A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment
2.3. 18 F-FDG PET/CT Acquisition and Analysis
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. ROC Curves and Post-Test Probability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuzillet, C.; Gaujoux, S.; Williet, N.; Bachet, J.-B.; Bauguion, L.; Durand, L.C.; Conroy, T.; Dahan, L.; Gilabert, M.; Huguet, F.; et al. Pancreatic cancer: French clinical practice guidelines for diagnosis, treatment and follow-up (SNFGE, FFCD, GERCOR, UNICANCER, SFCD, SFED, SFRO, ACHBT, AFC). Dig. Liver Dis. 2018, 50, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Lambert, A.; Schwarz, L.; Borbath, I.; Henry, A.; Van Laethem, J.L.; Malka, D.; Ducreux, M.; Conroy, T. An update on treatment options for pancreatic adenocarcinoma. Ther. Adv. Med. Oncol. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Papavasiliou, P.; Hoffman, J.P.; Cohen, S.J.; Meyer, J.E.; Watson, J.C.; Chun, Y.S. Impact of preoperative therapy on patterns of recurrence in pancreatic cancer. HPB (Oxford) 2014, 16, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestris, N.; Brunetti, O.; Bittoni, A.; Cataldo, I.; Corsi, D.; Crippa, S.; D’Onofrio, M.; Fiore, M.; Giommoni, E.; Milella, M.; et al. Clinical practice guidelines for diagnosis, treatment and follow-up of exocrine pancreatic ductal adenocarcinoma: Evidence evaluation and recommendations by the Italian Association of Medical Oncology (AIOM). Cancers (Basel) 2020, 12, 1681. [Google Scholar] [CrossRef]
- Tsai, S.; Evans, D.B. Therapeutic advances in localized pancreatic cancer. JAMA Surg. 2016, 151, 862–868. [Google Scholar] [CrossRef]
- Brunner, T.B.; Scott-Brown, M. The role of radiotherapy in multimodal treatment of pancreatic cancer. Radiat. Oncol. 2010, 5, 64. [Google Scholar] [CrossRef] [Green Version]
- Fiore, M.; Ramella, S.; Valeri, S.; Caputo, D.; Floreno, B.; Trecca, P.; Trodella, L.E.; Trodella, L.; D’Angelillo, R.M.; Coppola, R. Phase II study of induction chemotherapy followed by chemoradiotherapy in patients with borderline resectable and unresectable locally advanced pancreatic cancer. Sci. Rep. 2017, 7, 45845. [Google Scholar] [CrossRef] [Green Version]
- Fiorentino, A.; Laudicella, R.; Ciurlia, E.; Annunziata, S.; Lancellotta, V.; Mapelli, P.; Tuscano, C.; Caobelli, F.; Evangelista, L.; Marino, L.; et al. Italian association of radiation oncology-young members and AIMN-Italian association of nuclear medicine-Young members working group. Crit. Rev. Oncol. Hematol. 2019, 139, 117–124. [Google Scholar] [CrossRef]
- Im, H.-J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current methods to define metabolic tumor volume in positron emission tomography: Which one is better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef]
- Dholakia, A.S.; Chaudhry, M.; Leal, J.P.; Chang, D.T.; Raman, S.P.; Hacker-Prietz, A.; Su, Z.; Pai, J.; Oteiza, K.E.; Griffith, M.E.; et al. Baseline metabolic tumor volume and total lesion glycolysis are associated with survival outcomes in patients with locally advanced pancreatic cancer receiving stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 539–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.X.; Chen, T.; Wang, W.Q.; Wu, C.T.; Liu, C.; Long, J.; Xu, J.; Zhang, Y.J.; Chen, R.H.; Liu, L.; et al. Metabolic tumour burden assessed by 18F-FDG PET/CT associated with serum CA19-9 predicts pancreatic cancer outcome after resection. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Wang, L.; Zhang, H.; Chen, J.; Wang, Y.; Byanju, S.; Liao, M. Prognostic value of 18F-FDG-PET/CT parameters in patients with pancreatic carcinoma: A systematic review and meta-analysis. Medicine (Baltimore) 2017, 96. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Jacob, R.; Manne, U.; Paluri, R. Advances in pancreatic cancer biomarkers. Oncol. Rev. 2019, 13, 410. [Google Scholar] [CrossRef] [Green Version]
- Quak, E.; Le Roux, P.-Y.; Hofman, M.S.; Robin, P.; Bourhis, D.; Callahan, J.; Binns, D.; Desmonts, C.; Salaun, P.-Y.; Hicks, R.J.; et al. Harmonizing FDG PET quantification while maintaining optimal lesion detection: Prospective multicentre validation in 517 oncology patients. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2072–2082. [Google Scholar] [CrossRef] [Green Version]
