The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants?
Abstract
:1. Introduction
2. Results
2.1. Host Genes Expression Profile in GC
2.2. Dysregulated Sponge Circular RNAs in GC
2.3. Functional Enrichment of the Sponged miRNAs’ Target Genes
2.4. Biological Pathways and the Potential Roles of the Sponge circRNAs in GC
2.5. Biological Pathways and the Potential Roles of the Sponge circRNAs in Other Cancers
2.6. Functional and Enrichment Analysis of RBPs
3. Discussion
4. Materials and Methods
4.1. Search for the Sponge circRNAs
4.2. Expression Profile of the Sponge circRNAs’ Host Genes
4.3. Target Gene Identification and Enrichment Analysis
4.4. Target RBPs and Functional Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allemani, C.; Matsuda, T.; Di-Carlo, V.; Harewood, R.; Matz, M.; Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; CONCORD Working Group; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Moreira, F.; Vinasco-Sandoval, T.; Cunha, A.; Vidal, A.; Ribeiro-dos-Santos, A.M.; Pinto, P.; Magalhães, L.; Assumpção, M.; Demachki, S.; et al. miRNome Reveals New Insights Into the Molecular Biology of Field Cancerization in Gastric Cancer. Front. Genet. 2019, 10, 592. [Google Scholar] [CrossRef]
- Vidal, A.F.; Ribeiro-dos-Santos, A.M.; Vinasco-Sandoval, T.; Magalhães, L.; Pinto, P.; Anaissi, A.K.M.; Demachki, S.; de Assumpção, P.P.; Santos, S.E.B.; Ribeiro-dos-Santos, Â. The comprehensive expression analysis of circular RNAs in gastric cancer and its association with field cancerization. Sci. Rep. 2017, 7, 14551. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, L.; Chen, L.L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.L.; Mohd Mohidin, T.B.; Shukla, K. Functional role of circular RNAs in cancer development and progression. RNA Biol. 2018, 15, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Shi, Y.; Liu, M.; Sun, J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Naeli, P.; Pourhanifeh, M.H.; Karimzadeh, M.R.; Shabaninejad, Z.; Movahedpour, A.; Tarrahimofrad, H.; Mirzaei, H.R.; Bafrani, H.H.; Savardashtaki, A.; Mirzaei, H.; et al. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit. Rev. Oncol. Hematol. 2020, 145, 102854. [Google Scholar] [CrossRef] [PubMed]
- Derderian, C.; Orunmuyi, A.T.; Olapade-Olaopa, E.O.; Ogunwobi, O.O. PVT1 Signaling Is a Mediator of Cancer Progression. Front. Oncol. 2019, 9, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xia, L.; Dong, L.; Wang, J.; Xiao, Q.; Yu, X.; Zhu, H. CircHIPK3 Promotes Gemcitabine (GEM) Resistance in Pancreatic Cancer Cells by Sponging miR-330-5p and Targets RASSF1. Cancer Manag. Res. 2020, 12, 12921–12929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, K.; Chen, X.; Xu, M.; Liu, X.; Hu, X.; Xu, T.; Sun, H.; Pan, Y.; He, B.; Wang, S. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018, 9, 417. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zheng, Q.; Bao, C.; He, J.; Chen, B.; Lyu, D.; Zheng, B.; Xu, Y.; Long, Z.; et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017, 388, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Zhang, L.Y.; Du, W.Z. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef]
- Cheng, J.; Zhuo, H.; Xu, M.; Wang, L.; Xu, H.; Peng, J.; Hou, J.; Lin, L.; Cai, J. Regulatory network of circRNA-miRNA-mRNA contributes to the histological classification and disease progression in gastric cancer. J. Transl. Med. 2018, 16, 216. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Xu, H.; Wei, W.; Wang, Z.; Zhang, Q.; De, W.; Shu, Y. circHIPK3 Promotes Cell Proliferation and Migration of Gastric Cancer by Sponging miR-107 and Regulating BDNF Expression. Onco Targ. Ther. 2020, 13, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, T.; Jiang, Y.; Pan, C.; Ding, Y.; Huang, Z.; Yu, H.; Kong, D. Overexpression of circular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem. 2018, 119, 440–446. [Google Scholar] [CrossRef]
