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Abstract: Diagnosis of pathologies using histopathological images can be time-consuming when
many images with different magnification levels need to be analyzed. State-of-the-art computer
vision and machine learning methods can help automate the diagnostic pathology workflow and
thus reduce the analysis time. Automated systems can also be more efficient and accurate, and can
increase the objectivity of diagnosis by reducing operator variability. We propose a multi-scale
input and multi-feature network (MSI-MFNet) model, which can learn the overall structures and
texture features of different scale tissues by fusing multi-resolution hierarchical feature maps from
the network’s dense connectivity structure. The MSI-MFNet predicts the probability of a disease on
the patch and image levels. We evaluated the performance of our proposed model on two public
benchmark datasets. Furthermore, through ablation studies of the model, we found that multi-scale
input and multi-feature maps play an important role in improving the performance of the model.
Our proposed model outperformed the existing state-of-the-art models by demonstrating better
accuracy, sensitivity, and specificity.

Keywords: breast histopathology; computer-assisted diagnosis; whole slide imaging; multi-class
classification; data augmentation

1. Introduction

Breast cancer has long been among the prevailing cancers in women [1–3]. With the development of
digital imaging techniques, much attention has been devoted to the automatic detection and classification
of cancers in whole-slide imaging (WSI). Current research in the field focuses on machine learning
and deep neural network-based methods, directly impacting clinical and related studies, as well as
the progression and development of targeted therapy approaches. Computational tools based on
the digital slide workflow concept can help to increase efficiency and accuracy. Many methods have
been developed for the analysis of pathological images, ranging from rule-based methods to machine
learning-based ones [4]. Recently, deep learning-based approaches have been shown to outperform
conventional machine learning methods, allowing automation of end-to-end processing [5–7]. In medical
imaging, convolutional neural networks (CNNs) have been successfully used for diabetic retinopathy
screening [8], bone disease prediction [9], age assessment [10], and other applications [5,11]. Previous deep
learning-based approaches to the analysis of histological images have demonstrated their potential utility
for breast cancer diagnostics [4,12–14] and for the micro-level analysis of pathological images [15,16].

In WSI, cancer cells can be observed at multiple levels (cellular and sub-cellular) and exhibit
a variety of deviations from normal tissues. Variability of appearance in hematoxylin and eosin (H&E)
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stained areas is one of the major barriers to accurate image analysis [1]. These variations are caused
by many factors, such as laboratory protocol variations, differences in the specimen orientation,
operator-related variability, instrument variability, and use of different fluorophores for staining [15].
During diagnosis, detecting and categorizing these deviations can be difficult even for experienced
pathologists. Pathologists use WSI at different magnification levels to make an accurate pathological
diagnosis. Manual analysis of images is time-consuming and at times inaccurate; thus, an efficient
and robust automated system is needed that will perform quick scanning and indicate potential
pathological areas or disease-relevant regions of interest (ROIs). Such a computerized approach will not
only increase efficiency, but will also enable more detailed and precise WSI analysis. The contributions
of our research are as follows:

1. We proposed a multi-scale input and multi-feature network (MSI-MFNet) model based on
a CNN, for the classification of breast cancer by training different scale image patches and
learning not only the overall structures of cells but also their texture. Our proposed model fuses
multi-resolution hierarchical feature maps with a dense connectivity structure in four different
layers to extract more salient and diverse features.

2. We evaluated the performance of the MSI-MFNet model on two public benchmark datasets,
showing that the proposed approach outperforms the existing state-of-the-art models, yielding the
best accuracy, sensitivity and specificity results for various metrics (e.g., multiple magnification
factors and binary and/or multi-class classification).

3. We verified how multi-scale input and multi-feature maps affect the performance of CNN-based
models for cancer classification of histopathology images. To do this, we conducted ablation
studies of our model, which applied a different number of multi-scale input and multi-feature
maps to demonstrate the change in performance.

The remainder of this paper is organized as follows. In Section 2, we discuss related work.
The architecture of the proposed MSI-MFNet model is presented in Section 3. In Section 4, we describe
the datasets, experimental setup, model training, and implementation details. The detailed comparison
of results are described in Section 5. Section 6 contains the discussion, conclusions, and potential future
research directions.

2. Related Work

Significant efforts have been made to develop methods for breast cancer recognition and
classification using histological images. Most existing methods focus on the classification of the two
fundamental types of breast cancer (i.e., benign and malignant tumors) using computer-aided diagnosis
(CAD) tools. Before the deep learning revolution, machine learning approaches, including support
vector machine (SVM) [17], principle component analysis (PCA) [18], and random forest (RF) [19]
methods were used to examine the data. The data features were extracted using scale-invariant feature
extraction (SIFT) [20], local binary patterning (LBP) [21], completed LBP (CLBP) [22], local phase
quantization (LPQ) [23], gray-level co-occurrence matrix (GLCM) [24], oriented FAST and rotated
BRIEF (ORB) [25], and threshold adjacency statistics (PTAS) [26] approaches.

2.1. Traditional Learning Approaches

Most research in this area has been conducted using a very small number of samples from
primarily private datasets. In 2013, a variety of algorithms, such as fuzzy C-means clustering,
K-means clustering, competitive learning neural networks (NNs), and Gaussian mixture models
were used for nuclei classification on a dataset with 500 real-case medical images collected from
50 patients. The accuracies reported for the binary classification task (benign versus malignant tumors)
were in the 96–100% range [27]; thus, these machine learning-based methods enabled sufficiently
accurate and objective analysis, and were deemed to be useful for facilitating breast cancer diagnosis.
Another work was published by Spanhol et al., who reported 85.1% accuracy on a dataset of breast
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cancer histopathological images; that approach utilized an SVM and also used parameter free threshold
adjacency statistics (PFTAS) features for patient-level analysis [28]. George et al. proposed a breast
cancer recognition system based on NNs and an SVM, which reported 94% accuracy on a dataset
consisting of 92 samples [29].

