Diagnostic Performance of PET Imaging Using Different Radiopharmaceuticals in Prostate Cancer According to Published Meta-Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Radiolabeled Choline (Cho) PET/CT
3.2. PET/CT with PSMA-Targeted Agents
3.3. 18F-FACBC (fluciclovine) PET/CT
3.4. 11C-Acetate PET/CT
3.5. 18F-NaF (Fluoride) PET/CT
3.6. 18F-FDG PET/CT
3.7. PET/MR with Different Radiotracers
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Trabulsi, E.J.; Rumble, R.B.; Jadvar, H.; Hope, T.; Pomper, M.; Turkbey, B.; Rosenkrantz, A.B.; Verma, S.; Margolis, D.J.; Froemming, A.; et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1963–1996. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Lee, S.W. Diagnostic accuracy of 18F flucholine PET/CT for preoperative lymph node staging in newly diagnosed prostate cancer patients; a systematic review and meta-analysis. Br. J. Radiol. 2019, 92, 20190193. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G.; Mestre, R.P.; Ferrari, M.; Bosetti, D.G.; Pascale, M.; Oikonomou, E.; De Dosso, S.; Jermini, F.; Prior, J.O.; Roggero, E.; et al. Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: A meta-analysis. Am. J. Nucl. Med. Mol. Imaging 2019, 9, 127–139. [Google Scholar] [PubMed]
- Zhou, J.; Gou, Z.; Wu, R.; Yuan, Y.; Yu, G.; Zhao, Y. Comparison of PSMA-PET/CT, choline-PET/CT, NaF-PET/CT, MRI, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A systematic review and meta-analysis. Skelet. Radiol. 2019, 48, 1915–1924. [Google Scholar] [CrossRef]
- Li, M.; Huang, Z.; Yu, H.; Wang, Y.; Zhang, Y.; Song, B. Comparison of PET/MRI with multiparametric MRI in diagnosis of primary prostate cancer: A meta-analysis. Eur. J. Radiol. 2019, 113, 225–231. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lee, M.-T.; Lin, C.-L.; Kao, C.-H. Comparing the Staging/Restaging Performance of 68Ga-Labeled Prostate-Specific Membrane Antigen and 18F-Choline PET/CT in Prostate Cancer. Clin. Nucl. Med. 2019, 44, 365–376. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, L.; Hu, J.; Feng, D.; Xu, L. Diagnostic performance of choline PET/CT for the detection of bone metastasis in prostate cancer: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0203400. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Butaney, M.; Konety, B.R. The utility of PET-based imaging for prostate cancer biochemical recurrence: A systematic review and meta-analysis. World J. Urol. 2018, 37, 1239–1249. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, H.; Liao, X. Trigger pSA predicting recurrence from positive choline PET/CT with prostate cancer after initial treatment. Oncotarget 2018, 9, 14630–14641. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, L.; Zattoni, F.; Karnes, R.J.; Novara, G.; Lowe, V. Radiolabeled choline PET/CT before salvage lymphadenectomy dissection. Nucl. Med. Commun. 2016, 37, 1223–1231. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Wang, T.; Liu, L.; Zhao, L.; Guo, G.; Wang, N. Influence of Four Radiotracers in PET/CT on Diagnostic Accuracy for Prostate Cancer: A Bivariate Random-Effects Meta-Analysis. Cell. Physiol. Biochem. 2016, 39, 467–480. [Google Scholar] [CrossRef]