- Li, G.; Xue, M.; Yang, F.; Jin, Y.; Fan, Y.; Li, W. CircRBMS3 promotes gastric cancer tumorigenesis by regulating miR-153-SNAI1 axis. J. Cell. Physiol. 2019, 234, 3020–3028. [Google Scholar] [CrossRef]
- Li, H.; Yao, G.; Feng, B.; Lu, X.; Fan, Y. Circ_0056618 and CXCR4 act as competing endogenous in gastric cancer by regulating miR-206. J. Cell. Biochem. 2018, 119, 9543–9551. [Google Scholar] [CrossRef]
- Wang, L.; Shen, J.; Jiang, Y. Circ_0027599/PHDLA1 suppresses gastric cancer progression by sponging miR-101-3p.1. Cell. Biosci. 2018, 8, 58. [Google Scholar] [CrossRef]
- Li, X.; He, M.; Guo, J.; Cao, T. Upregulation of circular RNA circ-ERBB2 predicts unfavorable prognosis and facilitates the progression of gastric cancer via miR-503/CACUL1 and miR-637/MMP-19 signaling. Biochem. Biophys. Res. Commun. 2019, 511, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Nie, J.; Chen, L.; Yu, F. Circ_0000267 promotes gastric cancer progression via sponging MiR-503-5p and regulating HMGA2 expression. Mol. Genet. Genomic. Med. 2020, 8, e1093. [Google Scholar] [CrossRef] [Green Version]
- Guan, E.C.; Xu, X.G.; Xue, F.X. circ-NOTCH1 acts as a sponge of miR-637 and affects the expression of its target gene Apelin to regulate gastric câncer cell growth. Biochem. Cell. Biol. 2020, 98, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhong, Q.; Cheng, X.; Wang, S.; Wu, R.; Leng, X.; Shao, L. miR-449c-5p availability is antagonized by circ-NOTCH1 for MYC-induced NOTCH1 upregulation as well as tumor metastasis and stemness in gastric cancer. J. Cell. Biochem. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.; Huang, H.; Wang, Y.; Zhang, F.; Wang, S. Hsa_circ_0067997 promotes the progression of gastric cancer by inhibition of miR-515-5p and activation of X chromosome-linked inhibitor of apoptosis (XIAP). Artif. Cells Nanomed. Biotechnol. 2019, 1, 308–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Deng, S. Hsa_circ_0017728 as an oncogene in gastric cancer by sponging miR-149 and modulating the IL-6/STAT3 pathway. Arch. Med. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Li, G.; Fang, X.; Wang, L.; Jin, Y.; Zhou, Q. hsa_circ_0081143 promotes cisplatin resistance in gastric cancer by targeting miR-646/CDK6 pathway. Cancer Cell. Int. 2019, 19, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ma, K.; Pitts, S.; Cheng, Y.; Liu, X.; Ke, X.; Kovaka, S.; Ashktorab, H.; Smoot, D.T.; Schatz, M.; et al. Novel circular RNA NF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16. Endocr. Relat. Cancer 2018. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, L.; Liang, R.; Chen, X.; Zhang, R.; Chen, W.; Zhu, J. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol. Cancer 2019, 18, 80. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Li, Y.; Huang, Y.; Li, X.; Zhu, Y.; Long, Y.; Wang, Y.; Guo, X.; Gong, K. CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2. J. Cell. Physiol. 2019, 234, 10458–10469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, L.; Bai, M.; Liu, Y.; Zhan, Y.; Deng, T.; Yang, H.; Sun, W.; Wang, X.; Zhu, K.; et al. Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR-133/PRDM16 pathway. Int. J. Cancer 2019, 144, 2501–2515. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Chen, X.; Wang, Q.; Zheng, X.; Wu, C.; Jiang, J. Circular RNA CircCACTIN Promotes Gastric Cancer Progression by Sponging MiR-331-3p and Regulating TGFBR1 Expression. Int. J. Biol. Sci. 2019, 15, 1091–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Zhang, X.; Guan, B.; Sun, P.; Hong, C.T.; Peng, J.; Tang, S.; Yang, J. A novel circular RNA hsa_circ_0008035 contributes to gastric cancer tumorigenesis through targeting the miR-375/YBX1 axis. Am. J. Transl. Res. 2019, 11, 2455–2462. [Google Scholar] [PubMed]
- Liu, J.; Song, S.; Lin, S.; Zhang, M.; Du, Y.; Zhang, D.; Xu, W.; Wang, H. Circ-SERPINE2 promotes the development of gastric carcinoma by sponging miR-375 and modulating YWHAZ. Cell Prolif. 2019, 52, e12648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, H.; Pan, J.; Chen, P.; Gao, J.; Guo, D.; Yang, Z.; Ji, L.; Lv, H.; Guo, Y.; Xu, D. Circular RNA circUBA1 promotes gastric cancer proliferation and metastasis by acting as a competitive endogenous RNA through sponging miR-375 and regulating TEAD4. Cancer Lett. 2020, 19. [Google Scholar] [CrossRef]
- Lai, Z.; Yang, Y.; Wang, C.; Yang, W.; Yan, Y.; Wang, Z.; Xu, J.; Jiang, K. Circular RNA 0047905 acts as a sponge for microRNA4516 and microRNA1227-5p, initiating gastric cancer progression. Cell Cycle 2019, 18, 1560–1572. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Hu, Y.; Jiang, W.; Lu, C.; Zheng, W.; Zhang, W.; Chen, Z.; Cao, H. Circ-EIF4G3 promotes the development of gastric cancer by sponging miR-335. Pathol. Res. Pract. 2019, 215, 152507. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Li, Z.; Wang, W.; Li, B.; Huang, X.; Sun, G.; Xu, J.; Li, Q.; Xu, Z.; et al. Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer. Oncogene 2019, 38, 6985–7001. [Google Scholar] [CrossRef]
- Huang, X.; Li, Z.; Zhang, Q.; Wang, W.; Li, B.; Wang, L.; Xu, Z.; Zeng, A.; Zhang, X.; Zhang, X.; et al. Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol. Cancer 2019, 18, 71. [Google Scholar] [CrossRef]
- Zhu, Z.; Rong, Z.; Luo, Z.; Yu, Z.; Zhang, J.; Qiu, Z.; Huang, C. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis. Mol. Cancer 2019, 18, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, J.; Chen, Z.; Wang, J.; Wang, J.; Chen, X.; Liang, L.; Huang, M.; Zhang, Z.; Zuo, X. circHECTD1 facilitates glutaminolysis to promote gastric cancer progression by targeting miR-1256 and activating β-catenin/c-Myc signaling. Cell Death Dis. 2019, 10, 576. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, D.; Yang, Y. Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer. Exp. Mol. Pathol. 2019, 110, 104273. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Li, D.; Guo, X.; Li, P.; Li, X.; Tong, S.; Tong, J.; Kuang, L.; Liang, D. Circ-PRMT5 promotes gastric cancer progression by sponging miR-145 and miR-1304 to upregulate MYC. Artif. Cells Nanomed. Biotechnol. 2019, 47, 4120–4130. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Zhang, Y.; Yu, S.; Zhao, G.; Xu, J. CircDUSP16 promotes the tumorigenesis and invasion of gastric cancer by sponging miR-145-5p. Gastric Cancer 2020, 23, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Sun, H.; Wang, Q.; Wang, X.; Quan, J.; Dong, D.; Lun, Y. Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down-regulation of miR-145. J. Clin. Lab. Anal. 2020, 5, e23215. [Google Scholar] [CrossRef]