A cascading method with a rejection option was proposed by Zhang et al. This method was
tested on a dataset of 361 samples from the Israel Institute of Technology. The reported accuracy was
approximately 97% [30]. An effective breast cancer classification framework has been proposed with
color texture features and multiple classifiers, such as SVMs, decision trees (DTs), nearest neighbor
classifiers (NNCs), and discriminant analysis (DA). This method utilized ensemble voting with respect
to the various classifiers, and the reported average patient-level recognition rate was 87.53% [31].
Different SVM-based techniques have been used for breast cancer recognition, with a reported accuracy
of 94.97% for a dataset with a 40× magnification factor; this result was achieved using an adaptive
sparse SVM (ASSVM) [32]. Several reviews have been published on histological image analysis for
breast cancer detection and classification; these reviews clearly describe the dualities and limitations of
different publicly available annotated datasets [1,33–36].

2.2. Deep Learning Approaches

Many breast cancer recognition methods have also used deep learning approaches. A few
of these experiments were conducted using the famous BreakHis dataset. Bayramoglu proposed
magnification-independent CNN and multi-task CNN models, where different-size convolution
kernels (3 × 3, 5 × 5, and 7 × 7) were used; the study reported a patient-level accuracy of 83.25% [37].
Spanhol et al. proposed another model, similar to AlexNet, which uses various fusion techniques
(i.e., sum, product, and maximum) for image- and patient-level analysis, and reported average
accuracies of 90% and 85.6%, for the max fusion method applied to image and patient-level analysis,
respectively [14]. Another deep learning-based study was published that, utilizes a pre-trained
CNN model to extract feature vectors and then feeds the extracted vectors as an input to a classifier.
This model, which was termed DeCAF, achieved accuracies of 86.3% and 84.2% for patient-level
and image-level analyses, respectively [38]. Cruz-Roa et al. [39] proposed a CNN-based model for
training 100 × 100 pixel patches for the detection of invasive carcinoma regions in breast histology
slides. Their feature-extraction scale ranged from the nucleus level to the tissue level, and the method
achieved an F1-score of 0.780.

A CNN-based model [12] was used to classify H&E stained breast biopsy images taken from
another challenging dataset. For these images, multi-class classification (normal tissue, benign lesion,
in-situ carcinoma, and invasive carcinoma) and binary classification (non-carcinoma as normal and
benign tissue and carcinoma as in-situ and invasive carcinoma classes) were performed, and the results
were evaluated on two levels: images and patches. A CNN-based approach achieved accuracies of
77.8% and 83.3% for multi-class and binary classification tasks, respectively, on the breast cancer
Classification Challenge 2015 dataset [12]. Recently, Han et al. proposed a CSDCNN-based approach
that was tested on the multi-class classification of breast cancer data from the BreakHis dataset and
demonstrated state-of-the-art performance for both image- and patient-level classifications. An average
accuracy of 93.2% for patient-level classification was reported [40]. Some studies have proposed the
use of multi-scale input with deep learning approaches. For example, Cruz-Roa et al. [39] performed
invasive carcinoma classification using a CNN model for 100 × 100 pixel patches, and each WSI was
downsampled (by a factor of 16:1) to a resolution of 4 µm/pixel. Another method was proposed
by Spanhol et al. [14] for classifying breast cancer images of different magnifications in benign and
malignant tumors; the achieved accuracy was 84% for 200× magnification images.

3. Multi-Scale Input and Multi-Feature Network

The MSI-MFNet model is schematically shown in the block diagram in Figure 1, which shows
that the model is trained on the training portion (train and validation sets) and then validated on the
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remaining test images. The model consists of four processing sub-blocks, which include different-depth
blocks for exploring different-scale features, pooling and convolutional layers that represent the
features on a range of scales, and global average pooling, which averages the output of each feature map
before fusing the multi-feature map information, which prepares the model for the final classification
layers (batch normalization and softmax layers).
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Figure 1. Block diagram of MSI-MFNet model. The blocks are DB: depth block (1–4); GAP: global average
pooling (1–4); BN: batch normalization; Pool: pooling; and Conv: BN-ReLU-convolution.

The main reason for using multi-scale inputs from the normalized image is to learn the overall
scale-variant structure of cells and their texture features at different levels simultaneously using
different scales. This also overcomes the significant loss of resolution caused by the fixed receptive
fields of the CNN and the pooling layers. Visual information also disappears from small regions
during multiple convolutional and pooling operations, which results in poor performance with varied
scales [41]. During the pre-processing stage, we used a simple H&E color normalization method [42]
for the original raw image. To overcome the limitations associated with a spatial region comprising
different scales, we re-scaled the normalized image to upscale ratios (1×, 0.5×, 0.33×, and 0.25×),
which enhances the finer visual details of the important regions in the images. Then, each multi-scale
input is divided into four patches prior to feeding it to the next network layer, as shown in the
concatenation step.

A CNN is an organized hierarchically layered structure that, at each level, combines lower-level
features into higher-level ones, until the desired image class label is obtained by minimizing the loss
function [12,39,40]. The architecture of the MSI-MFNet is summarized in Table 1, with the following
design considerations:

• Input Layer (I): This layer accepts the concatenation of resized patches (224 × 224 pixels)
processed from the four different scale inputs (a,b,c,d), corresponding to re-scaled images from
the original raw images with upscale ratios (1×, 0.5×, 0.33×, and 0.25×), respectively.
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• Depth Block (DB) and Feature Maps: The tissues or ROIs vary in the target images; thus,
to explore different-scale features, our network architecture has convolutional layers with
a sufficient number of neural maps to represent each of these features on their range of scales,
as shown in Table 1. The MF layer fuses the feature map information from four different learning
layers for the entire image patch and performs the final classification.

• Zero Padding (ZP): This helps to preserve the original image size and provides useful information
about feature learning, which helps to extract low-level features for each subsequent layer.

• Max Pooling (MP): Low-level information needs to be spatially integrated in the image region
and with a more simplified representation when dealing with higher-level information. This layer
deals with such complexity reduction without increasing the number of parameters in the network.

