lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System
Abstract
:1. Introduction
2. Long Non-Coding RNAs and Drug Resistance in Renal Cell Carcinoma
2.1. lncRNAs Promoting Drug Resistance in RCC
2.1.1. SRLR
2.1.2. ARSR
2.1.3. NEAT1
2.2. lncRNAs Enhancing Drug Sensitivity in RCC
2.2.1. ADAMTS9-AS2
2.2.2. GAS5
3. lncRNAs and Drug Resistance in Bladder Cancer
3.1. lncRNAs Promoting Drug Resistance in BC
3.1.1. UCA1
3.1.2. TUG1
3.1.3. PVT1
3.1.4. FOXD2-AS1
3.1.5. DLEU1
3.1.6. MST1P2
3.1.7. HIF1A-AS2
3.1.8. GHET1
3.1.9. MALAT1
3.2. lncRNAs Enhancing Drug Sensitivity in BC
3.2.1. lncRNA-LET
3.2.2. GAS5
3.2.3. LBCS
4. lncRNAs and Drug Resistance in Prostate Cancer
4.1. lncRNAs Promoting Drug Resistance in PCa
4.1.1. UCA1
4.1.2. MALAT1
4.1.3. LINC00673
4.1.4. LINC00518
4.1.5. CCAT1
4.1.6. DANCR
4.1.7. HOXD-AS1/HAGLR
4.1.8. FEZF1-AS1
4.1.9. HOTTIP
4.1.10. PCGEM1
4.1.11. HOTAIR
4.1.12. LBCS
4.2. lncRNAs Enhancing Drug Sensitivity in PCa
CASC2
5. lncRNAs and Drug Resistance in Testicular Cancer
H19
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.; Puente, J.; Gallardo, E.; Mendez-Vidal, M.J.; Climent, M.A.; Leon, L.; Olmos, D.; Garcia del Muro, X.; Gonzalez-Billalabeitia, E.; Grande, E.; et al. New Advances in Genitourinary Cancer: Evidence Gathered in 2014. Cancer Metastasis Rev. 2015, 34, 443–464. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in Metastatic Prostate Cancer before Chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab Plus Ipilimumab Versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mayea, Y.; Mir, C.; Masson, F.; Paciucci, R.; LLeonart, M.E. Insights into New Mechanisms and Models of Cancer Stem Cell Multidrug Resistance. Semin. Cancer Biol. 2020, 60, 166–180. [Google Scholar] [CrossRef]
- Seles, M.; Hutterer, G.C.; Fosselteder, J.; Svoboda, M.; Resel, M.; Barth, D.A.; Pichler, R.; Bauernhofer, T.; Zigeuner, R.E.; Pummer, K.; et al. Long Non-Coding RNA PANTR1 is Associated with Poor Prognosis and Influences Angiogenesis and Apoptosis in Clear-Cell Renal Cell Cancer. Cancers 2020, 12, 1200. [Google Scholar] [CrossRef]
- Pichler, M.; Rodriguez-Aguayo, C.; Nam, S.Y.; Dragomir, M.P.; Bayraktar, R.; Anfossi, S.; Knutsen, E.; Ivan, C.; Fuentes-Mattei, E.; Lee, S.K.; et al. Therapeutic Potential of FLANC, a Novel Primate-Specific Long Non-Coding RNA in Colorectal Cancer. Gut 2020. [Google Scholar] [CrossRef]
- Shah, M.Y.; Ferracin, M.; Pileczki, V.; Chen, B.; Redis, R.; Fabris, L.; Zhang, X.; Ivan, C.; Shimizu, M.; Rodriguez-Aguayo, C.; et al. Cancer-Associated rs6983267 SNP and its Accompanying Long Noncoding RNA CCAT2 Induce Myeloid Malignancies Via Unique SNP-Specific RNA Mutations. Genome Res. 2018, 28, 432–447. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, M.; Girnita, L.; Varani, G.; Calin, G.A. Decrypting Noncoding RNA Interactions, Structures, and Functional Networks. Genome Res. 2019, 29, 1377–1388. [Google Scholar] [CrossRef] [Green Version]
- Rigoutsos, I.; Lee, S.K.; Nam, S.Y.; Anfossi, S.; Pasculli, B.; Pichler, M.; Jing, Y.; Rodriguez-Aguayo, C.; Telonis, A.G.; Rossi, S.; et al. N-BLR, a Primate-Specific Non-Coding Transcript Leads to Colorectal Cancer Invasion and Migration. Genome Biol. 2017, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Bajic, V.B.; Zhang, Z. On the Classification of Long Non-Coding RNAs. RNA Biol. 2013, 10, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chang, H. Molecular Mechanisms of Long Noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens-Uzunova, E.S.; Bottcher, R.; Croce, C.M.; Jenster, G.; Visakorpi, T.; Calin, G.A. Long Noncoding RNA in Prostate, Bladder, and Kidney Cancer. Eur. Urol. 2014, 65, 1140–1151. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, F.; Wei, D.; Liu, B.; Chen, C.; Bao, Y.; Wu, Z.; Wu, D.; Tan, H.; Li, J.; et al. Long Noncoding RNA-SRLR Elicits Intrinsic Sorafenib Resistance Via Evoking IL-6/STAT3 Axis in Renal Cell Carcinoma. Oncogene 2017, 36, 1965–1977. [Google Scholar] [CrossRef]
- Qu, L.; Ding, J.; Chen, C.; Wu, Z.J.; Liu, B.; Gao, Y.; Chen, W.; Liu, F.; Sun, W.; Li, X.F.; et al. Exosome-Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell. 2016, 29, 653–668. [Google Scholar] [CrossRef]
- Song, E.L.; Xing, L.; Wang, L.; Song, W.T.; Li, D.B.; Wang, Y.; Gu, Y.W.; Liu, M.M.; Ni, W.J.; Zhang, P.; et al. LncRNA ADAMTS9-AS2 Inhibits Cell Proliferation and Decreases Chemoresistance in Clear Cell Renal Cell Carcinoma Via the miR-27a-3p/FOXO1 Axis. Aging Albany NY 2019, 11, 5705–5725. [Google Scholar] [CrossRef]
- Liu, F.; Chen, N.; Gong, Y.; Xiao, R.; Wang, W.; Pan, Z. The Long Non-Coding RNA NEAT1 Enhances Epithelial-to-Mesenchymal Transition and Chemoresistance Via the miR-34a/C-Met Axis in Renal Cell Carcinoma. Oncotarget 2017, 8, 62927–62938. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Pang, X.; Shang, W.; Xie, H.; Feng, Y.; Feng, G. Long Non-Coding RNA GAS5 Sensitizes Renal Cell Carcinoma to Sorafenib Via miR-21/SOX5 Pathway. Cell. Cycle 2019, 18, 257–263. [Google Scholar] [CrossRef]
- Pan, J.; Li, X.; Wu, W.; Xue, M.; Hou, H.; Zhai, W.; Chen, W. Long Non-Coding RNA UCA1 Promotes Cisplatin/Gemcitabine Resistance through CREB Modulating miR-196a-5p in Bladder Cancer Cells. Cancer Lett. 2016, 382, 64–76. [Google Scholar] [CrossRef]
- Fan, Y.; Shen, B.; Tan, M.; Mu, X.; Qin, Y.; Zhang, F.; Liu, Y. Long Non-Coding RNA UCA1 Increases Chemoresistance of Bladder Cancer Cells by Regulating Wnt Signaling. FEBS J. 2014, 281, 1750–1758. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, W.; Ning, J.; Yu, W.; Rao, T.; Cheng, F. Long Noncoding RNA UCA1 Targets miR-582-5p and Contributes to the Progression and Drug Resistance of Bladder Cancer Cells through ATG7-Mediated Autophagy Inhibition. Onco Targets Ther. 2019, 12, 495–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Zhou, H.; Yao, W.; Meng, L.; Lang, B. lncRNA TUG1 Promotes Cisplatin Resistance by Regulating CCND2 Via Epigenetically Silencing miR-194-5p in Bladder Cancer. Mol. Ther. Nucleic Acids 2019, 16, 257–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Zhang, H. LncRNA Plasmacytoma Variant Translocation 1 is an Oncogene in Bladder Urothelial Carcinoma. Oncotarget 2017, 8, 64273–64282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Q.; Zhou, L.; Xu, N. Long Noncoding RNA FOXD2-AS1 Accelerates the Gemcitabine-Resistance of Bladder Cancer by Sponging miR-143. Biomed. Pharmacother. 2018, 103, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, B.; Dong, F.; Zhu, X.; Liu, B.; Liu, Y. Long Non-Coding RNA DLEU1 Promotes Cell Proliferation, Invasion, and Confers Cisplatin Resistance in Bladder Cancer by Regulating the miR-99b/HS3ST3B1 Axis. Front. Genet. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Li, Y.; Li, Z.; Cao, L. LncRNA MST1P2/miR-133b Axis Affects the Chemoresistance of Bladder Cancer to Cisplatin-Based Therapy Via Sirt1/p53 Signaling. J. Biochem. Mol. Toxicol. 2020, 34, e22452. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Meng, F.; Sun, B.; Jin, X.; Jia, C. The Long Noncoding RNA HIF1A-AS2 Facilitates Cisplatin Resistance in Bladder Cancer. J. Cell. Biochem. 2019, 120, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xie, D.; Zhang, H. Long Non-Coding RNA GHET1 Contributes to Chemotherapeutic Resistance to Gemcitabine in Bladder Cancer. Cancer Chemother. Pharmacol. 2019, 84, 187–194. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Cui, Y.; Chen, J.; Li, C.; Li, Q.; Li, H.; Zhang, X.; Zu, X. LncRNA-MALAT1 Mediates Cisplatin Resistance Via miR-101-3p/VEGF-C Pathway in Bladder Cancer. Acta Biochim. Biophys. Sin. Shanghai 2019, 51, 1148–1157. [Google Scholar] [CrossRef]