- Sun, H.; Xi, P.; Sun, Z.; Wang, Q.; Zhu, B.; Zhou, J.; Jin, H.; Zheng, W.; Tang, W.; Cao, H.; et al. Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression. Cancer Manag. Res. 2018, 10, 5725–5734. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.X.; Zhang, Q.; Hu, H.; Jin, Y.; Zeng, A.L.; Xia, Y.B.; Xu, L. A novel circular RNA circFN1 enhances cisplatin resistance in gastric cancer via sponging miR-182-5p. J. Cell. Biochem. 2020, 1–12. [Google Scholar] [CrossRef]
- Mo, W.L.; Jiang, J.T.; Zhang, L.; Lu, Q.C.; Li, J.; Gu, W.D.; Cheng, Y.; Wang, H.T. Circular RNA hsa_circ_0000467 Promotes the Development of Gastric Cancer by Competitively Binding to MicroRNA miR-326-3p. Biomed. Res. Int. 2020, 2020, 4030826. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, K.; Zhang, K.; Wang, J.; Daic, Q.; Wangd, R. Circular RNA PTK2 modifies the progression and radiosensitivity in gastric cancer via miR-369-3p/ZEB1 axis. RSC Adv. 2020, 10, 1711. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wang, Y.H.; Yoon, C.; Huang, X.Y.; Xu, Y.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; et al. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020, 471, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, H.; Chen, Z.; Li, G.; Liu, B. Circular RNA ATXN7 promotes the development of gastric cancer through sponging miR-4319 and regulating ENTPD4. Cancer Cell Int. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xun, J.; Wang, C.; Yao, J.; Gao, B.; Zhang, L. CircBANP acts as a sponge of let-7a to promote gastric cancer progression via the FZD5/Wnt/β-catenin pathway. RSC Adv. 2020, 10, 7221–7231. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wang, Y.H.; Huang, X.Y.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Huang, C.M.; Zheng, C.H.; et al. circ-CEP85L suppresses the proliferation and invasion of gastric cancer by regulating NFKBIA expression via miR-942-5p. J. Cell Physiol. 2020, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Mou, T.; He, J.; Chen, D.; Lv, D.; Liu, H.; Yu, J.; Wang, S.; Li, G. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J. Exp. Clin. Cancer Res. 2020, 39, 1. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, H.; Hou, L.; Wang, G.; Zhang, R.; Huang, Y.; Chen, X.; Zhu, J. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol. Cancer 2017, 16, 151. [Google Scholar] [CrossRef]
- Li, P.; Chen, H.; Chen, S.; Mo, X.; Li, T.; Xiao, B.; Yu, R.; Guo, J. Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br. J. Cancer 2017, 116, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, H.; Li, W.; Yu, J.; Li, J.; Shen, Z.; Ye, G.; Qi, X.; Li, G. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging 2017, 9, 1585–1594. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.; Wang, F.; Li, Y. Hsa_circ_0000673 is down-regulated in gastric cancer and inhibits the proliferation and invasion of tumor cells by targetting miR-532-5p. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Liu, S.; Xu, Y.; Shu, R.; Wang, F.; Chen, C.; Zeng, Y.; Luo, H. Circular RNA-ZFR inhibited cell proliferation and promoted apoptosis in gastric cancer by sponging miR-130a/miR-107 and modulating PTEN. Cancer Res. Treat. 2018, 50, 1396–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Guo, X.; Liu, J.; Cheng, A.; Peng, X.; Zha, L.; Wang, Z. Circular RNA circGRAMD1B inhibits gastric cancer progression by sponging miR-130a-3p and regulating PTEN and p21 expression. Aging 2019, 11, 9689–9708. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, Y.; Bian, Z.; Zhang, J.; Zhang, R.; Chen, X.; Huang, Y.; Wang, Y.; Zhu, J. Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27Kip1 axis. Mol. Cancer 2018, 17, 151. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Wang, L.P.; Ma, X.Q. Circ_SPECC1 enhances the inhibition of miR-526b on downstream KDM4A/YAP1 pathway to regulate the growth and invasion of gastric câncer cells. Biochem. Biophys. Res. Commun. 2019, 517, 253–259. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, J.; Hou, J.; Zhang, Q.; Xu, H.; Hu, J.; Zhao, J.; Feng, J. Circular RNA hsa_circ_0000993 inhibits metastasis of gastric cancer cells. Epigenomics 2018, 10, 1301–1313. [Google Scholar] [CrossRef]