• Batch Normalization (BN): To increase the stability of a neural network, batch normalization
normalizes the output of a previous activation layer by subtracting the batch mean and dividing
by the batch standard deviation.

• Average Pooling (AP): We use this layer to perform down-sampling of the analyzed image by
dividing the image into rectangular pooling regions and then computing the average values for
each region to reduce the calculation complexity and parameters.

• Non-Saturating (Non-linearity): Both convolutional layers and fully connected layers are
composed of rectified linear units (ReLUs). This helps manage the problem of vanishing gradients
and also improves the training speed of the network [43,44].

• Global Average Pooling (GAP): This operation, applied to determine the average output of each
feature map in the previous layer, reduces the data significantly and prepares the model for the
final classification layers.

• Output Layer (O): The number of output neurons corresponding to each class, which are
normalized using the softmax function; this number depends on the type of classification. In the
present study, we performed binary and multi-class classifications (four or eight neurons).

Table 1. MSI-MFNet architecture. Note that each “Conv” layer shown in the table corresponds to the
sequence BN-ReLU-convolution. The blocks are as follows: MSI: multi scale input; I: input; DB-x:
depth block (1–4), MF: multi feature and O: output.

Block Layers Output Size H × W Parameters Repetition # of Param. % of Param.

MSI

Input-1 a × a Upscale 1x - - -
Input-2 b × b Upscale 0.5x - - -
Input-3 c × c Upscale 0.33x - - -
Input-4 d × d Upscale 0.25x - - -

I

Concat MSI (1–4) 224 × 224 - - - -
ZP 230 × 230 1 × 1 - - -

Convolution 112 × 112 7 × 7, Stride 2 - 9408 0.1
BN 112 × 112 - - 256 -

Activation 112 × 112 ReLU - - -
ZP 114 × 114 1 × 1 - - -
MP 56 × 56 3 × 3, Stride 2 - - -

DB-1

Conv 56 × 56 1 × 1 × 6 338,304 1.8Conv 3 × 3
Conv 56 × 56 1 × 1 - 33,792 0.2

AP 28 × 28 2 × 2, Stride 2 - - -
GAP-1 128 - - - -

DB-2

Conv 28 × 28 1 × 1 × 12 930,048 4.9Conv 3 × 3
Conv 28 × 28 1 × 1 - 133,120 0.7

AP 14 × 14 2 × 2, Stride 2 - - -
GAP-2 256 - - - -

DB-3

Conv 14 × 14 1 × 1 × 48 8,180,736 43.3Conv 3 × 3
Conv 14 × 14 1 × 1 - 1,612,800 8.8

AP 7 × 7 2 × 2, Stride 2 - - -
GAP-3 896 - - - -

DB-4
Conv 7 × 7 1 × 1 × 32 7,083,520 37.3Conv 3 × 3

GAP-4 1920 - - - -

MF Concat GAP (1–4) 3200 - - - -

O
Dropout 3200 - - - -

BN 3200 - - 12,800 0.1
Softmax 2/4/8 - - 25,608 0.1
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4. Methodology

4.1. Datasets

We used the following two public datasets to validate our model. We chose these datasets for two
reasons: the dataset size and the existence of multiple magnification factors, which allowed us to run
several experiments on our restricted hardware by varying multiple criteria.

ICIAR2018 [45]: This dataset (publicly available at https://iciar2018-challenge.grand-challenge.
org/Dataset/) is an extended version of the Bioimaging 2015 breast histology classification challenge
dataset and is described in [12]. The dataset consists of 400 H&E stained images (2048 × 1536 pixels)
and includes four different classes. All of the images were digitized under the same acquisition
conditions; the magnification is 200× and the pixel dimensions are 0.420 µm × 0.420 µm. As shown
in Figure 2, each image is categorized into one of four classes: (1) benign, (2) in situ, (3) invasive
carcinoma, and (4) normal; for each case, the assigned class corresponds to a predominant cancer type
in the respective image. Image-wise annotation was performed by two medical experts. The goal of
this challenge was to provide an automatic classification of each input image. In our experiments,
we used a total of 492 images consisting of 400 samples for training and 92 samples for testing, and the
annotation of these testing samples was performed by a pathologist. The structural details of this
dataset are shown in Table 2.

Table 2. Structure of the ICIAR2018 with 200× magnification factor.

Classes Subtypes Magnification Factor (200×) Total
Training (Train & Validation) Testing

Non-Carcinoma Benign (B) 100 35 135
Normal (N) 100 18 118

Carcinoma In situ (IS) 100 21 121
Invasive (IV) 100 18 118

Total 400 92 492

(a) Benign (b) InSitu (c) Invasive (d) Normal
Figure 2. Microscopic H&E images of four types of tumors in the ICIAR2018 dataset. The magnification
factor of these images is 200×.

BreakHis [14,28,38]: This dataset (publicly available at https://web.inf.ufpr.br/vri/databases/
breast-cancer-histopathological-database-BreakHis/) contains a total of 7909 samples, each categorized
as either benign or malignant. The subsets of benign and malignant samples contain 2480 and 5429
samples, respectively. The samples were collected from 82 patients with different magnification factors
(40×, 100×, 200×, 400×), and the size of each image is 700 × 460 pixels. Each class has four subclasses,
with the four types of benign tumors being adenosis, fibroadenoma, tubular adenoma, and phyllodes
tumor. The four subclasses of cancer are ductal carcinoma, lobular carcinoma, mucinous carcinoma,
and papillary carcinoma. The statistical details of this dataset are shown in Table 3, and some example
histological images are shown in Figure 3. For our experiments, we used a random 70:30 partitioning
of the entire dataset into training and testing subsets, respectively [1,40]. To evaluate the performance
of our model for clinical situations, we ensured patient-based separation between training and testing
data. That is, the images of a given patient were either all in the training set or all in the test set.

https://iciar2018-challenge.grand-challenge.org/Dataset/
https://iciar2018-challenge.grand-challenge.org/Dataset/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-BreakHis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-BreakHis/
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Table 3. Structure of the BreakHis dataset with four magnifications (40×, 100×, 200×, and 400×).