- Zhuang, J.; Shen, L.; Yang, L.; Huang, X.; Lu, Q.; Cui, Y.; Zheng, X.; Zhao, X.; Zhang, D.; Huang, R.; et al. TGFbeta1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer. Theranostics 2017, 7, 3053–3067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, Y.; Song, Y.; Shang, C. Long Noncoding RNA GAS5 Inhibits Malignant Proliferation and Chemotherapy Resistance to Doxorubicin in Bladder Transitional Cell Carcinoma. Cancer Chemother. Pharmacol. 2017, 79, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xie, R.; Gu, P.; Huang, M.; Han, J.; Dong, W.; Xie, W.; Wang, B.; He, W.; Zhong, G.; et al. Long Noncoding RNA LBCS Inhibits Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic Silencing of SOX2. Clin. Cancer Res. 2019, 25, 1389–1403. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, B.; Ma, B. The UCA1/miR-204/Sirt1 Axis Modulates Docetaxel Sensitivity of Prostate Cancer Cells. Cancer Chemother. Pharmacol. 2016, 78, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, S.; Cheng, C.; Zhu, A.; Hu, Y.; Shi, Z.; Zhang, X.; Hong, Z. Long Non-Coding RNA CASC2 Regulates Sprouty2 Via Functioning as a Competing Endogenous RNA for miR-183 to Modulate the Sensitivity of Prostate Cancer Cells to Docetaxel. Arch. Biochem. Biophys. 2019, 665, 69–78. [Google Scholar] [CrossRef]
- Xue, D.; Lu, H.; Xu, H.Y.; Zhou, C.X.; He, X.Z. Long Noncoding RNA MALAT1 Enhances the Docetaxel Resistance of Prostate Cancer Cells Via miR-145-5p-Mediated Regulation of AKAP12. J. Cell. Mol. Med. 2018, 22, 3223–3237. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Y.; Li, L.; Niu, Y.; Lin, W.; Lin, C.; Antonarakis, E.S.; Luo, J.; Yeh, S.; Chang, C. Preclinical Study using Malat1 Small Interfering RNA Or Androgen Receptor Splicing Variant 7 Degradation Enhancer ASC-J9(®) to Suppress Enzalutamide-Resistant Prostate Cancer Progression. Eur. Urol. 2017, 72, 835–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Zhang, Y.; Chen, X.; Wu, P.; Chen, D. Long Non-Coding RNA LINC00673 Silencing Inhibits Proliferation and Drug Resistance of Prostate Cancer Cells Via Decreasing KLF4 Promoter Methylation. J. Cell. Mol. Med. 2020, 24, 1878–1892. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Sun, M.; Geng, H.; Tian, S. Long Non-Coding RNA Linc00518 Promotes Paclitaxel Resistance of the Human Prostate Cancer by Sequestering miR-216b-5p. Biol. Cell. 2019, 111, 39–50. [Google Scholar] [CrossRef]
- Li, X.; Han, X.; Wei, P.; Yang, J.; Sun, J. Knockdown of lncRNA CCAT1 Enhances Sensitivity of Paclitaxel in Prostate Cancer Via Regulating miR-24-3p and FSCN1. Cancer. Biol. Ther. 2020, 21, 452–462. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, B.; Ren, Z.; Liu, B.; Wang, Y. Long Noncoding RNA DANCR Contributes to Docetaxel Resistance in Prostate Cancer through Targeting the miR-34a-5p/JAG1 Pathway. Onco Targets Ther. 2019, 12, 5485–5497. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.; Chen, X.; Xie, R.; Han, J.; Xie, W.; Wang, B.; Dong, W.; Chen, C.; Yang, M.; Jiang, J.; et al. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer Via Recruiting WDR5. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 1959–1973. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Wang, J.H.; Wang, K.Q.; Zhou, Y.; Wang, J. LncRNA FEZF1-AS1 Promoted Chemoresistance, Autophagy and Epithelial-Mesenchymal Transition (EMT) through Regulation of miR-25-3p/ITGB8 Axis in Prostate Cancer. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2281–2293. [Google Scholar] [PubMed]
- Jiang, H.; Xiong, W.; Chen, L.; Lv, Z.; Yang, C.; Li, Y. Knockdown of the Long Noncoding RNA HOTTIP Inhibits Cell Proliferation and Enhances Cell Sensitivity to Cisplatin by Suppressing the Wnt/Beta-Catenin Pathway in Prostate Cancer. J. Cell. Biochem. 2019, 120, 8965–8974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, N.; Huang, J.; Ho, T.T.; Zhu, Z.; Qiu, Z.; Zhou, X.; Bai, C.; Wu, F.; Xu, M.; et al. Regulation of Androgen Receptor Splice Variant AR3 by PCGEM1. Oncotarget 2016, 7, 15481–15491. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.W.; Yang, Y.A.; Chakravarti, D.; Mo, Y.Y.; Yu, J. LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell. Rep. 2015, 13, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.; Chen, X.; Xie, R.; Xie, W.; Huang, L.; Dong, W.; Han, J.; Liu, X.; Shen, J.; Huang, J.; et al. A Novel AR Translational Regulator lncRNA LBCS Inhibits Castration Resistance of Prostate Cancer. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef]
- Wei, J.; Gan, Y.; Peng, D.; Jiang, X.; Kitazawa, R.; Xiang, Y.; Dai, Y.; Tang, Y.; Yang, J. Long Non-Coding RNA H19 Promotes TDRG1 Expression and Cisplatin Resistance by Sequestering miRNA-106b-5p in Seminoma. Cancer. Med. 2018, 7, 6247–6257. [Google Scholar] [CrossRef] [Green Version]
- Znaor, A.; Lortet-Tieulent, J.; Laversanne, M.; Jemal, A.; Bray, F. International Variations and Trends in Renal Cell Carcinoma Incidence and Mortality. Eur. Urol. 2015, 67, 519–530. [Google Scholar] [CrossRef]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal Cell Carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef]
- Manini, C.; López, J.I. The Labyrinth of Renal Cell Carcinoma. Cancers 2020, 12, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, R.J. Chemotherapy for Renal Cell Carcinoma. Semin. Oncol. 2000, 27, 177–186. [Google Scholar] [PubMed]
- Negrier, S.; Perol, D.; Ravaud, A.; Chevreau, C.; Bay, J.O.; Delva, R.; Sevin, E.; Caty, A.; Escudier, B.; French Immunotherapy Intergroup. Medroxyprogesterone, Interferon Alfa-2a, Interleukin 2, Or Combination of both Cytokines in Patients with Metastatic Renal Carcinoma of Intermediate Prognosis: Results of a Randomized Controlled Trial. Cancer 2007, 110, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall Survival and Updated Results for Sunitinib Compared with Interferon Alfa in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab Plus Axitinib Versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Nunes-Xavier, C.E.; Angulo, J.C.; Pulido, R.; López, J.I. A Critical Insight into the Clinical Translation of PD-1/PD-L1 Blockade Therapy in Clear Cell Renal Cell Carcinoma. Curr. Urol. Rep. 2019, 20, 1. [Google Scholar] [CrossRef]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Horswell, S.; Chambers, T.; O’Brien, T.; Lopez, J.I.; Watkins, T.B.K.; Nicol, D.; et al. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018, 173, 595–610.e11. [Google Scholar] [CrossRef] [Green Version]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e12. [Google Scholar] [CrossRef]