- Li, Q.; Tang, H.; Hu, F.; Qin, C. Circular RNA SMARCA5 inhibits gastric câncer progression through targeting the miR-346/ FBXL2 axis. RSC Adv. 2019, 9, 18277. [Google Scholar] [CrossRef] [Green Version]
- Rong, D.; Lu, C.; Zhang, B.; Fu, K.; Zhao, S.; Tang, W.; Cao, H. CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p. Mol. Cancer 2019, 18, 25. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, P.Y.; Li, P.; Xie, J.W.; Wang, J.B.; Lin, J.X.; Chen, Q.Y.; Cao, L.L.; Huang, C.M.; Zheng, C.H. Circular RNA hsa_circ_0001368 suppresses the progression of gastric cancer by regulating miR-6506-5p/FOXO3 axis. Biochem. Biophys. Res. Commun. 2019, 512, 29–33. [Google Scholar] [CrossRef]
- Fang, J.; Hong, H.; Xue, X.; Zhu, X.; Jiang, L.; Qin, M.; Liang, H.; Gao, L. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 2019, 442, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhao, Y.; Dang, S.; Wang, Y.; Li, X.; Yu, X.; Li, Z.; Wei, J.; Liu, M.; Li, G. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol. Cancer 2019, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Balzeau, J.; Menezes, M.R.; Cao, S.; Hagan, J.P. The LIN28/let-7 Pathway in Cancer. Front. Genet. 2017, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Xu, A.; Miao, C.; Yang, J.; Gu, M.; Song, N. Prognostic value of Lin28A and Lin28B in various human malignancies: A systematic review and meta-analysis. Cancer Cell Int. 2019, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ding, Y.; Li, A. Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer. World J. Surg. Oncol. 2016, 14, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, S.; den Boon, J.Á.; Chen, I.H.; Newton, M.A.; Stanhope, S.A.; Cheng, Y.J.; Chen, C.J.; Hildesheim, A.; Sugden, B.; Ahlquist, P. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 5874–5878. [Google Scholar] [CrossRef] [Green Version]
- Moulin, D.; Salone, V.; Koufany, M.; Clément, T.; Behm-Ansmant, I.; Branlant, C.; Charpentier, B.; Jouzeau, J.Y. MicroRNA-29b Contributes to Collagens Imbalance in Human Osteoarthritic and Dedifferentiated Articular Chondrocytes. Biomed. Res. Int. 2017, 2017, 9792512. [Google Scholar] [CrossRef]
- Kriegel, A.J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genom. 2012, 44, 237–244. [Google Scholar] [CrossRef]
- Vidal, A.F.; Cruz, A.M.; Magalhães, L.; Pereira, A.L.; Anaissi, A.K.; Alves, N.C.; Albuquerque, P.J.; Burbano, R.M.; Demachki, S.; Ribeiro-dos-Santos, Â. hsa-miR-29c and hsa-miR-135b differential expression as potential biomarker of gastric carcinogenesis. World J. Gastroenterol. 2016, 22, 2060–2070. [Google Scholar] [CrossRef]
- Wang, T.; Hou, J.; Jian, S.; Luo, Q.; Wei, J.; Li, Z.; Wang, X.; Bai, P.; Duan, B.; Xing, J.; et al. miR-29b negatively regulates MMP2 to impact gastric cancer development by suppress gastric cancer cell migration and tumor growth. J. Cancer 2018, 9, 3776–3786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, Z.; Li, Y.; Zang, A. MicroRNA and signaling pathways in gastric cancer. Cancer Gene Ther. 2014, 21, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Riquelme, I.; Saavedra, K.; Espinoza, J.A.; Weber, H.; García, P.; Nervi, B.; Garrido, M.; Corvalán, A.H.; Roa, J.C.; Bizama, C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget 2015, 6, 24750–24779. [Google Scholar] [CrossRef] [Green Version]