Classes Subtypes Magnifcation Factors Total # of Patients
40× 100× 200× 400×

Benign

Adenosis (A) 114 113 111 106 444 4
Fibroadenoma (F) 253 260 264 237 1014 10

Tubular Adenona (TA) 109 121 108 115 453 3
Phyllodes Tumor (PT) 149 150 140 130 569 7

Malignant

Ductal Carcinoma (DC) 864 903 896 788 3451 38
Lobular Carcinoma (LC) 156 170 163 137 626 5

Mucinous Carcinoma (MC) 205 222 196 169 792 9
Papillary Carcinoma (PC) 145 142 135 138 560 6

Total 1995 2081 2013 1820 7909 82

(a) Adenosis (b) Fibroadenoma (c) Phyllodes Tumor (d) Tubular Adenona

(e) Ductal Carcinoma (f) Lobular Carcinoma (g) Mucinous Carcinoma (h) Papillary Carcinoma
Figure 3. Four types of benign (first row) and malignant (second row) tumor images from the BreakHis
dataset. The magnification factor of these images is 200×.

4.2. Image Representation

We used a simple H&E color normalization method [42] to normalize each image. We then
resized the images into four different sizes with ratios of (1×, 0.5×, 0.33×, and 0.25×). These resized
images are divided into four contiguous non-overlapping patches. After generating patches without
augmentation, we concatenated them by resizing them into 224 × 224 pixels. We generated an
augmented patch-wise dataset from the concatenated subset of four contiguous non-overlapping
patches. In general, pathologists study histological images from various orientations, and there are
many variations in staining and acquisition conditions. To mimic the pathologist examination process
and realistic variation, we applied different types of data augmentation, such as flipping (horizontal
and vertical), rotation, shifting (width and height), brightness, zoom, and blurring (slight). This data
augmentation can increase the size of the dataset without deteriorating its quality. The literature
also suggests that the data-augmentation and patching techniques can be used for histological
classification [46]. Each of the generated patches was considered to have the same class label as
the original image. These resized patches were used for training the model with image-net weights.

Image classification is performed by initially processing several different magnifications of patches
using a patch-wise classifier, and then combining the results for the overall image patches to obtain a
final image-wise classification. The classification of histological images into one of the target classes
relies on the extraction and learning of related features, such as the overall tissue organization, the status
of nuclei, and texture features. Nuclear features are useful for differentiating between carcinoma and
non-carcinoma cells and include single-nucleus information, such as its shape, color, and structural
features (e.g., density or variability). Conversely, information about the tissue structure is necessary
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to differentiate between in-situ and invasive carcinomas. Thus, the classification method uses the
learned features on spatial scales ranging from that of the glands to the nuclear one. Visual inspection
of the data suggests that the nuclear radius is in the 3- to 11-pixel range (1.260–4.62 µm). Based on this,
we posited that 224 × 224 pixel patches should be sufficient to cover the relevant tissue structures of
different cells.

The image-wise classification is performed using one of the following three patch probability
fusion voting methods: (1) Majority voting: The image label is selected as the most occurring patch
label; (2) Maximal probability voting: The patch with the highest class probability determines the
image label; (3) Sum of probabilities voting: The patch class probabilities are summed and the class
with the highest value is assigned. The final outcome was obtained by prioritizing malignant classes,
using the following order: for the ICIAR2018 dataset (invasive, in-situ, benign, and normal) and for
the BreakHis dataset (ductal carcinoma, lobular carcinoma, mucinous carcinoma, papillary carcinoma,
adenosis, fibroadenoma, tubular adenoma, and phyllodes tumor).

4.3. Model Training

We evaluated the performance of the proposed model with respect to two different aspects:
(1) classification of samples (binary and multi-class) and (2) the effect of data augmentation (with
and without data augmentation). We used the BreakHis and ICIAR2018 datasets, as described in
Section 4.1. The dataset was sub-divided into training (train and validation), and validation (test)
subsets. We trained the model using 5-fold cross-validation on subset of training samples to determine
the best hyper-parameters for model. During the testing phase, the model was evaluated only on
the test portion of the dataset. We used accuracy, sensitivity, and specificity as the performance
evaluation metrics. For these metrics, a higher score corresponds to a better-performing model on this
classification task. To implement the method, we used the Keras framework on an NVIDIA Quadro
RTX 5000. The metrics are reported after performing five successfully completed trials of experiments.
We compared our model with the DNet [47] model, using the two different aspects mentioned above,
as in the literature works, DNet yields the best classification performance.

4.4. Implementation Details

Our model comprises two main modules: (1) the feature extraction module, which learns the
overall structures and texture features of microscopic-level tissues on different scales, and (2) the
fusion of multi-resolution hierarchical feature maps from the dense connectivity structure. For feature
learning, we used a CNN with a dense connectivity structure. The following seven hyper-parameters
were tuned for the model: (1) the number of layers, (2) the number of epochs, (3) the learning rate,
(4) the batch size, (5) the optimizer, (6) the dropout rate, and (7) batch normalization. An additional
parameter that was common to all settings was the cross-entropy loss on the one-hot encoded output.
We evaluated our model for layers 201, 205, and 210. The number of epochs assumed values of 30, 40,
50, and 70. The following learning rates were assessed: 10−1, 10−2, 10−3, 10−4, 5 × 10−1, and 5 × 10−2.
For the batch size, we used 32, 64, and 128. We evaluated the following optimizers: SGD, RMSprop,
Adadelta, Adam, Adamax, and Nadam. The dropout rates were 0.5, 0.6, 0.7, and 0.8. For the loss
function, we used categorical cross entropy or binary cross-entropy because our input was in the [0, 1]
range. The best selected hyper-parameters with cross-validation technique are listed in Table 4.
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Table 4. Best hyper-parameters of the MSI-MFNet and DNet classification models.