- Seles, M.; Hutterer, G.C.; Kiesslich, T.; Pummer, K.; Berindan-Neagoe, I.; Perakis, S.; Schwarzenbacher, D.; Stotz, M.; Gerger, A.; Pichler, M. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma. Int. J. Mol. Sci. 2016, 17, 573. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhu, Y.; Xie, Y.; Ma, X. The Role of Long Non-Coding RNAs in Immunotherapy Resistance. Front. Oncol. 2019, 9, 1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolle, M.A.; Prinz, F.; Calin, G.A.; Pichler, M. Current Concepts of Non-Coding RNA Regulation of Immune Checkpoints in Cancer. Mol. Aspects Med. 2019, 70, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, J.; Ye, F.; Duan, Z.; Zhou, J.; Huang, Z.; Wang, L. Upregulation of the lncRNA SRLR in Polycystic Ovary Syndrome Regulates Cell Apoptosis and IL-6 Expression. Cell Biochem. Funct. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Q.; Li, R.; Xu, A.; Qin, Z.; Tang, J.; Zhang, L.; Tang, M.; Han, P.; Wang, W.; Qin, C.; et al. Genetic Variants in a Long Noncoding RNA Related to Sunitinib Resistance Predict Risk and Survival of Patients with Renal Cell Carcinoma. Cancer Med. 2019, 8, 2886–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klec, C.; Prinz, F.; Pichler, M. Involvement of the Long Noncoding RNA NEAT1 in Carcinogenesis. Mol. Oncol. 2019, 13, 46–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, J.; Lv, W.; Zhang, Y. LncRNA NEAT1 Contributes to Paclitaxel Resistance of Ovarian Cancer Cells by Regulating ZEB1 Expression Via miR-194. Onco Targets Ther. 2017, 10, 5377–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, V.Y.; Chen, J.; Cheuk, I.W.; Siu, M.T.; Ho, C.W.; Wang, X.; Jin, H.; Kwong, A. Long Non-Coding RNA NEAT1 Confers Oncogenic Role in Triple-Negative Breast Cancer through Modulating Chemoresistance and Cancer Stemness. Cell. Death Dis. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Makino, T.; Yamasaki, M.; Tanaka, K.; Miyazaki, Y.; Takahashi, T.; Kurokawa, Y.; Nakajima, K.; Matsuura, N.; Mori, M.; et al. Effect of C-Met and CD44v6 Expression in Resistance to Chemotherapy in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2019, 26, 899–906. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Jian, Y.K.; Zhu, H.Y.; Li, B. lncRNAPVT1 Targets miR-152 to Enhance Chemoresistance of Osteosarcoma to Gemcitabine through Activating C-MET/PI3K/AKT Pathway. Pathol. Res. Pract. 2019, 215, 555–563. [Google Scholar] [CrossRef]
- Pu, Y.; Zhao, F.; Li, Y.; Cui, M.; Wang, H.; Meng, X.; Cai, S. The miR-34a-5p Promotes the Multi-Chemoresistance of Osteosarcoma Via Repression of the AGTR1 Gene. BMC Cancer 2017, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Xu, Z.; Chen, X.; Wang, X.; Zeng, S.; Zhao, Z.; Qian, L.; Li, Z.; Wei, J.; Huo, L.; et al. Novel Function of lncRNA ADAMTS9-AS2 in Promoting Temozolomide Resistance in Glioblastoma Via Upregulating the FUS/MDM2 Ubiquitination Axis. Front. Cell. Dev. Biol. 2019, 7, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.F.; Lu, H.; Wang, H.B. Downregulated lncRNA ADAMTS9-AS2 in Breast Cancer Enhances Tamoxifen Resistance by Activating microRNA-130a-5p. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1563–1573. [Google Scholar] [PubMed]
- Ma, C.; Shi, X.; Zhu, Q.; Li, Q.; Liu, Y.; Yao, Y.; Song, Y. The Growth Arrest-Specific Transcript 5 (GAS5): A Pivotal Tumor Suppressor Long Noncoding RNA in Human Cancers. Tumour Biol. 2016, 37, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.Q.; Wang, J.F.; Chen, D.H.; Ma, X.S.; Yang, W.; Zhe, T.; Dang, X.W. Long Non-Coding RNA GAS5 Antagonizes the Chemoresistance of Pancreatic Cancer Cells through Down-Regulation of miR-181c-5p. Biomed. Pharmacother. 2018, 97, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Pan, T.; Jiang, D.; Jin, L.; Geng, Y.; Feng, X.; Shen, A.; Zhang, L. The lncRNA-GAS5/miR-221-3p/DKK2 Axis Modulates ABCB1-Mediated Adriamycin Resistance of Breast Cancer Via the Wnt/Beta-Catenin Signaling Pathway. Mol. Ther. Nucleic Acids 2020, 19, 1434–1448. [Google Scholar] [CrossRef]
- Chen, D.; Wang, R.; Yu, C.; Cao, F.; Zhang, X.; Yan, F.; Chen, L.; Zhu, H.; Yu, Z.; Feng, J. FOX-A1 Contributes to Acquisition of Chemoresistance in Human Lung Adenocarcinoma Via Transactivation of SOX5. Ebiomedicine 2019, 44, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Fang, M.; Li, S.; Yan, Y.; Zhong, Y.; Du, B. miR-21 is Involved in Transforming Growth Factor Beta1-Induced Chemoresistance and Invasion by Targeting PTEN in Breast Cancer. Oncol. Lett. 2017, 14, 6929–6936. [Google Scholar]
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The Global Burden of Urinary Bladder Cancer: An Update. World J. Urol. 2019, 38, 1895–1904. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.P.; Lin, H.; Datar, R.H.; Cote, R.J. Molecular Biology of Bladder Cancer: Prognostic and Clinical Implications. Clin. Genitourin. Cancer 2006, 5, 67–77. [Google Scholar]
- Knowles, M.A.; Hurst, C.D. Molecular Biology of Bladder Cancer: New Insights into Pathogenesis and Clinical Diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef]
- Sexton, W.J.; Wiegand, L.R.; Correa, J.J.; Politis, C.; Dickinson, S.I.; Kang, L.C. Bladder Cancer: A Review of Non-Muscle Invasive Disease. Cancer Control 2010, 17, 256–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babjuk, M.; Burger, M.; Zigeuner, R.; Shariat, S.F.; van Rhijn, B.W.; Compérat, E.; Sylvester, R.J.; Kaasinen, E.; Böhle, A.; Palou Redorta, J.; et al. EAU Guidelines on Non-Muscle-Invasive Urothelial Carcinoma of the Bladder: Update 2013. Eur. Urol. 2013, 64, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Alfred Witjes, J.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Espinós, E.L.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU Guidelines on Muscle-Invasive and Metastatic Bladder Cancer. Eur. Urol. 2017, 71, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Loriot, Y.; Necchi, A.; Park, S.H.; Garcia-Donas, J.; Huddart, R.; Burgess, E.; Fleming, M.; Rezazadeh, A.; Mellado, B.; Varlamov, S.; et al. Erdafitinib in Locally Advanced Or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2019, 381, 338–348. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Gui, Y.; Cai, Z. Long Intergenic Non-Coding RNA TUG1 is Overexpressed in Urothelial Carcinoma of the Bladder. J. Surg. Oncol. 2013, 107, 555–559. [Google Scholar] [CrossRef]
- Lebrun, L.; Milowich, D.; Le Mercier, M.; Allard, J.; Van Eycke, Y.R.; Roumeguere, T.; Decaestecker, C.; Salmon, I.; Rorive, S. UCA1 Overexpression is Associated with Less Aggressive Subtypes of Bladder Cancer. Oncol. Rep. 2018, 40, 2497–2506. [Google Scholar] [CrossRef]
- Kukcinaviciute, E.; Jonusiene, V.; Sasnauskiene, A.; Dabkeviciene, D.; Eidenaite, E.; Laurinavicius, A. Significance of Notch and Wnt Signaling for Chemoresistance of Colorectal Cancer Cells HCT116. J. Cell. Biochem. 2018, 119, 5913–5920. [Google Scholar] [CrossRef]