- Von Eyben, F.E.; Kairemo, K. Acquisition with (11) C-choline and (18) F-fluorocholine PET/CT for patients with biochemical recurrence of prostate cancer: A systematic review and meta-analysis. Ann. Nucl. Med. 2016, 30, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Fanti, S.; Minozzi, S.; Castellucci, P.; Balduzzi, S.; Herrmann, K.; Krause, B.J.; Oyen, W.J.G.; Chiti, A. PET/CT with 11C-choline for evaluation of prostate cancer patients with biochemical recurrence: Meta-analysis and critical review of available data. Eur. J. Nucl. Med. Mol. Imaging 2015, 43, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Duan, Z.; Lei, J.; Jiao, G. Comparison of meta-analyses among elastosonography (ES) and positron emission tomography/computed tomography (PET/CT) imaging techniques in the application of prostate cancer diagnosis. Tumor Boil. 2015, 37, 2999–3007. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Deng, H.; Hu, S.; Jia, Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: A meta-analysis. Skelet. Radiol. 2014, 43, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G.; Ceriani, L.; Sadeghi, R.; Giovacchini, G.; Giovanella, L. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: A meta-analysis. Clin. Chem. Lab. Med. 2014, 52, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Von Eyben, F.E.; Kairemo, K. Meta-analysis of (11) C-choline and (18) F-choline PET/CT for management of patients with prostate cancer. Nucl. Med. Commun. 2014, 35, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Umbehr, M.; Müntener, M.; Hany, T.; Sulser, T.; Bachmann, L.M. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2013, 64, 106–117. [Google Scholar] [CrossRef]
- Evangelista, L.; Zattoni, F.; Guttilla, A.; Saladini, G.; Zattoni, F.; Colletti, P.M.; Rubello, D. Choline PET or PET/CT and biochemical relapse of prostate cancer: A systematic review and meta-analysis. Clin. Nucl. Med. 2013, 38, 305–314. [Google Scholar] [CrossRef]
- Evangelista, L.; Guttilla, A.; Zattoni, F.; Muzzio, P.C.; Zattoni, F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: A systematic literature review and meta-analysis. Eur. Urol. 2013, 63, 1040–1048. [Google Scholar] [CrossRef]
- Kimura, S.; Abufaraj, M.; Janisch, F.; Iwata, T.; Parizi, M.K.; Foerster, B.; Fossati, N.; Briganti, A.; Egawa, S.; Hartenbach, M.; et al. Performance of [68Ga] Ga-PSMA 11 PET for detecting prostate cancer in the lymph nodes before salvage lymph node dissection: A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2019, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G.; Annunziata, S.; Pizzuto, D.A.; Giovanella, L.; Prior, J.O.; Ceriani, L. Detection Rate of 18F-Labeled PSMA PET/CT in Biochemical Recurrent Prostate Cancer: A Systematic Review and a Meta-Analysis. Cancers 2019, 11, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Xu, T.; Wang, X.; Yu, Y.-B.; Fan, Z.-Y.; Li, D.-X.; Luo, L.; Yang, X.-C.; Jiao, W.; Niu, H.-T. Diagnostic Performance of (68) Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-analysis. World J. Mens Health 2020, 38, 208. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar] [CrossRef]
- Mestre, R.P.; Treglia, G.; Ferrari, M.; Pascale, M.; Mazzara, C.; Azinwi, N.C.; Llado’, A.; Stathis, A.; Giovanella, L.; Roggero, E. Correlation between PSA kinetics and PSMA-PET in prostate cancer restaging: A meta-analysis. Eur. J. Clin. Investig. 2019, 49, e13063. [Google Scholar] [CrossRef]