DataSet Parameters Without Data Augmentation Data Augmentation

MSI-MFNet DNet MSI-MFNet DNet

ICIAR2018

Number of layers 205 201 205 201
Epochs 32 32 64 64

Learning Rate 10−3 10−2 10−4 10−3

Batch Size Adam Adam Adam Adam
Dropout Rate 0.5 0.6 0.5 0.6

BreakHis

Number of layers 205 201 205 201
Epochs 32 64 64 32

Learning Rate 10−4 10−3 10−4 10−3

Batch Size Adam Adam Adam Adam
Dropout Rate 0.5 0.5 0.5 0.6

5. Experiments and Results

5.1. Classification Results

Tables 5 and 6 show the patch-wise classification results of binary and multi-class classifications
for the two augmentation scenarios and for 200× magnification factors, for the two datasets. In terms of
accuracy, our model outperformed the DNet model on the ICIAR2018 dataset. The accuracy increased
to 83% for the without data augmentation scenario and 82% for the data augmentation scenario when
only two classes were considered. Similarly for the BreakHis dataset, our model outperformed the
DNet model by a large margin in the binary-class classification; the accuracy reached 90% and 98% for
the without data augmentation and with data augmentation scenarios, respectively. However, clinically,
multi-class classification results are more important for pathologists. Therefore, for both datasets,
the accuracy results of our model were higher for both augmentation scenarios, which indicates that
our model works well for this classification. The reason that the multi-class classification accuracy
of the ICIAR2018 dataset is as low as 60% is because the distinction between normal and benign is
ambiguous. A pathologist who labeled the test data said it was very difficult to distinguish between the
two groups. In practice, pathologists often use immunity to accurately differentiate between normal
and benign.

Table 5. Patch-wise comparisons of the accuracy, sensitivity, and specificity metrics for the ICIAR2018
dataset. The best results are shown in bold.

Class Model Accuracy Sensitivity

Without Data Data
Augmentation Augmentation

Non-Carcinoma Carcinoma Non-Carcinoma Carcinoma

Binary DNet 0.82 0.80 0.76 0.87 0.68 0.94
MSI-MFNet 0.83 0.82 0.78 0.89 0.72 0.96

Benign Normal In Situ Invasive Benign Normal In Situ Invasive

Multi DNet 0.60 0.63 0.30 0.83 0.76 0.71 0.26 0.93 0.81 0.75
MSI-MFNet 0.64 0.68 0.31 0.72 0.90 0.83 0.39 0.93 0.82 0.82

Specificity

Without Data Data
Augmentation Augmentation

Non-Carcinoma Carcinoma Non-Carcinoma Carcinoma

Binary DNet 0.87 0.78 0.94 0.68
MSI-MFNet 0.89 0.79 0.96 0.72

Benign Normal In Situ Invasive Benign Normal In Situ Invasive

Multi DNet 0.88 0.81 0.94 0.82 0.96 0.79 0.89 0.85
MSI-MFNet 0.95 0.88 0.87 0.83 0.97 0.86 0.90 0.86
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Table 6. Patch-wise comparisons of the accuracy, sensitivity, and specificity metrics for the BreakHis
dataset. The magnification factor is 200×, and other abbreviations (A, F, TA, PT, DC, LC, MC, and PC)
are listed in Table 3. The best results are shown in bold.

Class Model Accuracy Sensitivity

Without Data Data
Augmentation Augmentation

Benign Malignant Benign Malignant

Binary DNet 0.90 0.91 0.75 0.97 0.75 0.99
MSI-MFNet 0.92 0.98 0.76 0.99 0.94 0.99

A F PT TA DC LC MC PC A F PT TA DC LC MC PC

Multi DNet 0.84 0.86 0.60 0.84 0.72 0.84 0.86 0.85 0.97 0.91 0.61 0.87 0.67 0.78 0.92 0.89 0.95 0.94
MSI-MFNet 0.88 0.87 0.60 0.87 0.79 0.89 0.96 0.75 0.98 0.92 0.62 0.86 0.78 0.82 0.89 0.90 0.98 0.98

Specificity

Without Data Data
Augmentation Augmentation

Benign Malignant Benign Malignant

Binary DNet 0.97 0.74 0.95 0.93
MSI-MFNet 0.98 0.76 0.99 0.94

A F PT TA DC LC MC PC A F PT TA DC LC MC PC

Multi DNet 0.98 0.99 0.97 0.99 0.88 0.96 0.97 0.97 0.98 0.98 0.97 0.98 0.90 0.94 0.95 0.96
MSI-MFNet 0.99 1.0 0.99 1.0 0.90 0.98 0.98 0.99 1.0 0.99 0.99 0.99 0.93 0.96 0.97 0.98

Our method demonstrated the highest sensitivity and specificity results for all cases of binary-class
classification, compared with the multi-class classification task, while it demonstrated a stable
classification performance regardless of the amount of variation (such as rotations and illumination)
for the ICIAR2018 dataset. We observed that benign sensitivity is very low because pathologists have
difficulty distinguishing benign from normal with only a few test images. For the BreakHis dataset,
in terms of the sensitivity and specificity of binary classification, our model demonstrated better results
than the DNet model. In addition, for multi-class classification, the sensitivity and specificity of our
model outperformed that of the DNet model, except for a few cases that are comparable.

The image-wise classification results for the three different voting criteria (majority, maximum,
and sum) is shown in Figure 4 and in Tables 7 and 8, denoting which are clinically more important
and useful. For the ICIAR2018 dataset, the overall accuracy of our model for binary and multi-class
classification increased, compared with that of the DNet model. As shown in Figure 4, the reason why
the multi–class classification accuracy of ICIAR2018 data is significantly lower than the others is the
same as that described before. Our model exhibited higher accuracy than the DNet model for all three
voting criteria.

Table 7 lists the sensitivity and specificity results for the majority voting criterion for the ICIAR2018
dataset. In terms of both metrics, our model outperformed the DNet model with respect to both binary
classification and multi-class classification. In the few cases where the model did not outperform
DNet, this occurred because various biological structures overlapped in the respective WSI images;
feature representations for such regions had no specific general structure, and these few regions varied
in appearance compared with normal region variations. However, the sensitivity for the multi-class
classification, except for benign classification, showed an average of over 90%.