- Li, J.H.; Luo, N.; Zhong, M.Z.; Xiao, Z.Q.; Wang, J.X.; Yao, X.Y.; Peng, Y.; Cao, J. Inhibition of microRNA-196a might Reverse Cisplatin Resistance of A549/DDP Non-Small-Cell Lung Cancer Cell Line. Tumour Biol. 2016, 37, 2387–2394. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, D.; Li, G.; Ming, X.; Tu, Y.; Tian, J.; Lu, H.; Yu, B. Long Non Coding RNA-UCA1 Contributes to Cardiomyocyte Apoptosis by Suppression of p27 Expression. Cell. Physiol. Biochem. 2015, 35, 1986–1998. [Google Scholar] [CrossRef]
- Geng, J.; Klionsky, D.J. The Atg8 and Atg12 Ubiquitin-Like Conjugation Systems in Macroautophagy. ‘Protein Modifications: Beyond the Usual Suspects’ Review Series. EMBO Rep. 2008, 9, 859–864. [Google Scholar] [CrossRef] [Green Version]
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and Chemotherapy Resistance: A Promising Therapeutic Target for Cancer Treatment. Cell. Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef] [PubMed]
- Young, T.L.; Matsuda, T.; Cepko, C.L. The Noncoding RNA Taurine Upregulated Gene 1 is Required for Differentiation of the Murine Retina. Curr. Biol. 2005, 15, 501–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Ding, C.; Yang, Z.; Liu, T.; Zhang, X.; Zhao, C.; Wang, J. The Long Non-Coding RNA TUG1 Indicates a Poor Prognosis for Colorectal Cancer and Promotes Metastasis by Affecting Epithelial-Mesenchymal Transition. J. Transl. Med. 2016, 14, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, E.; He, X.; Yin, D.; Han, L.; Qiu, M.; Xu, T.; Xia, R.; Xu, L.; Yin, R.; De, W. Increased Expression of Long Noncoding RNA TUG1 Predicts a Poor Prognosis of Gastric Cancer and Regulates Cell Proliferation by Epigenetically Silencing of p57. Cell. Death Dis. 2016, 7, e2109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.B.; Yin, D.D.; Sun, M.; Kong, R.; Liu, X.H.; You, L.H.; Han, L.; Xia, R.; Wang, K.M.; Yang, J.S.; et al. P53-Regulated Long Non-Coding RNA TUG1 Affects Cell Proliferation in Human Non-Small Cell Lung Cancer, Partly through Epigenetically Regulating HOXB7 Expression. Cell. Death Dis. 2014, 5, e1243. [Google Scholar] [CrossRef]
- Huang, M.D.; Chen, W.M.; Qi, F.Z.; Sun, M.; Xu, T.P.; Ma, P.; Shu, Y.Q. Long Non-Coding RNA TUG1 is Up-Regulated in Hepatocellular Carcinoma and Promotes Cell Growth and Apoptosis by Epigenetically Silencing of KLF2. Mol. Cancer. 2015, 14, 165. [Google Scholar] [CrossRef] [Green Version]
- Iliev, R.; Kleinova, R.; Juracek, J.; Dolezel, J.; Ozanova, Z.; Fedorko, M.; Pacik, D.; Svoboda, M.; Stanik, M.; Slaby, O. Overexpression of Long Non-Coding RNA TUG1 Predicts Poor Prognosis and Promotes Cancer Cell Proliferation and Migration in High-Grade Muscle-Invasive Bladder Cancer. Tumour Biol. 2016, 37, 13385–13390. [Google Scholar] [CrossRef]
- Shen, C.J.; Cheng, Y.M.; Wang, C.L. LncRNA PVT1 Epigenetically Silences miR-195 and Modulates EMT and Chemoresistance in Cervical Cancer Cells. J. Drug Target. 2017, 25, 637–644. [Google Scholar] [CrossRef]
- Zhang, X.W.; Bu, P.; Liu, L.; Zhang, X.Z.; Li, J. Overexpression of Long Non-Coding RNA PVT1 in Gastric Cancer Cells Promotes the Development of Multidrug Resistance. Biochem. Biophys. Res. Commun. 2015, 462, 227–232. [Google Scholar] [CrossRef]
- Chen, L.; Han, X.; Hu, Z.; Chen, L. The PVT1/miR-216b/Beclin-1 Regulates Cisplatin Sensitivity of NSCLC Cells Via Modulating Autophagy and Apoptosis. Cancer Chemother. Pharmacol. 2019, 83, 921–931. [Google Scholar] [CrossRef]
- Su, F.; He, W.; Chen, C.; Liu, M.; Liu, H.; Xue, F.; Bi, J.; Xu, D.; Zhao, Y.; Huang, J.; et al. The Long Non-Coding RNA FOXD2-AS1 Promotes Bladder Cancer Progression and Recurrence through a Positive Feedback Loop with Akt and E2F1. Cell. Death Dis. 2018, 9, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yao, D.; Liu, C.; Cao, Y.; Yang, Q.; Sun, Z.; Liu, D. Overexpression of ABCC3 Promotes Cell Proliferation, Drug Resistance, and Aerobic Glycolysis and is Associated with Poor Prognosis in Urinary Bladder Cancer Patients. Tumour Biol. 2016, 37, 8367–8374. [Google Scholar] [CrossRef] [PubMed]
- Bullrich, F.; Fujii, H.; Calin, G.; Mabuchi, H.; Negrini, M.; Pekarsky, Y.; Rassenti, L.; Alder, H.; Reed, J.C.; Keating, M.J.; et al. Characterization of the 13q14 Tumor Suppressor Locus in CLL: Identification of ALT1, an Alternative Splice Variant of the LEU2 Gene. Cancer Res. 2001, 61, 6640–6648. [Google Scholar] [PubMed]
- Calin, G.A.; Croce, C.M. Chronic Lymphocytic Leukemia: Interplay between Noncoding RNAs and Protein-Coding Genes. Blood 2009, 114, 4761–4770. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Corcoran, M.; Rasool, O.; Ivanova, G.; Ibbotson, R.; Grandér, D.; Iyengar, A.; Baranova, A.; Kashuba, V.; Merup, M.; et al. Cloning of Two Candidate Tumor Suppressor Genes within a 10 Kb Region on Chromosome 13q14, Frequently Deleted in Chronic Lymphocytic Leukemia. Oncogene 1997, 15, 2463–2473. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent Deletions and Down-Regulation of Micro- RNA Genes miR15 and miR16 at 13q14 in Chronic Lymphocytic Leukemia. Proc. Natl. Acad. Sci. USA. 2002, 99, 15524–15529. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, M.; Calin, G.A. MicroRNAs in Chronic Lymphocytic Leukemia: An Old Disease with New Genetic Insights. Microrna 2016, 5, 106–112. [Google Scholar] [CrossRef]
- Van Roosbroeck, K.; Calin, G.A. MicroRNAs in Chronic Lymphocytic Leukemia: Miracle or miRage for Prognosis and Targeted Therapies? Semin. Oncol. 2016, 43, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Van Roosbroeck, K.; Bayraktar, R.; Calin, S.; Bloehdorn, J.; Dragomir, M.P.; Okubo, K.; Bertilaccio, M.T.S.; Zupo, S.; You, M.J.; Gaidano, G.; et al. The Involvement of microRNA in the Pathogenesis of Richter Syndrome. Haematologica 2019, 104, 1004–1015. [Google Scholar] [CrossRef]
- Lee, S.; Luo, W.; Shah, T.; Yin, C.; O’Connell, T.; Chung, T.H.; Perkins, S.L.; Miles, R.R.; Ayello, J.; Morris, E.; et al. The Effects of DLEU1 Gene Expression in Burkitt Lymphoma (BL): Potential Mechanism of Chemoimmunotherapy Resistance in BL. Oncotarget 2017, 8, 27839–27853. [Google Scholar] [CrossRef]
- Liu, C.; Tian, X.; Zhang, J.; Jiang, L. Long Non-Coding RNA DLEU1 Promotes Proliferation and Invasion by Interacting with miR-381 and Enhancing HOXA13 Expression in Cervical Cancer. Front. Genet. 2018, 9, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Han, Z.; Li, H.; Zhu, Y.; Sun, Z.; Zhu, A. LncRNA DLEU1 Contributes to Colorectal Cancer Progression Via Activation of KPNA3. Mol. Cancer 2018, 17, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guan, Y.; Liu, X.; Ju, M.; Zhang, Q. Long Non-Coding RNA DLEU1 Exerts an Oncogenic Function in Non-Small Cell Lung Cancer. Biomed. Pharmacother. 2019, 109, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chang, J.; Wang, S.; Liu, X.; Peng, J.; Huang, D.; Sun, M.; Chen, Z.; Zhang, W.; Guo, W.; et al. miRNA-99b-5p Suppresses Liver Metastasis of Colorectal Cancer by Down-Regulating mTOR. Oncotarget 2015, 6, 24448–24462. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Lee, S.Y.; Lee, S.Y.; Kim, Y.J.; Park, J.Y.; Kwon, S.J.; Na, M.J.; Lee, E.J.; Jeon, H.S.; Son, J.W. microRNA-99b Acts as a Tumor Suppressor in Non-Small Cell Lung Cancer by Directly Targeting Fibroblast Growth Factor Receptor 3. Exp. Ther. Med. 2012, 3, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Van Rhijn, B.W.; Lurkin, I.; Radvanyi, F.; Kirkels, W.J.; van der Kwast, T.H.; Zwarthoff, E.C. The Fibroblast Growth Factor Receptor 3 (FGFR3) Mutation is a Strong Indicator of Superficial Bladder Cancer with Low Recurrence Rate. Cancer Res. 2001, 61, 1265–1268. [Google Scholar]