- Rezalotfi, A.; Ahmadian, E.; Aazami, H.; Solgi, G.; Ebrahimi, M. Gastric Cancer Stem Cells Effect on Th17/Treg Balance; A Bench to Beside Perspective. Front. Oncol. 2019, 9, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slattery, M.L.; Mullany, L.E.; Sakoda, L.C.; Wolff, R.K.; Stevens, J.R.; Samowitz, W.S.; Herrick, J.S. The PI3K/AKT Signaling Pathway: Associations of miRNAs With Dysregulated Gene Expression in Colorectal Cancer. Mol. Carcinog. 2018, 57, 243–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spangle, J.M.; Roberts, T.M.; Zhao, J.J. The Emerging Role of PI3K/AKT-mediated Epigenetic Regulation in Cancer. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Jiang, W.; Hou, P. Emerging Role of PI3K/AKT in Tumor-Related Epigenetic Regulation. Semin. Cancer Biol. 2019, 59, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Daragmeh, J.; Barriah, W.; Saad, B.; Zaid, H. Analysis of PI3K pathway components in human cancers. Oncol. Lett. 2016, 11, 2913–2918. [Google Scholar] [CrossRef] [Green Version]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Carnero, A.; Paramio, J.M. The PTEN/PI3K/AKT Pathway in vivo, Cancer Mouse Models. Front. Oncol. 2014, 4, 252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, S.; Qian, W.; Ji, D.; Wang, Q.; Zhang, Z.; Wang, S.; Ji, B.; Fu, Z.; Sun, Y. uc.338 targets p21 and cyclin D1 via PI3K/AKT pathway activation to promote cell proliferation in colorectal cancer. Oncol. Rep. 2018, 40, 1119–1128. [Google Scholar] [CrossRef]
- Teng, R.; Hu, Y.; Zhou, J.; Seifer, B.; Chen, Y.; Shen, J.; Wang, L. Overexpression of Lin28 Decreases the Chemosensitivity of Gastric Cancer Cells to Oxaliplatin, Paclitaxel, Doxorubicin, and Fluorouracil in Part via microRNA-107. PLoS ONE 2015, 10, e0143716. [Google Scholar] [CrossRef]
- Heo, I.; Joo, C.; Kim, Y.-K.; Há, M.; Yoon, M.-J.; Cho, J.; Yeom, K.-H.; Han, J.; Kim, V.N. TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell 2009, 138, 696–708. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Ruiz, C.R.; Eyler, E.C.; Lin, K.; Meffert, M.K. Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 2012, 148, 933–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, N.P.; Ribeiro-Rodrigues, E.M.; Ribeiro-Dos-Santos, A.K.; Pereira, R.; Gusmão, L.; Amorim, A.; Guerreiro, J.F.; Zago, M.A.; Matte, C.; Hutz, M.H.; et al. Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum. Mutat. 2010, 31, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.B.; Amador, M.A.T.; Cavalcante, G.C.; Leitão, L.P.C.; Fernandes, M.R.; Modesto, A.A.C.; Moreira, F.C.; Khayat, A.S.; Assumpção, P.P.; Ribeiro-dos-Santos, Â.; et al. Estimating Asian contribution to the Brazilian population: A new application of a validated set of 61 ancestry informative markers. G3 2018, 8, 3577–3582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, P.S.C.; Santos, N.P.; Santos, S.; Ribeiro-dos-Santos, Â. Influence of genetic ancestry on INDEL markers of NFKb1, CASP8, PAR1, IL4 and CYP19A1 genes in leprosy patients. PLoS Negl. Trop. Dis. 2015, 9, e0004050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nédélec, Y.; Sanz, J.; Baharian, G.; Szpiech, Z.A.; Pacis, A.; Dumaine, A.; Grenier, J.C.; Freiman, A.; Sams, A.J.; Hebert, S.; et al. Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens. Cell 2016, 167, 657–669. [Google Scholar] [CrossRef]