The sensitivity and specificity results for the BreakHis dataset are reported in Table 8. Overall,
our model outperformed the DNet model [47], except for a few cases. We assumed that this behavior
for some cases was due to the scaling magnification images, which can sometimes affect structural
information and make it more difficult to pick up relevant information from diseased regions; this is
consistent with previous studies. Binary classification yields better results than multi-class classification
for 200× and 400× magnification factors. We observed that the learned features are sensitive to
variations in the data, which may be reflected in the changes in the selection of relevant regions.
In contrast, the BreakHis dataset exhibits considerably large inter- and intra-class sample variations
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within each class, compared with the ICIAR2018 dataset. Class variations and their relationship to the
number of samples in each class also affect the classification results.
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Figure 4. Image-wise comparisons of the accuracy metric on the (a) ICIAR2018 and (b) BreakHis
datasets for the three different voting criteria (majority, maximum, and sum) and for the two
augmentation scenarios WDA (without data augmentation) and DA (data augmentation).

Table 7. Image-wise comparisons of the sensitivity and specificity metrics with respect to the ICIAR2018
dataset for the maximum voting criterion. The best results are shown in bold.

Class Model Sensitivity (Maximum)

Without Data Data
Augmentation Augmentation

Non-Carcinoma Carcinoma Non-Carcinoma Carcinoma

Binary DNet 0.77 0.89 0.72 1.0
MSI-MFNet 0.79 0.97 0.69 1.0

Benign Normal In Situ Invasive Benign Normal In Situ Invasive

Multi DNet 0.27 1.0 0.78 0.74 0.29 1.0 0.78 0.95
MSI-MFNet 0.29 0.91 0.88 0.95 0.32 1.0 0.83 0.96

Specificity (Maximum)

Without Data Data
Augmentation Augmentation

Non-Carcinoma Carcinoma Non-Carcinoma Carcinoma

Binary DNet 0.89 0.77 1.0 0.70
MSI-MFNet 0.97 0.80 1.0 0.72

Benign Normal In Situ Invasive Benign Normal In Situ Invasive

Multi DNet 0.91 0.78 0.95 0.82 0.98 0.85 0.91 0.84
MSI-MFNet 0.97 0.90 0.89 0.86 0.98 0.89 0.93 0.85
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Table 8. Image-wise comparisons of the sensitivity and specificity metrics on the BreakHis dataset for
the maximum voting criterion. The abbreviations (A, F, TA, PT, DC, LC, MC, and PC) are from Table 3.
The best results are shown in bold.

Class Magnification Model Sensitivity (Maximum)

Without Data Data
Augmentation Augmentation

Benign Malignant Benign Malignant

Binary
200× DNet 0.74 0.98 0.77 0.98

MSI-MFNet 0.76 0.99 0.97 0.99

400× DNet 0.80 0.92 0.82 0.98
MSI-MFNet 0.88 0.98 0.84 0.99

A F PT TA DC LC MC PC A F PT TA DC LC MC PC

Multi
200× DNet 0.61 0.90 0.78 0.87 0.89 0.91 0.98 0.96 0.61 0.89 0.72 0.83 0.95 0.91 0.97 0.98

MSI-MFNet 0.62 0.91 0.85 0.92 0.98 0.76 0.99 0.98 0.62 0.91 0.84 0.86 0.93 0.92 0.99 1.0

400× DNet 0.59 0.94 0.82 0.89 0.90 0.66 0.90 0.93 0.61 0.89 0.58 0.85 0.96 0.83 0.90 0.97
MSI-MFNet 0.63 0.95 0.83 0.91 0.98 0.94 0.98 0.99 0.62 0.95 0.87 0.90 0.93 0.97 0.99 0.99

Specificity (Maximum)

Without Data Data
Augmentation Augmentation

Benign Malignant Benign Malignant

Binary
200× DNet 0.74 0.98 0.76 0.98

MSI-MFNet 0.76 0.99 0.96 0.99

400× DNet 0.80 0.96 0.81 0.98
MSI-MFNet 0.87 0.98 0.82 0.99

A F PT TA DC LC MC PC A F PT TA DC LC MC PC

Multi
200× DNet 0.60 0.90 0.80 0.86 0.91 0.91 0.98 0.97 0.62 0.90 0.74 0.84 0.93 0.93 0.96 0.99

MSI-MFNet 0.62 0.91 0.85 0.92 0.99 0.78 0.99 0.98 0.61 0.91 0.84 0.88 0.95 0.94 0.99 1.0

400× DNet 0.60 0.94 0.82 0.90 0.99 0.66 0.91 0.92 0.62 0.91 0.57 0.86 0.92 0.86 0.92 0.98
MSI-MFNet 0.63 0.95 0.83 0.91 0.91 0.97 0.98 0.99 0.63 0.95 0.87 0.91 0.94 0.98 0.98 0.99

For all of the considered criteria, the data augmentation scenario yielded a better performance
than that without data augmentation, suggesting that it is a more suitable strategy for classification,
as in general, medical images have several unique variants in which patches of images include different
non-structural shapes, which can be further increased by augmentation of possible variations because
of which general patterns can arise and assist the classification task. This, along with some amount
of perspective blurring, improves the overall learning of relevant features. The best accuracy of
patch-wise classification is explained by the fact that patch labels are obtained from image labels
without any information about the location of abnormalities in medical images. Our approach is
optimal as, regardless of the image class, normal tissue regions may be present. As a result, a small
amount of noise (blurring) introduced in the training set does not, affect the patch-wise accuracy.
Despite this, the network is able to focus on those details in the images that are relevant for classification.
We also showed that the appearance variability of H&E stained regions can be improved, which is one
of the major challenges in the analysis of breast cancer histopathological images [1].

5.2. Ablation Studies of MSI-MFNet

We performed ablation studies using the MSI-MFNet model to gain deeper insights into the
performance improvements associated with the different components of our model. The problem
of multi-class classification has been thoroughly studied, with a special emphasis one why we used
multi-scale input and multi-feature map modules in our model. Figures 5 and 6 show the results of
these studies, using four different metrics and varying different combinations (either single or multiple)
of inputs and feature maps in each module. Experiments were performed using 400× magnification
images from the BreakHis dataset.