- Song, K.; Li, Q.; Jiang, Z.Z.; Guo, C.W.; Li, P. Heparan Sulfate D-Glucosaminyl 3-O-Sulfotransferase-3B1, a Novel Epithelial-Mesenchymal Transition Inducer in Pancreatic Cancer. Cancer. Biol. Ther. 2011, 12, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Jiao, J.W.; Sun, K.X.; Zong, Z.H.; Zhao, Y. MicroRNA-133b Targets Glutathione S-Transferase Ï€ Expression to Increase Ovarian Cancer Cell Sensitivity to Chemotherapy Drugs. Drug Des. Dev. Ther. 2015, 9, 5225–5235. [Google Scholar]
- Lv, L.; Li, Q.; Chen, S.; Zhang, X.; Tao, X.; Tang, X.; Wang, S.; Che, G.; Yu, Y.; He, L. miR-133b Suppresses Colorectal Cancer Cell Stemness and Chemoresistance by Targeting Methyltransferase DOT1L. Exp. Cell Res. 2019, 385, 111597. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, J.; Wu, J.; Luo, C.; Huang, Y. miR-133b Induces Chemoresistance of Osteosarcoma Cells to Cisplatin Treatment by Promoting Cell Death, Migration and Invasion. Oncol. Lett. 2018, 15, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) Functions as an NAD-Dependent p53 Deacetylase. Cell 2001, 107, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Bertozzi, D.; Iurlaro, R.; Sordet, O.; Marinello, J.; Zaffaroni, N.; Capranico, G. Characterization of Novel Antisense HIF-1alpha Transcripts in Human Cancers. Cell. Cycle 2011, 10, 3189–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Zhuang, C.; Liu, Y.; Li, J.; Dai, F.; Xia, M.; Zhan, Y.; Lin, J.; Chen, Z.; He, A.; et al. Tetracycline-Inducible shRNA Targeting Antisense Long Non-Coding RNA HIF1A-AS2 Represses the Malignant Phenotypes of Bladder Cancer. Cancer Lett. 2016, 376, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mineo, M.; Ricklefs, F.; Rooj, A.K.; Lyons, S.M.; Ivanov, P.; Ansari, K.I.; Nakano, I.; Chiocca, E.A.; Godlewski, J.; Bronisz, A. The Long Non-Coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-Like Cells in Hypoxic Niches. Cell Rep. 2016, 15, 2500–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.J.; Zhu, J.L.; Bao, W.S.; Chen, D.K.; Huang, W.W.; Weng, Z.L. Long Noncoding RNA GHET1 Promotes the Development of Bladder Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 7196–7205. [Google Scholar] [PubMed]
- Li, X.; Wang, H.; Wang, J.; Chen, Y.; Yin, X.; Shi, G.; Li, H.; Hu, Z.; Liang, X. Emodin Enhances Cisplatin-Induced Cytotoxicity in Human Bladder Cancer Cells through ROS Elevation and MRP1 Downregulation. BMC Cancer 2016, 16, 578. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Liu, B.; Ma, H. Long Non-Coding RNA GHET1 Promotes Viability, Migration and Invasion of Glioma Cell Line U251 by Down-Regulation of miR-216a. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1591–1599. [Google Scholar]
- Hu, Z.; Lin, Y.; Chen, H.; Mao, Y.; Wu, J.; Zhu, Y.; Xu, X.; Xu, X.; Li, S.; Zheng, X.; et al. MicroRNA-101 Suppresses Motility of Bladder Cancer Cells by Targeting C-Met. Biochem. Biophys. Res. Commun. 2013, 435, 82–87. [Google Scholar] [CrossRef]
- Zhu, H.; Yun, F.; Shi, X.; Wang, D. VEGF-C Inhibition Reverses Resistance of Bladder Cancer Cells to Cisplatin Via Upregulating Maspin. Mol. Med. Rep. 2015, 12, 3163–3169. [Google Scholar] [CrossRef]
- Li, B.; Xie, D.; Zhang, H. MicroRNA-101-3p Advances Cisplatin Sensitivity in Bladder Urothelial Carcinoma through Targeted Silencing EZH2. J. Cancer 2019, 10, 2628–2634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xiong, Z.; Wei, T.; Li, Q.; Tan, Y.; Ling, L.; Feng, X. Nuclear Factor 90 Promotes Angiogenesis by Regulating HIF-1α/VEGF-A Expression through the PI3K/Akt Signaling Pathway in Human Cervical Cancer. Cell. Death Dis. 2018, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, S.; Aoki, K.; Higuchi, T.; Todaka, H.; Morisawa, K.; Tamaki, N.; Hatano, E.; Fukushima, A.; Taniguchi, T.; Agata, Y. The NF90-NF45 Complex Functions as a Negative Regulator in the microRNA Processing Pathway. Mol. Cell. Biol. 2009, 29, 3754–3769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis-Dusenbery, B.; Chan, M.C.; Reno, K.E.; Weisman, A.S.; Layne, M.D.; Lagna, G.; Hata, A. Down-Regulation of Kruppel-Like Factor-4 (KLF4) by microRNA-143/145 is Critical for Modulation of Vascular Smooth Muscle Cell Phenotype by Transforming Growth Factor-Beta and Bone Morphogenetic Protein 4. J. Biol. Chem. 2011, 286, 28097–28110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Song, Q.; Huang, X.; Chen, Z.; Zhang, F.; Wang, K.; Huang, G.; Shen, H. Long Noncoding RNA GAS5 Promotes Apoptosis in Primary Nucleus Pulposus Cells Derived from the Human Intervertebral Disc Via Bcl‑2 Downregulation and Caspase‑3 Upregulation. Mol. Med. Rep. 2019, 19, 2164–2172. [Google Scholar] [PubMed] [Green Version]
- Chen, X.; Gu, P.; Xie, R.; Han, J.; Liu, H.; Wang, B.; Xie, W.; Xie, W.; Zhong, G.; Chen, C.; et al. Heterogeneous Nuclear Ribonucleoprotein K is Associated with Poor Prognosis and Regulates Proliferation and Apoptosis in Bladder Cancer. J. Cell. Mol. Med. 2017, 21, 1266–1279. [Google Scholar] [CrossRef] [PubMed]
- Juan, A.H.; Derfoul, A.; Feng, X.; Ryall, J.G.; Dell’Orso, S.; Pasut, A.; Zare, H.; Simone, J.M.; Rudnicki, M.A.; Sartorelli, V. Polycomb EZH2 Controls Self-Renewal and Safeguards the Transcriptional Identity of Skeletal Muscle Stem Cells. Genes Dev. 2011, 25, 789–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, F.; Qian, W.; Zhang, H.; Liang, Y.; Wu, M.; Zhang, Y.; Zhang, X.; Gao, Q.; Li, Y. SOX2 is a Marker for Stem-Like Tumor Cells in Bladder Cancer. Stem Cell Rep. 2017, 9, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2019. CA Cancer. J. Clin. 2019, 69, 7–34. [Google Scholar]
- Mosillo, C.; Iacovelli, R.; Ciccarese, C.; Fantinel, E.; Bimbatti, D.; Brunelli, M.; Bisogno, I.; Kinspergher, S.; Buttigliero, C.; Tucci, M.; et al. De Novo Metastatic Castration Sensitive Prostate Cancer: State of Art and Future Perspectives. Cancer Treat. Rev. 2018, 70, 67–74. [Google Scholar] [CrossRef]
- Pagliarulo, V.; Bracarda, S.; Eisenberger, M.A.; Mottet, N.; Schroder, F.H.; Sternberg, C.N.; Studer, U.E. Contemporary Role of Androgen Deprivation Therapy for Prostate Cancer. Eur. Urol. 2012, 61, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Mansinho, A.; Macedo, D.; Fernandes, I.; Costa, L. Castration-Resistant Prostate Cancer: Mechanisms, Targets and Treatment. Adv. Exp. Med. Biol. 2018, 1096, 117–133. [Google Scholar] [PubMed]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in Metastatic Prostate Cancer without Previous Chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrylak, D.P.; Tangen, C.M.; Hussain, M.H.; Lara, P.N., Jr.; Jones, J.A.; Taplin, M.E.; Burch, P.A.; Berry, D.; Moinpour, C.; Kohli, M.; et al. Docetaxel and Estramustine Compared with Mitoxantrone and Prednisone for Advanced Refractory Prostate Cancer. N. Engl. J. Med. 2004, 351, 1513–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wit, R.; de Bono, J.; Sternberg, C.N.; Fizazi, K.; Tombal, B.; Wulfing, C.; Kramer, G.; Eymard, J.C.; Bamias, A.; Carles, J.; et al. Cabazitaxel Versus Abiraterone Or Enzalutamide in Metastatic Prostate Cancer. N. Engl. J. Med. 2019, 381, 2506–2518. [Google Scholar] [CrossRef] [PubMed]