- Mellon, E.A.; Jin, W.H.; Frakes, J.M.; Centeno, B.A.; Strom, T.J.; Springett, G.M.; Malafa, M.P.; Shridhar, R.; Hodul, P.J.; Hoffe, S.E. Predictors and survival for pathologic tumor response grade in borderline resectable and locally advanced pancreatic cancer treated with induction chemotherapy and neoadjuvant stereotactic body radiotherapy. Acta. Oncol. 2017, 56, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Pakzad, F.; Groves, A.M.; Ell, P.J. The role of positron emission tomography in the management of pancreatic cancer. Semin. Nucl. Med. 2006, 36, 248–256. [Google Scholar] [CrossRef]
- Topkan, E.; Parlak, C.; Kotek, A.; Yapar, A.F.; Pehlivan, B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol. 2011, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Heilbrun, L.K.; Venkatramanamoorthy, R.; Lawhorn-Crews, J.M.; Zalupski, M.M.; Shields, A.F. Using 18F fluorodeoxyglucose positron emission tomography (FDG PET) to monitor clinical outcomes in patients treated with neoadjuvant chemo-radiotherapy for locally advanced pancreatic cancer. Am. J. Clin. Oncol. 2010, 33. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Choi, S.H.; Lee, Y.; Kim, K.H.; Park, J.Y.; Song, S.Y.; Cho, A.; Yun, M.; Lee, J.D.; Seong, J. Clinical usefulness of 18F-Fluorodeoxyglucose-Positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 126–133. [Google Scholar] [CrossRef]
- Lee, J.W.; Kang, C.M.; Choi, H.J.; Lee, W.J.; Song, S.Y.; Lee, J.-H.; Lee, J.D. Prognostic value of metabolic tumor volume and total lesion glycolysis on preoperative 18F-FDG PET/CT in patients with pancreatic cancer. J. Nucl. Med. 2014, 55, 898–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patients’ Characteristics | n = 58 (%) |
---|---|
Age (years) | |
Mean | 64 |
Median | 64 |
Range | 40–79 |
Gender | |
Female | 33 (56.8) |
Male | 25 (43.2) |
Histology | |
Adenocarcinoma | 58 (100) |
Stage | |
II | 19 (32.7) |
III | 36 (67.3) |
Site of primary tumour | |
Head | 53 (91) |
Body | 5 (9) |
Istmus | 0 |
Plus sites | 0 |
Initial Chemotherapy | |
Yes | 58 (100) |
No | 0 |
Combined Chemoradiotherapy | |
Yes | 36 (62) |
No | 22 (38) |
Variables and EP | AUC | 95% CI |
CA 19-9 | 0.665 | 0.524–0.788 |
SUVmax | 0.558 | 0.416–0.693 |
MTV | 0.534 | 0.393–0.671 |
TLG | 0.579 | 0.437–0.712 |
Variables and LP | AUC | 95% CI |
CA 19-9 | 0.529 | 0.388–0.666 |
SUVmax | 0.621 | 0.479–0.750 |
MTV | 0.640 | 0.498–0.766 |
TLG | 0.702 | 0.562–0.819 |
Variables and OS | AUC | 95% CI |
CA 19-9 | 0.543 | 0.402–0.679 |
SUVmax | 0.507 | 0.368–0.646 |
MTV | 0.632 | 0.490–0.759 |
TLG | 0.605 | 0.463–0.736 |
Variables and EP | LR+ | PPV (%) |
CA 19-9 >698 | 3.23 | 61 |
MTV >32 | 2.50 | 55 |
SUVmax >9 | 2.80 | 58 |
TLG >103 | 1.78 | 47 |
Variables Combination and EP | PPV (%) | |
CA 19-9 >698 + MTV >32 | 79 | |
CA 19-9>698 + MTV >32+ SUVmax >9 | 91 | |
CA 19-9>698 + MTV >32+ SUVmax >9 + TLG >103 | 95 |
Variables and LP | LR+ | PPV (%) |
TLG >177 | 14 | 83 |
MTV >17 | 1.65 | 37 |
SUVmax >6.5 | 1.87 | 65 |
Variables Combination and LP | PPV (%) | |
TLG >177 plus MTV >17 | 89 | |
TLG >177 plus MTV >17 plus SUVmax >6.5 | 94 |
Variables and OS | LR+ | PPV (%) |
MTV >14 | 2.03 | 88 |
TLG >167 | 3.51 | 71 |
SUVmax <4 | 1.28 | 48 |
Variables combination and OS | PPV (%) | |
MTV >14 plus TLG >167 | 96 | |
MTV >14 plus TLG >167 plus SUVmax <4 | 97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, M.; Taralli, S.; Trecca, P.; Scolozzi, V.; Marinelli, L.; Triumbari, E.K.A.; Caputo, D.; Angeletti, S.; Ciccozzi, M.; Coppola, A.; et al. A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer. Cancers 2020, 12, 2016. https://doi.org/10.3390/cancers12082016
Fiore M, Taralli S, Trecca P, Scolozzi V, Marinelli L, Triumbari EKA, Caputo D, Angeletti S, Ciccozzi M, Coppola A, et al. A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer. Cancers. 2020; 12(8):2016. https://doi.org/10.3390/cancers12082016
Chicago/Turabian StyleFiore, Michele, Silvia Taralli, Pasquale Trecca, Valentina Scolozzi, Luca Marinelli, Elizabeth K. A. Triumbari, Damiano Caputo, Silvia Angeletti, Massimo Ciccozzi, Alessandro Coppola, and et al. 2020. "A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer" Cancers 12, no. 8: 2016. https://doi.org/10.3390/cancers12082016
APA StyleFiore, M., Taralli, S., Trecca, P., Scolozzi, V., Marinelli, L., Triumbari, E. K. A., Caputo, D., Angeletti, S., Ciccozzi, M., Coppola, A., Greco, C., Ippolito, E., Calcagni, M. L., Coppola, R., & Ramella, S. (2020). A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer. Cancers, 12(8), 2016. https://doi.org/10.3390/cancers12082016