MSI (Multi-Scale Inputs) Module: Figure 5 study shows that metrics can be improved
using multi-scale images for classification of pathological images, where we considered different
combinations of the MSI (i.e., 1×, 0.5×, 0.33×, and 0.25×), while employing fusion of all MFNet maps.
For example, a× corresponds to using only 0.5× magnification images, while abc× corresponds to
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using 1× 0.5× and 0.33× magnification images. In the present work, we compared the performance
of our model to the state-of-the-art DNet [47] model, because it yields the best performance in the
literature. The results of our analysis show that training the models with multi-scale inputs has
the benefit of learning the overall structural features and ambiguity regions. The proposed method
obtained the highest metric results while maintaining a stable classification using the fusion of all
multi-scale input combinations and data augmentation.
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Figure 5. Results of ablation studies on the BreakHis dataset for MSI-MFNet and DNet with maximum
voting criteria. Using the four different types of evaluation metrics, and we select a different
combination of MSI fusion (i.e. 1×, 0.5×, 0.33×, and 0.25×) and a way of passing input data to
MSI-MFNet, such as quadruplets, triplets, duplets, and individual raw features. For example: a× or
ab× represents that we used only 1× or 1× and 0.5×, respectively.

Moreover, results shown in Figure 5 demonstrate that our method learns representations that are
robust to the scale of input, as demonstrated by the results when using multiple inputs. In contrast,
for DNet experiments with data augmentation, there are variations in metric results, which are much
lower with increasing number of multi-scale inputs as compared with the MSI-MFNet model. We also
observed that our method without data augmentation does not outperform DNet (in a few cases)
by selecting multi-scale input combinations that are triplets and duplets, which yields lower results
according to all the metrics. This trend can be seen in MSI-MFNet and DNet model for without data
augmentation scenarios. The accuracy and sensitivity metrics show comparable performance with
increasing number of multi-scale inputs for MSI-MFNet as compared with the DNet model.

We believe that, in general, the multi-scale input behavior can improve the model performance
because it allows control of the model results with different combinations of multi-scale inputs.
By increasing MSI, we can increase the performance, so the model can accurately classify the cancer
regions. Note that more combinations of multi-scale input introduce variations for model learning,
by introducing diversity in data. Hence, by incorporating this module, the model learns a good
decision capability and also demonstrates enhanced functionality to distinguish between the classes
that can be too different from trained classes at prediction time, which are in general close enough to
the realistic samples. The experimental setup with multi-class data shows the validity of our model
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utilizing this module, which improves the metrics with respect to the basic flat input approach of
traditional CNN’s.

MF (Multi-Feature Maps) Module: Figure 6 shows the results obtained for different combinations
of multi-feature maps in the DB-Depth Block DB-(1–4), where we considered using different numbers
of depth blocks in the MSI-MFNet, while using a fusion of all MSI images (i.e., 1×, 0.5×, 0.33×,
and 0.25×). For example, DB-× corresponds to using only one depth block (DB-1), while DB-xxx
corresponds to using three depth blocks (DB-1, DB-2, and DB-3).
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Figure 6. Results of ablation studies on the BreakHis dataset for binary and multi-class type
classification with maximum voting criteria. Using the four different types of evaluation metrics,
we select a different combination of MFNet maps and fuse them, i.e., DB-(1–4), such as quadruplets,
triplets, pairs and individual concatenated feature maps. For example: DB-× or DB-××, represents
that we used only DB-1 (first depth block) or DB-12 (first and second depth blocks), respectively.

We observed that the model achieved the highest metric performance when we used a fusion
of more combinations of multi-feature maps, which classify samples more accurately using rich
information learned when data augmentation is applied to patches, compared with the scenario in
which no data augmentation is employed, as shown in Figure 6. The data augmentation scenario
of binary classification shows better performance compared with multi-class classification, with an
overall average score of over 90%. We also noticed that there are several dips and changes in the
metric scores for both augmentation scenarios and types of classification when fewer combinations of
feature maps are used. We attribute this behavior to two factors: pair and individual feature maps
learned are not useful for medical image classification because of large structural variations in images,
and intra-class variations of samples also affect the model feature learning functionality.

Interestingly, we consistently obtained higher sensitivity scores for both types of classification
with higher combinations of feature maps, which shows the capability of our model to correctly
classify the patches with their respective classes. Nevertheless, our method still achieves a comparable
performance with both scenarios of data augmentation when we used combinations of feature maps
with more than pair combinations. Hence, in general, we can say that the classification models
with more combinations of feature maps are more suitable and accurate for feature learning and to
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address multi-class task problems associated with medical images. However, from the experiments,
we can state that the selection of multi-feature maps affects the results in various ways, but as already
explained, in general, higher combinations show an improvement.

Importance of MSI-MFNet: Our model has two important characteristics. First, it has a powerful
ability to transform raw data into high-level representation using different-scale image patches,
which automatically bridges the semantic gap through image abstraction. This can be inferred by
inspecting the results for two different models, as shown in Figure 5. The models’ performance
is affected by input combinations; omitting one or more inputs from fusing reduces the models’
performance, that is, having more combinations of input scales is better. This trend was observed for
all combinations for the both models. The results of our experiments demonstrate the need to fuse
MSI for the classification of medical images. Second, Figure 6 shows the fusion results for different
combinations of feature maps. These variations are reflected in the changes in the trends of different
metrics, which also exhibit significant drops. These observations provide the rationale for fusing
multi-resolution hierarchical feature maps at different layers. Such fusion allows the extraction of more
distinct and salient information while retaining coarse-scale features. Fusing larger combinations of
feature maps allows us to learn more robust and effective features for classification.