- Fabris, L.; Ceder, Y.; Chinnaiyan, A.M.; Jenster, G.W.; Sorensen, K.D.; Tomlins, S.; Visakorpi, T.; Calin, G.A. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur. Urol. 2016, 70, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salameh, A.; Lee, A.K.; CardÃ3-Vila, M.; Nunes, D.N.; Efstathiou, E.; Staquicini, F.I.; Dobroff, A.S.; MarchiÃ2, S.; Navone, N.M.; Hosoya, H.; et al. PRUNE2 is a Human Prostate Cancer Suppressor Regulated by the Intronic Long Noncoding RNA PCA3. Proc. Natl. Acad. Sci. USA 2015, 112, 8403–8408. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Guan, Z.; He, K.; Qian, J.; Cao, J.; Teng, L. LncRNA UCA1 in Anti-Cancer Drug Resistance. Oncotarget 2017, 8, 64638–64650. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Lu, X.; Yang, F.; Qin, L.; Guo, Z.; Sun, Y.; Wu, J. LncRNA UCA1 Acts as a Sponge of miR-204 to Up-Regulate CXCR4 Expression and Promote Prostate Cancer Progression. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Gao, F.; He, Q.; Li, G.; Ding, G. lncRNA UCA1 Functions as a ceRNA to Promote Prostate Cancer Progression Via Sponging miR143. Mol. Ther. Nucleic Acids 2020, 19, 751–758. [Google Scholar] [CrossRef]
- Kojima, K.; Ohhashi, R.; Fujita, Y.; Hamada, N.; Akao, Y.; Nozawa, Y.; Deguchi, T.; Ito, M. A Role for SIRT1 in Cell Growth and Chemoresistance in Prostate Cancer PC3 and DU145 Cells. Biochem. Biophys. Res. Commun. 2008, 373, 423–428. [Google Scholar] [CrossRef]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the Role of ABC Transporters in Multidrug-Resistant Cancer. Nat. Rev. Cancer. 2018, 18, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Lee, J.H.; Ivan, C.; Ling, H.; Zhang, X.; Park, C.H.; Calin, G.A.; Lee, S.K. MALAT1 Promoted Invasiveness of Gastric Adenocarcinoma. BMC Cancer 2017, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Smolle, M.A.; Bauernhofer, T.; Pummer, K.; Calin, G.A.; Pichler, M. Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer. Int. J. Mol. Sci. 2017, 18, 473. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Wang, Z.; Yang, J.; Zhang, Y.; Shang, Y.; Sun, J. MALAT1 Knockdown Inhibits Prostate Cancer Progression by Regulating miR-140/BIRC6 Axis. Biomed. Pharmacother. 2020, 123, 109666. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ding, L.; Wang, L.; Zhao, Y.; Sun, Z.; Karnes, R.J.; Zhang, J.; Huang, H. LncRNA MALAT1 Enhances Oncogenic Activities of EZH2 in Castration-Resistant Prostate Cancer. Oncotarget 2015, 6, 41045–41055. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Liang, Z.; Liu, L.; Guo, K.; Xu, S.; Wang, H. Silencing of MALAT1 Inhibits Migration and Invasion by Sponging miR13p in Prostate Cancer Cells. Mol. Med. Rep. 2019, 20, 3499–3508. [Google Scholar]
- Hussain, M.; Fizazi, K.; Saad, F.; Rathenborg, P.; Shore, N.; Ferreira, U.; Ivashchenko, P.; Demirhan, E.; Modelska, K.; Phung, D.; et al. Enzalutamide in Men with Nonmetastatic, Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2018, 378, 2465–2474. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef] [Green Version]
- Ghaleb, A.M.; Yang, V.W. Kruppel-Like Factor 4 (KLF4): What we Currently Know. Gene 2017, 611, 27–37. [Google Scholar] [CrossRef]
- Ba, M.C.; Long, H.; Cui, S.Z.; Gong, Y.F.; Yan, Z.F.; Wu, Y.B.; Tu, Y.N. Long Noncoding RNA LINC00673 Epigenetically Suppresses KLF4 by Interacting with EZH2 and DNMT1 in Gastric Cancer. Oncotarget 2017, 8, 95542–95553. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Yan, B. Multiple Roles and Regulatory Mechanisms of the Transcription Factor GATA6 in Human Cancers. Clin. Genet. 2020, 97, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Wu, S.; O’Connell, D.; Gao, T.; Zhong, H.; Yang, Y. miR-216b Enhances the Efficacy of Vemurafenib by Targeting Beclin-1, UVRAG and ATG5 in Melanoma. Cell Signal. 2018, 42, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Taheri, M. Colon Cancer-Associated Transcripts 1 and 2: Roles and Functions in Human Cancers. J. Cell. Physiol. 2019, 234, 14581–14600. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Matsuyama, T.; Toiyama, Y.; Takahashi, N.; Ishikawa, T.; Uetake, H.; Yamada, Y.; Kusunoki, M.; Calin, G.; Goel, A. CCAT1 and CCAT2 Long Noncoding RNAs, Located within the 8q.24.21 ‘Gene Desert’, Serve as Important Prognostic Biomarkers in Colorectal Cancer. Ann. Oncol. 2017, 28, 1882–1888. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, Y.; Hou, Y.S.; Chen, D.Q.; He, S.L.; Cao, Y.F.; Wu, X.M. Long Non-Coding RNA CCAT1 Promotes the Migration and Invasion of Prostate Cancer PC-3 Cells. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2991–2996. [Google Scholar] [PubMed]
- You, Z.; Liu, C.; Wang, C.; Ling, Z.; Wang, Y.; Wang, Y.; Zhang, M.; Chen, S.; Xu, B.; Guan, H.; et al. LncRNA CCAT1 Promotes Prostate Cancer Cell Proliferation by Interacting with DDX5 and MIR-28-5P. Mol. Cancer. Ther. 2019, 18, 2469–2479. [Google Scholar] [CrossRef] [Green Version]
- Barros-Silva, D.; Lobo, J.; Guimaraes-Teixeira, C.; Carneiro, I.; Oliveira, J.; Martens-Uzunova, E.S.; Henrique, R.; Jeronimo, C. VIRMA-Dependent N6-Methyladenosine Modifications Regulate the Expression of Long Non-Coding RNAs CCAT1 and CCAT2 in Prostate Cancer. Cancers 2020, 12, 771. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Chen, J.; Tao, L.; Zhang, K.; Wang, R.; Chu, X.; Chen, L. Long Noncoding RNA ROR Regulates Chemoresistance in Docetaxel-Resistant Lung Adenocarcinoma Cells Via Epithelial Mesenchymal Transition Pathway. Oncotarget 2017, 8, 33144–33158. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lu, Y.; Zhang, C.; Huang, D.; Wu, W.; Zhang, Y.; Shen, J.; Cai, Y.; Chen, W.; Yao, W. FSCN1 Increases Doxorubicin Resistance in Hepatocellular Carcinoma through Promotion of Epithelial-Mesenchymal Transition. Int. J. Oncol. 2018, 52, 1455–1464. [Google Scholar]
- Grochowski, C.M.; Loomes, K.M.; Spinner, N.B. Jagged1 (JAG1): Structure, Expression, and Disease Associations. Gene 2016, 576, 381–384. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.M.; Ha, S.A.; Kim, H.K.; Yoo, J.; Kim, S.; Yim, S.H.; Jung, S.H.; Kim, D.W.; Chung, Y.J.; Kim, J.W. Gene Expression Signatures Associated with the In Vitro Resistance to Two Tyrosine Kinase Inhibitors, Nilotinib and Imatinib. Blood Cancer J. 2011, 1, e32. [Google Scholar] [CrossRef] [PubMed]