- Hope, T.A.; Goodman, J.Z.; Allen, I.E.; Calais, J.; Fendler, W.P.; Carroll, P.R. Metaanalysis of (68) Ga-PSMA-11 PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. J. Nucl. Med. 2018, 60, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-J.; Lee, S.-W.; Ha, H.K. Diagnostic Performance of Radiolabeled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging in Newly Diagnosed Intermediate to High-Risk Prostate Cancer Patients: A Systematic Review and Meta-Analysis. Urol. Int. 2018, 102, 27–36. [Google Scholar] [CrossRef]
- Han, S.; Woo, S.; Kim, Y.J.; Suh, C.H. Impact of 68 Ga-PSMA PET on the Management of Patients with Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2018, 74, 179–190. [Google Scholar] [CrossRef]
- Von Eyben, F.; Picchio, M.; Von Eyben, R.; Rhee, H.; Bauman, G. (68) Ga-Labeled Prostate-specific Membrane Antigen Ligand Positron Emission Tomography/Computed Tomography for Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Focus 2018, 4, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, Specificity, and Predictors of Positive (68) Ga–Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 926–937. [Google Scholar] [CrossRef]
- Tan, N.; Bavadian, N.; Calais, J.; Oyoyo, U.; Kim, J.; Turkbey, I.B.; Mena, E.; Davenport, M.S. Imaging of Prostate Specific Membrane Antigen Targeted Radiotracers for the Detection of Prostate Cancer Biochemical Recurrence after Definitive Therapy: A Systematic Review and Meta-Analysis. J. Urol. 2019, 202, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.; Oyoyo, U.; Bavadian, N.; Ferguson, N.; Mukkamala, A.; Calais, J.; Davenport, M.S. PSMA-targeted Radiotracers versus 18F Fluciclovine for the Detection of Prostate Cancer Biochemical Recurrence after Definitive Therapy: A Systematic Review and Meta-Analysis. Radiology 2020, 296, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Bin, X.; Yong, S.; Kong, Q.-F.; Zhao, S.; Zhang, G.-Y.; Wu, J.-P.; Chen, S.-Q.; Zhu, W.-D.; Pan, K.-H.; Du, M.-L.; et al. Diagnostic Performance of PET/CT Using 18F-FACBC in Prostate Cancer: A Meta-Analysis. Front. Oncol. 2020, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudicella, R.; Albano, D.; Alongi, P.; Argiroffi, G.; Bauckneht, M.; Baldari, S.; Bertagna, F.; Boero, M.; De Vincentis, G.; Del Sole, A.; et al. (18) F-Facbc in Prostate Cancer: A Systematic Review and Meta-Analysis. Cancers 2019, 11, 1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-J.; Lee, S. The role of (18) F-fluciclovine PET in the management of prostate cancer: A systematic review and meta-analysis. Clin. Radiol. 2019, 74, 886–892. [Google Scholar] [CrossRef]
- Ren, J.; Yuan, L.; Wen, G.; Yang, J. The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: A meta-analysis. Acta Radiol. 2015, 57, 487–493. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Jones, K.M.; Werner, R.A.; Salas-Fragomeni, R.A.; Marcus, C.V.; Higuchi, T.; Rowe, S.P.; Solnes, L.B.; Javadi, M.S. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: A meta-analysis of diagnostic accuracy studies. Ann. Nucl. Med. 2019, 33, 351–361. [Google Scholar] [CrossRef]
- Mohsen, B.; Giorgio, T.; Rasoul, Z.S.; Werner, L.; Ali, G.R.M.; Reza, D.K.V.; Ramin, S. Application of 11-C-acetate positron-emission tomography (PET) imaging in prostate cancer: Systematic review and meta-analysis of the literature. BJU Int. 2013, 112, 1062–1072. [Google Scholar] [CrossRef]
- Sadeghi, R.; Giovanella, L.; Treglia, G.; Bertagna, F. Incidental uptake of 18F-fluorodeoxyglucose in the prostate gland. Nuklearmedizin 2014, 53, 249–258. [Google Scholar] [CrossRef]
- Wang, R.; Shen, G.; Yang, R.; Ma, X.; Tian, R. 68Ga-PSMA PET/MRI for the diagnosis of primary and biochemically recurrent prostate cancer: A meta-analysis. Eur. J. Radiol. 2020, 130. [Google Scholar] [CrossRef]