Fusing the feature maps from learning layers explicitly quantifies the fusion weights of the
features used for classification, which is different from previous CNN-based methods [47–49] that
typically fuse same-size feature maps and use encoding methods, which can corrupt the original spatial
structure of the data features. A few studies have also proposed methods for designing parameters
for generalization to arbitrary sizes, which means that information contained in different-size feature
maps is not exploited to the fullest. We do not assume any input modalities that are explicitly fused
or encoded using specific types of encoding operations. Instead, we rely only on raw multi-scale
inputs, and later fuse feature maps from different layers. Unlike previous tightly coupled traditional
methods [27–29], the present approach consists of separable modules: processing multi-scale inputs,
feature learning with dense connectivity, fusing multi-scale feature maps, and classification layers.
This modularity increases the method’s portability and applicability; consequently, the method can be
used by other researchers for various medical image analysis tasks, such as visualization, classification,
and segmentation.

Based on these ablation studies, we conclude that our results align with the objective of fusing
multi-scale inputs before the feature learning stage and subsequent fusing of multiple feature map
stages. Our general observation is that removing the fusion of combinations significantly affects the
results, regardless of data augmentation, type of classification (binary or multi-class), or classification
model, as shown in Figures 5 and 6, respectively.

5.3. Confusion Matrix Visualization

Figure 7 shows the confusion matrix results for the ICIAR2018 dataset with a magnification
factor of 200×. From the visualization results, we can observe that the data augmentation scenario
demonstrated better results than that without data augmentation. For both scenarios, there were
several changes in the multi-class scores. This is due to the ambiguous distinction between normal and
benign classes, as well as large intra-class sample variations within each class. The variations in the
classes and their relationship to the number of samples in each class can also affect the classification
results, and consequently, the image patches that are used for learning. However, the results of
two classes of samples (In situ and Invasive) are more accurately classified. Moreover, our results
demonstrate that the carcinoma classes were more precisely classified using binary classification with
a data-augmentation scenario, as compared with non-carcinoma classes. This behavior reflects a
smaller amount of data and weaker variations in the dataset. However, from these experiments, we can
summarize that the use of data augmentation affects the results considerably, as demonstrated by the
improved results.
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Class Without Data Augmentation Data Augmentation
Binary

Multi

Figure 7. Confusion matrices for image-wise classification for the ICIAR2018 dataset, for the maximum
voting criteria.

Similarly, we show the confusion matrices of the BreakHis dataset with a magnification factor
of 400× in Figure 8. We observe that our models tend to approximate good samples with deep
layered networks, and input images with magnifications that are greater than 100× yield better results.
From the visualization of the confusion matrix results, we can observe that the binary cases have
superior performance compared with multi-classification cases, because of the rich and relevant regions,
with data augmentation scenarios as compared to those without data augmentation. The features
with higher magnification have good structural information, which helps the model to learn good
representation between patches with respective labels. There are a few classes that consists of more
patches without diseased regions and which deviate in appearance as compared with the normal
region; such variations in patches can affect the classification capability, and the multi-classification
results vary. Even with challenging variations in datasets, the visualization results suggest that data
augmentation is a more suitable strategy for both types of classification. The overall result indicates
that our model is useful for classifying histology images.

A factor that strongly improved the results was the application of data augmentation to patches,
rather than the complete images, which sometimes exhibited no general patterns for feature learning.
Carefully selecting each patch individually from WSI images and then applying data augmentation
can further improve the model’s performance. However, such results are not useful for multi-scale
networks and deviates from our objective of feature learning and the consequent fusion of feature maps
from random patches. The overall results reported for both datasets and for the data augmentation
scenarios suggest that our model performs well, regardless of the number of generated patches from
WSIs, and using the fusion of combinations at the two modules of the MSI-MFNet model.
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Class Without Data Augmentation Data Augmentation
Binary

Multi

Figure 8. Confusion matrices for image-wise classification for the BreakHis dataset, for the maximum
voting criteria.

5.4. McNemar’s Statistical Analysis

Table 9 show the standardized McNemar’s test [50], which is employed to demonstrate the
statistical significance in metrices improvement of the proposed MSI-MFNet. We design the comparison
between MSI-MFNet and DNet model for all kinds of experimental results. The numbers for each
dataset are computed using the comparison of ground truth labels with predicted labels of their
respective model to form the McNemar table. Then for each dataset, we added the resultant cells from
cases to form the final reported table. We observed from the p-value of the ICIAR2018 dataset, that our
model didn’t outperform with large margin to DNet but still achieves comparable performance, it is
because of the dataset have considerably fewer test samples for each class. For the BreakHis dataset,
p-value is 0.08 which shows that the two models are statistically different with a confidence level of
92%, the statistical capability proves that our model have better classification capability, to address
multi-class task problems associated with medical images. From these experiments, we can state that
the proposed MSI-MFNet can significantly outperform literature method.

Table 9. Statistical significance from the standardized McNemar’s test.

Parameters ICIAR2018 BreakHis

DNet

M
SI

-M
FN

et Correct Incorrect Correct Incorrect

Correct 254 14 773 89

InCorrect 20 76 115 495

p-value 0.39 0.08
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6. Conclusions

We proposed an MSI-MFNet model for classification of histological images by training
different-scale image patches to learn the overall structures and texture features of cells using fusion
of multi-resolution hierarchical feature maps at different layers. Our model yields classification
probabilities on the patch and image levels. The model performance and strength were evaluated
on two publicly available benchmark datasets, and for a variety of experimental strategies, such as
multiple magnification factors, binary or multi-class classification, and either with or without data
augmentation. Our model outperformed existing state-of-the-art models with respect to both datasets.
We also performed an ablation study to gain deeper insights into the performance associated with
the different components of our model, which verified the importance of multi-scale input and
multi-feature maps. The proposed model achieved good sensitivity and specificity for different
cases, which is useful for pathologists and researchers working in the field of cancer diagnosis using
histological images. In future studies, we intend to investigate the model’s performance on other
datasets that provide diverse cancer cases. We will also investigate which combinations of feature
maps are likely to be most important for classification. The proposed system can be adapted for diverse
tasks associated with histological image-based classification with relevance to clinical settings.
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