- Naghizadeh, S.; Mohammadi, A.; Duijf, P.H.G.; Baradaran, B.; Safarzadeh, E.; Cho, W.C.; Mansoori, B. The Role of miR-34 in Cancer Drug Resistance. J. Cell. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, Y.; Zhang, X.; Huang, Q.; Diao, Y.; Yin, H.; Liu, H. Long Non-Coding RNA HOXD-AS1 in Cancer. Clin. Chim. Acta 2018, 487, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Banerjee, T.; Vinckevicius, A.; Luo, Q.; Parker, J.B.; Baker, M.R.; Radhakrishnan, I.; Wei, J.; Barish, G.D.; Chakravarti, D. A Role for WDR5 in Integrating Threonine 11 Phosphorylation to Lysine 4 Methylation on Histone H3 during Androgen Signaling and in Prostate Cancer. Mol. Cell 2014, 54, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, S.; Xia, H.; Gao, Z.; Huang, R.; Tang, E.; Jiang, X. Long Noncoding RNA FEZF1-AS1 in Human Cancers. Clin. Chim. Acta 2019, 497, 20–26. [Google Scholar] [CrossRef]
- Cui, Y.; Wu, F.; Tian, D.; Wang, T.; Lu, T.; Huang, X.; Zhang, P.; Qin, L. miR-199a-3p Enhances Cisplatin Sensitivity of Ovarian Cancer Cells by Targeting ITGB8. Oncol. Rep. 2018, 39, 1649–1657. [Google Scholar] [CrossRef] [Green Version]
- Malric, L.; Monferran, S.; Delmas, C.; Arnauduc, F.; Dahan, P.; Boyrie, S.; Deshors, P.; Lubrano, V.; Da Mota, D.F.; Gilhodes, J.; et al. Inhibiting Integrin Beta8 to Differentiate and Radiosensitize Glioblastoma-Initiating Cells. Mol. Cancer Res. 2019, 17, 384–397. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.W.; Wang, Y.B.; Wang, D.Q.; Lin, Z.; Sun, R.J. Integrin Beta-8 (ITGB8) Silencing Reverses Gefitinib Resistance of Human Hepatic Cancer HepG2/G Cell Line. Int. J. Clin. Exp. Med. 2015, 8, 3063–3071. [Google Scholar]
- Lian, Y.; Cai, Z.; Gong, H.; Xue, S.; Wu, D.; Wang, K. HOTTIP: A Critical Oncogenic Long Non-Coding RNA in Human Cancers. Mol. Biosyst. 2016, 12, 3247–3253. [Google Scholar] [CrossRef]
- Zhang, G.J.; Song, W.; Song, Y. Overexpression of HOTTIP Promotes Proliferation and Drug Resistance of Lung Adenocarcinoma by Regulating AKT Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5683–5690. [Google Scholar]
- Wang, J.; Lv, B.; Su, Y.; Wang, X.; Bu, J.; Yao, L. Exosome-Mediated Transfer of lncRNA HOTTIP Promotes Cisplatin Resistance in Gastric Cancer Cells by Regulating HMGA1/miR-218 Axis. Onco Targets Ther. 2019, 12, 11325–11338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhao, L.; Wang, Q. Overexpression of Long Non-Coding RNA HOTTIP Increases Chemoresistance of Osteosarcoma Cell by Activating the Wnt/Beta-Catenin Pathway. Am. J. Transl. Res. 2016, 8, 2385–2393. [Google Scholar] [PubMed]
- Parolia, A.; Crea, F.; Xue, H.; Wang, Y.; Mo, F.; Ramnarine, V.R.; Liu, H.H.; Lin, D.; Saidy, N.R.N.; Clermont, P.; et al. The Long Non-Coding RNA PCGEM1 is Regulated by Androgen Receptor Activity In Vivo. Mol. Cancer 2015, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Prensner, J.R.; Sahu, A.; Iyer, M.K.; Malik, R.; Chandler, B.; Asangani, I.A.; Poliakov, A.; Vergara, I.A.; Alshalalfa, M.; Jenkins, R.B.; et al. The IncRNAs PCGEM1 and PRNCR1 are Not Implicated in Castration Resistant Prostate Cancer. Oncotarget 2014, 5, 1434–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Lin, C.; Jin, C.; Yang, J.C.; Tanasa, B.; Li, W.; Merkurjev, D.; Ohgi, K.A.; Meng, D.; Zhang, J.; et al. lncRNA-Dependent Mechanisms of Androgen-Receptor-Regulated Gene Activation Programs. Nature 2013, 500, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, N.K.; Kim, J.; Cinar, B.; Ramachandran, A.; Hager, M.H.; Di Vizio, D.; Adam, R.M.; Rubin, M.A.; Raychaudhuri, P.; De Benedetti, A.; et al. Heterogeneous Nuclear Ribonucleoprotein K is a Novel Regulator of Androgen Receptor Translation. Cancer Res. 2009, 69, 2210–2218. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lv, S.; Ning, H.; Li, K.; Zhou, X.; Xv, H.; Wen, H. Down-Regulation of CASC2 Contributes to Cisplatin Resistance in Gastric Cancer by Sponging miR-19a. Biomed. Pharmacother. 2018, 108, 1775–1782. [Google Scholar] [CrossRef]
- Liao, Y.; Shen, L.; Zhao, H.; Liu, Q.; Fu, J.; Guo, Y.; Peng, R.; Cheng, L. LncRNA CASC2 Interacts with miR-181a to Modulate Glioma Growth and Resistance to TMZ through PTEN Pathway. J. Cell. Biochem. 2017, 118, 1889–1899. [Google Scholar] [CrossRef]
- Zheng, P.; Dong, L.; Zhang, B.; Dai, J.; Zhang, Y.; Wang, Y.; Qin, S. Long Noncoding RNA CASC2 Promotes Paclitaxel Resistance in Breast Cancer through Regulation of miR-18a-5p/CDK19. Histochem. Cell Biol. 2019, 152, 281–291. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, W.; Hu, C.; Li, G.; Zhou, S.; He, Y.; Ma, F.; Deng, C.; Sun, L. Modulation of CASC2/miR-21/PTEN Pathway Sensitizes Cervical Cancer to Cisplatin. Arch. Biochem. Biophys. 2017, 623–624. [Google Scholar] [CrossRef]
- Tong, L.; Wu, W. Effects of Long Non-Coding RNA (lncRNA) Cancer Susceptibility Candidate 2c (CASC2c) on Proliferation, Metastasis and Drug Resistance of Non-Small Cell Lung Cancer (NSCLC) Cells through ERK1/2 and Beta-Catenin Signaling Pathways. Pathol. Res. Pract. 2019, 215, 152522. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.C. The Molecular Mechanisms of Chemoresistance in Cancers. Oncotarget 2017, 8, 59950–59964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.S.; Kim, J.; Elghiaty, A.; Ham, W.S. Recent Global Trends in Testicular Cancer Incidence and Mortality. Med. Baltim. 2018, 97, e12390. [Google Scholar] [CrossRef] [PubMed]
- Magers, M.J.; Idrees, M.T. Updates in Staging and Reporting of Testicular Cancer. Surg. Pathol. Clin. 2018, 11, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. International Germ Cell Consensus Classification: A Prognostic Factor-Based Staging System for Metastatic Germ Cell Cancers. International Germ Cell Cancer Collaborative Group. J. Clin. Oncol. 1997, 15, 594–603. [Google Scholar] [CrossRef]
- Woldu, S.L.; Bagrodia, A. Update on Epidemiologic Considerations and Treatment Trends in Testicular Cancer. Curr. Opin. Urol. 2018, 28, 440–447. [Google Scholar] [CrossRef]
- Regouc, M.; Belge, G.; Lorch, A.; Dieckmann, K.P.; Pichler, M. Non-Coding microRNAs as Novel Potential Tumor Markers in Testicular Cancer. Cancers 2020, 12, 749. [Google Scholar] [CrossRef] [Green Version]
- Lembeck, A.L.; Puchas, P.; Hutterer, G.; Barth, D.A.; Terbuch, A.; Bauernhofer, T.; Pichler, M. MicroRNAs as Appropriate Discriminators in Non-Specific Alpha-Fetoprotein (AFP) Elevation in Testicular Germ Cell Tumor Patients. Noncoding RNA 2020, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Raveh, E.; Matouk, I.J.; Gilon, M.; Hochberg, A. The H19 Long Non-Coding RNA in Cancer Initiation, Progression and Metastasis—A Proposed Unifying Theory. Mol. Cancer 2015, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gan, Y.; Tan, Z.; Zhou, J.; Kitazawa, R.; Jiang, X.; Tang, Y.; Yang, J. TDRG1 Functions in Testicular Seminoma are Dependent on the PI3K/Akt/mTOR Signaling Pathway. Onco Targets Ther. 2016, 9, 409–420. [Google Scholar]