- Stagsted, L.V.W.; Nielsen, K.M.; Daugaard, I.; Hansen, T.B. Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci. Alliance 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Branco, P.R.; de Araújo, G.S.; Barrera, J.; Suarez-Kurtz, G.; Souza, S.J. Uncovering association networks through an eQTL analysis involving human miRNAs and lincRNAs. Sci. Rep. 2018, 8, 15050. [Google Scholar] [CrossRef]
- Falzone, L.; Scola, L.; Zanghì, A.; Biondi, A.; Di Cataldo, A.; Libra, M.; Candido, S. Integrated Analysis of Colorectal Cancer microRNA Datasets: Identification of microRNAs Associated With Tumor Development. Aging 2018, 10, 1000–1014. [Google Scholar] [CrossRef]
- Qi, D.; Wang, Q.; Wu, M.; Zhang, X. Comprehensive bioinformatics analysis of lncRNAs in gastric cancer. Oncol. Lett. 2019, 17, 1279–1291. [Google Scholar] [CrossRef] [Green Version]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Rodriguez, I.P.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Hamberg, M.; Backes, C.; Fehlmann, T.; Hart, M.; Meder, B.; Meese, E.; Keller, A. MiRTargetLink-miRNAs, Genes and Interaction Networks. Int. J. Mol. Sci. 2016, 17, 564. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, L.; Han, Y.; He, Q. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; He, Q. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 2016, 12, 477–479. [Google Scholar] [CrossRef] [PubMed]
Sponge circRNA | Expression | Host Gene | Expression | Sponged miRNA | Ref. |
---|---|---|---|---|---|
hsa_circ_0001821 (circPVT1) | UP | PVT1 | UP * | miR-124-3p; miR-125b-5p | [14,15] |
hsa_circ_0000284 (circHIPK3) | UP | HIPK3 | UP * | miR-124-3p; miR-29b-3p; miR-107 | [16,17] |
hsa_circ_0001946 (ciRS-7) | UP | CDR1 | DOWN * | miR-7-5p | [18] |
hsa_circ_0064644 (circRBMS3) | UP | RBMS3 | DOWN * | miR-153 | [19] |
hsa_circ_0056618 | UP | SPOPL, UP | UP | miR-206 | [20] |
hsa_circ_0027599 | DOWN | PHLDA1 | UP | miR-101-3p.1 | [21] |
hsa_circ_0007766 (circ_ERBB2) | UP | ERBB2 | UP | miR-503; miR-637 | [22] |
hsa_circ_0000267 | UP | FAM53B | UP | miR-503-5p | [23] |
hsa_circ_0089548 (circ-NOTCH1) | UP | NOTCH1 | UP | miR-637 | [24] |
hsa_circ_0089547 (circ-NOTCH1) | UP | NOTCH1 | UP | miR-449c-5p | [25] |
hsa_circ_0067997 | UP | FNDC3B | UP | miR-515-5p | [26] |
hsa_circ_0004771 (circ_NRIP1) | UP | NRIP1 | UP | miR-149-5p | [27] |
hsa_circ_0017728 | UP | DHTKD1 | UP | miR-149 | [28] |
hsa_circ_0081143 | UP | COL1A2 | UP | miR-646 | [29] |
hsa_circ_0042881 (circNF1) | UP | NF1 | UP | miR-16 | [30] |
hsa_circ_0032627 (circDLST) | UP | DLST | UP | miR-502-5p | [31] |
hsa_circ_0093398 (circPDSS1) | UP | PDSS1 | UP | miR-186-5p | [32] |
hsa_circ_0010522 (ciRS-133) | UP | RAP1GAP | DOWN * | miR-133 | [33] |
hsa_circ_0092303 (circCACTIN) | UP | C19orf29 | UP | miR-331-3p | [34] |
hsa_circ_0008035 | UP | EXT1 | UP | miR-375 | [35] |
hsa_circ_0008365 (circ-SERPINE2) | UP | SERPINE2 | UP | miR-375 | [36] |
hsa_circ_0090410 (circUBA1) | UP | UBA1 | UP | miR-375 | [37] |
hsa_circ_0047905 | UP | SERPINB5 | UP * | miR-4516; miR-1227-5p | [38] |
hsa_circ_0005075 (circ-EIF4G3) | UP | EIF4G3 | UP | miR-335 | [39] |
hsa_circ_0008549 (circOSBPL10) | UP | OSBPL10 | UP | miR-136-5p | [40] |
hsa_circ_0000199 (circAKT3) | UP | AKT3 | UP * | miR-198 | [41] |
hsa_circ_0006835 (circNHSL1) | UP | NHSL1 | UP * | miR-1306-3p | [42] |
hsa_circHECTD1 | UP | HECTD1 | UP * | miR-1256 | [43] |
hsa_circ_0009109 (circ-DCAF6) | UP | DCAF6 | UP | miR-1231; miR-1256 | [44] |
hsa_circ_0031250 (circ-PRMT5) | UP | PRMT5 | UP | miR-145; miR-1304 | [45] |
