942 | −158.9036 | −159.8978 | −0.1022 |
270 | 1.082 | −88.783 | −89.865 | −0.135 |
300 | −1.8299 | −61.7925 | −59.9626 | −0.0374 |
900 MHz | ||||
0.5 | −18.8026 | −18.1841 | 0.6185 | −0.1185 |
1 | −18.8053 | −17.6564 | 1.1489 | −0.1489 |
5 | −18.8533 | −13.7494 | 5.1039 | −0.1039 |
10 | −18.9628 | −8.8075 | 10.1553 | −0.1553 |
15 | −18.8442 | −3.8403 | 15.0039 | −0.0039 |
45 | −19.2507 | 25.888 | 45.1387 | −0.1387 |
90 | −19.246 | 70.7953 | 90.0413 | −0.0413 |
100 | −19.2349 | 80.806 | 100.0409 | −0.0409 |
180 | −19.2853 | 160.8254 | 180.1107 | −0.1107 |
200 | −19.2892 | −179.1758 | −159.8866 | −0.1134 |
270 | −19.3033 | −109.251 | −89.9477 | −0.0523 |
300 | −17.7194 | −77.6205 | −59.9011 | −0.0989 |
300 MHz | 400 MHz | 500 MHz | |
---|---|---|---|
Relative permittivity, εr | 56.2091 | 54.3220 | 49.4599 |
Conductivity, σ (S/m) | 0.1834 | 0.2535 | 0.3651 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Eigentler, T.W.; Wang, S.; Kretov, E.; Winter, L.; Hoffmann, W.; Grass, E.; Niendorf, T. Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers 2020, 12, 1720. https://doi.org/10.3390/cancers12071720
Han H, Eigentler TW, Wang S, Kretov E, Winter L, Hoffmann W, Grass E, Niendorf T. Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers. 2020; 12(7):1720. https://doi.org/10.3390/cancers12071720
Chicago/Turabian StyleHan, Haopeng, Thomas Wilhelm Eigentler, Shuailin Wang, Egor Kretov, Lukas Winter, Werner Hoffmann, Eckhard Grass, and Thoralf Niendorf. 2020. "Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment" Cancers 12, no. 7: 1720. https://doi.org/10.3390/cancers12071720
APA StyleHan, H., Eigentler, T. W., Wang, S., Kretov, E., Winter, L., Hoffmann, W., Grass, E., & Niendorf, T. (2020). Design, Implementation, Evaluation and Application of a 32-Channel Radio Frequency Signal Generator for Thermal Magnetic Resonance Based Anti-Cancer Treatment. Cancers, 12(7), 1720. https://doi.org/10.3390/cancers12071720