- Gan, Y.; Wang, Y.; Tan, Z.; Zhou, J.; Kitazawa, R.; Jiang, X.; Tang, Y.; Yang, J. TDRG1 Regulates Chemosensitivity of Seminoma TCam-2 Cells to Cisplatin Via PI3K/Akt/mTOR Signaling Pathway and Mitochondria-Mediated Apoptotic Pathway. Cancer. Biol. Ther. 2016, 17, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.G.; Xu, H.; Suo, S.S.; Xu, X.L.; Ni, M.W.; Gu, L.H.; Chen, W.; Wang, L.Y.; Zhao, Y.; Tian, B.; et al. The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer. Sci. Rep. 2016, 6, 26093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Cheng, N.; Li, X.; Pan, H.; Li, C.; Ren, S.; Su, C.; Cai, W.; Zhao, C.; Zhang, L.; et al. Correlation of Long Non-Coding RNA H19 Expression with Cisplatin-Resistance and Clinical Outcome in Lung Adenocarcinoma. Oncotarget 2017, 8, 2558–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Zhang, X.; Zhan, D.; Li, J.; Li, Z.; Li, H.; Qian, J. LncRNA H19 Interacted with miR-130a-3p and miR-17-5p to Modify Radio-Resistance and Chemo-Sensitivity of Cardiac Carcinoma Cells. Cancer Med. 2019, 8, 1604–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhou, Y.; He, J.; Sun, H.; Jin, Z. Long Non-Coding RNA H19 Mediates Ovarian Cancer Cell Cisplatin-Resistance and Migration during EMT. Int. J. Clin. Exp. Pathol. 2019, 12, 2506–2515. [Google Scholar] [PubMed]
- Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA Therapeutics in Cancer—An Emerging Concept. EBioMedicine 2016, 12, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, M.P.; Kopetz, S.; Ajani, J.A.; Calin, G.A. Non-Coding RNAs in GI Cancers: From Cancer Hallmarks to Clinical Utility. Gut 2020, 69, 748–763. [Google Scholar] [CrossRef]
- De Los Santos, M.C.; Dragomir, M.P.; Calin, G.A. The Role of Exosomal Long Non-Coding RNAs in Cancer Drug Resistance. Cancer. Drug Resist. 2019, 2, 1178–1192. [Google Scholar] [CrossRef] [Green Version]
- Pardini, B.; Sabo, A.A.; Birolo, G.; Calin, G.A. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers 2019, 11, 1170. [Google Scholar] [CrossRef] [Green Version]
lncRNA | Drug Resistance | Influence on Resistance ↑/↓ | Expression Pattern | Pathway | Patient Tissue | In Vivo Models | Clinical Endpoint | Outcome (High Expression) | Cohort Size | Database | Multivariate Analysis | Hazard Ratio (HR) (95%CI, p-Value) | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCC | |||||||||||||
SRLR | Sorafenib | ↑ | ↑ | SRLR/ NF-ΚB/ IL-6/ STATA3 | Yes | Yes | PFS, treatment response | Poor | 161 | Institutional | Yes | PFS: 0.407 (0.222–0.744, p = 0.003) | [15] |
ARSR | Sunitinib | ↑ | ↑ | ARSR/ miR-34/ AXL ARSR/ miR-34/ c-MET | Yes | Yes | PFS, treatment response | Poor | 84 | Institutional | Yes | PFS: 2.9, (1.2–7.1, p = 0.017) | [16] |
ADAMTS9-AS2 | 5-fluorouracile, Cisplatin | ↓ | ↓ | ADAMTS9-AS2/ miR-27-3p/ FOXO1 | yes | No | OS, DFS | Good | 258 76 | GEIPA Institutional | No | NA | [17] |
NEAT1 | Sorafenib | ↑ | ↑ | NEAT1/ miR-34a/ c-MET | Yes | No | OS, PFS | Poor | 102 | Institutional | No | NA | [18] |
GAS5 | Sorafenib | ↓ | ↓ | GAS5/ miR-21/ SOX5 | Yes | Yes | No | NA | NA | NA | NA | NA | [19] |
Bladder cancer | |||||||||||||
UCA1 | Cisplatin/gemcitabine | ↑ | ↑ | UCA1/ CREB/ miR-196a-5p/p27Kip1 | Yes | Yes | No | NA | NA | NA | NA | NA | [20] |
Cisplatin | ↑ | ↑ | UCA1/Wnt6/Wnt signaling | Yes | Yes | No | NA | NA | NA | NA | NA | [21] | |
NA | ↑ | ↑ | UCA1/miR-582-5p/ATG7-autophagy | Yes | Yes | No | NA | NA | NA | NA | NA | [22] | |
TUG1 | Cisplatin | ↑ | ↑ | TUG1/miR-194-5p/CCND2 | Yes | Yes | OS | Poor | 87 | Institutional | No | NA | [23] |
PVT1 | Doxorubicin/ cisplatin | ↑ | ↑ | PVT1/ Wnt/ β-catenin | Yes | No | No | NA | NA | Institutional | NA | NA | [24] |
FOXD2-AS1 | Gemcitabine | ↑ | ↑ | FOXD2-AS1/miR-143/ABCC3 | No | Yes | No | NA | NA | NA | NA | NA | [25] |
DLEU1 | Cisplatin | ↑ | ↑ | DLEU1/miR-99b/HS3ST3B1 | Yes | No | OS | Poor | 406 485 | TCGA (UALCAN/ KMplotter) | No | OS: 1.65 (1.2–2.26) p = 0.0016 | [26] |
MST1P2 | Cisplatin | ↑ | ↑ | MST1P2/ miR-133b/ Sirt1/p53 | No | No | No | NA | NA | NA | NA | NA | [27] |
HIF1A-AS2 | Cisplatin | ↑ | ↑ | HIF1A-AS2/HMGA1/p53 family | Yes | No | No | NA | NA | NA | NA | NA | [28] |
GHET1 | Gemcitabine | ↑ | ↑ | GHET1/ABCC1 | Yes | No | No | NA | NA | NA | NA | NA | [29] |
MALAT1 | Cisplatin | ↑ | ↑ | MALAT1/miR-101-3p/ VEGF-C | Yes | No | No | NA | NA | NA | NA | NA | [30] |
lncRNA-LET | Gemcitabine | ↓ | ↓ | LncRNA-LET/NF90/miR-145 | Yes | Yes | OS | Good | 60 | Institutional | No | p = 0.0014 | [31] |
GAS5 | Doxorubicin | ↓ | ↓ | GAS5/ Bcl-2 | Yes | No | OS | Good | 82 | Institutional | No | OS: 0.4824 (0.2865–0.8122 p = 0.006) | [32] |
LBCS | Cisplatin/gemcitabine | ↓ | ↓ | lnc-LBCS/ hnRNPK/EZH2/ SOX2 | Yes | Yes | OS, DFS | Good | 120/185 | Institutional TCGA-GEPIA | Yes | OS: 0.2721, p < 0.0001 DFS: 0.3029 p < 0.0001 OS: 0.3663 p = 0.0165 | [33] |
Prostate cancer | |||||||||||||
UCA1 | Docetaxel | ↑ | ↑ | UCA1/ miR-204 /Sirt1 | No | No | No | NA | NA | NA | NA | NA | [34] |
CASC2 | Docetaxel | ↓ | ↓ | CASC2/miR-183/SPRY2 | Yes | No | No | NA | NA | NA | NA | NA | [35] |
MALAT1 | Docetaxel | ↑ | ↑ | MALAT1/miR-145-5p/AKAP12 | Yes | Yes | No | NA | NA | NA | NA | NA | [36] |
Enzalutamide | ↑ | ↑ | MALAT1/SF2/AR-v7 | No | Yes | No | NA | NA | NA | NA | NA | [37] | |
Linc00673 | Paclitaxel Docetaxel | ↑ | ↑ | Linc00673/Dnmt1-3/KFL4 | Yes | Yes | No | NA | NA | NA | NA | NA | [38] |
Linc00518 | Paclitaxel | ↑ | ↑ | Linc00518/miR-216-5p/GATA6 | Yes | No | OS | Poor | 45 | Institutional | No | NA | [39] |
CCAT1 | Paclitaxel | ↑ | ↑ | CCAT1/miR-24-3p/FSCN1 | Yes | No | No | NA | NA | NA | NA | NA | [40] |
DANCR | Docetaxel | ↑ | ↑ | DANCR/miR-24a-5p/JAG1 | Yes | Yes | No | NA | NA | NA | NA | NA | [41] |
HOXD-AS1 | Bicalutamide Paclitaxel | ↑ | ↑ | HOXD-AS1/WDR5 | No | Yes | PFS | Poor | 309 | TCGA | Yes | 2.827, (1.297–6.161) p = 0.009 | [42] |
FEZF1-AS1 | Paclitaxel | ↑ | ↑ | FEZF1-AS1/miR-25-3p/ITGB8 | Yes | Yes | No | NA | NA | NA | NA | NA | [43] |
HOTTIP | Cisplatin | ↑ | ↑ | HOTTIP/Wnt/β-catenin | Yes | No | No | NA | NA | NA | NA | NA | [44] |
PCGEM1 | Enzalutamide | ↑ | ↑ | PCGEM1/AR3-splicing | No | Yes | No | NA | NA | NA | NA | NA | [45] |
HOTAIR | Enzalutamide | ↑ | ↑ | HOTAIR/AR | Yes | No | BRFS | Poor | NA | GEO | No | NA | [46] |
LBCS | Bicalutamide | ↓ | ↓ | LBCS/ hnRNPK/AR | Yes | No | BRFS PFS | Good | 374 | TCGA | Yes | BRFS: 0.447 (0.235–0.967) p = 0.040 | [47] |
Testicular Cancer | |||||||||||||
H19 | Cisplatin | ↑ | ↑ | H19/miR-106-5p/TDRG1 | Yes | Yes | No | NA | NA | NA | NA | NA | [48] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barth, D.A.; Juracek, J.; Slaby, O.; Pichler, M.; Calin, G.A. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers 2020, 12, 2148. https://doi.org/10.3390/cancers12082148
Barth DA, Juracek J, Slaby O, Pichler M, Calin GA. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers. 2020; 12(8):2148. https://doi.org/10.3390/cancers12082148
Chicago/Turabian StyleBarth, Dominik A., Jaroslav Juracek, Ondrej Slaby, Martin Pichler, and George A. Calin. 2020. "lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System" Cancers 12, no. 8: 2148. https://doi.org/10.3390/cancers12082148
APA StyleBarth, D. A., Juracek, J., Slaby, O., Pichler, M., & Calin, G. A. (2020). lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers, 12(8), 2148. https://doi.org/10.3390/cancers12082148