hsa_circ_0003855 (circDUSP16) | UP | DUSP16 | UP | miR-145-5p | [46] |
hsa_circ_0069086 (circMAN2B2) | UP | MAN2B2 | UP | miR-145 | [47] |
hsa_circ_0017639 (circ-SFMBT2) | UP | SFMBT2 | UP | miR-182-5p | [48] |
hsa_circ_0058147 (circFN1) | UP | FN1 | UP | miR-182-5p | [49] |
hsa_circ_0000467 | UP | SKA3 | UP | miR-326- 3p | [50] |
hsa_circ_0003221 (circPTK2) | UP | PTK2 | UP | miR-369-3p | [51] |
hsa_circ_0063526 (circ-RanGAP1) | UP | RANGAP1 | UP | miR-877-3p | [52] |
hsa_circ_0066436 (circATXN7) | UP | ATXN7 | UP | miR-4319 | [53] |
hsa_circ_0040809 (circBANP) | UP | BANP | UP | miR-let-7a | [54] |
hsa_circ_0077736 (circ-CEP85L) | DOWN | CEP85L (C6ORF204) | DOWN * | miR-942-5p | [55] |
hsa_circ_00074444 (circRHOBTB3) | DOWN | RHOBTB3 | UP * | miR-654-3p | [56] |
hsa_circ_101057 (circLARP4) | DOWN | LARP4 | UP | miR-424-5p | [57] |
hsa_circ_0000096 | DOWN | HIAT1 | UP | miR-224-5p; miR-200a-3p | [58] |
hsa_circ_0013048 (hsa_circ_100269) | DOWN | LPHN2 | UP | miR-630 | [59] |
hsa_circ_0000673 | DOWN | RSL1D1 | UP | miR-532-5p | [60] |
hsa_circ_0072088 (circ-ZFR) | DOWN | ZFR | UP | miR-107; miR-130a-3p | [61] |
hsa_circ_0004798 (circGRAMD1B) | DOWN | GRAMD1B | DOWN * | miR-130a-3p | [62] |
hsa_circ_0002320 (circYAP) | DOWN | YAP1 | UP | miR-367-5p | [63] |
hsa_circ_0000745 (circ_SPECC1) | DOWN | SPECC1 (CYTSB) | UP | miR-526b | [64] |
hsa_circ_0000993 | DOWN | ATL2 | DOWN * | miR-214-5p | [65] |
hsa_circ_0001445 (circSMARCA5) | DOWN | SMARCA5 | UP | miR-346 | [66] |
hsa_circ_0021977 (circPSMC3) | DOWN | PSMC3 | UP | miR-296-5p | [67] |
hsa_circ_0001368 | DOWN | KLHL24 | UP | miR-6506-5p | [68] |
hsa_circ_0001461 (circFAT1(e2)) | DOWN | FAT1 | UP | miR-548g | [69] |
circRNA/miRNA Interaction [Ref.] | Effect in Gene and/or Protein [Ref.] | Effect in Gastric Cancer [Ref.] |
---|---|---|
ciRS-7↑/miR-7↓ [18] | PTEN↓, PI3K↑ and pAkt↑ [18] | Apoptosis inhibition, migration stimulus and poor clinicopathological and survival [18] |
circNRIP1↑/miR-149-5p↓ [27] | AKT1↑ [27] | Cell proliferation, migration and invasion and growth of tumor [27] |
circGRAMD1B↓/miR-130a-3p↑ [62] | PTEN↓ and p21↓ [62] | Cell proliferation, migration and invasion [62] |
circRNA0047905↑ [38] | AKT1/CREB↑ [38] | Cell proliferation and tumor progression [38] |
circMAN2B2↑/miR-145↓ [47] | pPI3K↑ and pAkt ↑ [47] | Cell growth and migration [47] |
hsa_circ_0008035↑/miR-375↓ [35] | PDK1↑ * | Increased of pAkt (Proliferation, migration and invasion) * |
circ-SERPINE2↑/miR-375↓ [36] | PDK1↑ * | |
circUBA1↑/miR-375↓ [37] | PDK1↑ * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.L.; Magalhães, L.; Pantoja, R.P.; Araújo, G.; Ribeiro-dos-Santos, Â.; Vidal, A.F. The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants? Cancers 2020, 12, 1982. https://doi.org/10.3390/cancers12071982
Pereira AL, Magalhães L, Pantoja RP, Araújo G, Ribeiro-dos-Santos Â, Vidal AF. The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants? Cancers. 2020; 12(7):1982. https://doi.org/10.3390/cancers12071982
Chicago/Turabian StylePereira, Adenilson Leão, Leandro Magalhães, Rafael Pompeu Pantoja, Gilderlanio Araújo, Ândrea Ribeiro-dos-Santos, and Amanda Ferreira Vidal. 2020. "The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants?" Cancers 12, no. 7: 1982. https://doi.org/10.3390/cancers12071982
APA StylePereira, A. L., Magalhães, L., Pantoja, R. P., Araújo, G., Ribeiro-dos-Santos, Â., & Vidal, A. F. (2020). The Biological Role of Sponge Circular RNAs in Gastric Cancer: Main Players or Coadjuvants? Cancers, 12(7), 1982. https://doi.org/10.3390/cancers12071982