- Treglia, G.; Vigneri, C.; Sadeghi, R.; Evangelista, L.; Ceriani, L.; Giovanella, L. Discordance rate between radiolabelled choline PET/CT and bone scintigraphy in detecting bone metastases in patients with prostate cancer: A meta-analysis. Clin. Transl. Imaging 2015, 3, 133–140. [Google Scholar] [CrossRef]
- Volkmer, B.; Glatting, G.; Hoff, J.V.D.; Gschwend, J.E.; Messer, P.; Reske, S.N.; Neumaier, B.; Kotzerke, J. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin 2003, 42, 25–30. [Google Scholar] [CrossRef]
- Jadvar, H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med. 2010, 52, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceci, F.; Fanti, S. PSMA-PET/CT imaging in prostate cancer: Why and when. Clin. Transl. Imaging 2019, 7, 377–379. [Google Scholar] [CrossRef] [Green Version]
- Wallitt, K.L.; Khan, S.R.; Dubash, S.; Tam, H.H.; Khan, S.; Barwick, T.D. Clinical PET Imaging in Prostate Cancer. Radiographics 2017, 37, 1512–1536. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, R.; Treglia, G. Systematic reviews and meta-analyses of diagnostic studies: A practical guideline. Clin. Transl. Imaging 2016, 5, 83–87. [Google Scholar] [CrossRef]
- Treglia, G.; Sadeghi, R. Meta-analyses and systematic reviews on PET and PET/CT in oncology: The state of the art. Clin. Transl. Imaging 2013, 1, 73–75. [Google Scholar] [CrossRef] [Green Version]
- Pozzo, L.; Monteiro, L.R.; Cerci, J.J.; Fanti, S.; Negro, A.; Trindade, E. HTA in nuclear medicine: [68Ga]PSMA PET/CT for patients with prostate cancer. Clin. Transl. Imaging 2019, 7, 7–20. [Google Scholar] [CrossRef]
Authors | Year | Articles | Patients | Topic | Pooled Sensitivity | Pooled Specificity | Pooled LR+ | Pooled LR− | Pooled DOR | Pooled DR |
---|---|---|---|---|---|---|---|---|---|---|
Kim et al. [2] | 2019 | 7 | 627 | Staging | 0.57 | 0.94 | 10.2 | 0.46 | 22 | NA |
Treglia et al. [3] | 2019 | 5 | 257 | Restaging | NA | NA | NA | NA | NA | 0.56 |
Zhou et al. [4] | 2019 | 11 | NA | Detection of bone metastases | 0.87 | 0.99 | NA | NA | 504 | NA |
Lin et al. [6] | 2019 | 16 | 2122 | Staging/restaging | 0.93 | 0.83 | 4.98 | 0.10 | 68.27 | NA |
Sathianathen et al. [8] | 2019 | 16 | NA | Restaging | 0.81 | 0.84 | 5.4 | 0.24 | 25.2 | 0.62 |
Guo et al. [7] | 2018 | 14 | NA | Detection of bone metastases | 0.89 | 0.98 | 40.4 | 0.12 | 344 | NA |
Wei et al. [9] | 2018 | 44 | NA | Restaging | 0.82 | 0.92 | 6.61 | 0.20 | 38.55 | 0.59 |
Evangelista et al. [10] | 2016 | 9 | NA | Restaging | 0.85 | 0.33 | 1.21 | 0.46 | 2.83 | NA |
Liu et al. [11] | 2016 | 46 | NA | Staging/restaging | 0.76–0.83 | 0.82–0.93 | 4.5–11.7 | 0.21–0.26 | 22–46 | NA |
Von Eyben et al. [12] | 2016 | 18 | 2219 | Restaging | NA | NA | NA | NA | NA | 0.55 |
Fanti et al. [13] | 2016 | 18 | 2126 | Restaging | 0.89 | 0.89 | NA | NA | NA | 0.62 |
Ouyang et al. [14] | 2016 | 46 | NA | Staging | 0.73–0.78 | 0.79–0.90 | NA | NA | NA | NA |
Shen et al. [15] | 2014 | 9 | NA | Detection of bone metastases | 0.91 | 0.99 | NA | NA | 150.70 | NA |
Treglia et al. [16] | 2014 | 14 | NA | Restaging | NA | NA | NA | NA | NA | 0.58 |
von Eyben et al. [17] | 2014 | 47 | 3167 | Staging/restaging | 0.59 | 0.92 | 6.86 | 0.45 | 19.17 | NA |
Umbehr et al. [18] | 2013 | 29 | 1843 | Staging/restaging | 0.84/0.85 | 0.79/0.88 | 4.02/7.06 | 0.2/0.17 | 20.4/41.4 | NA |
Evangelista et al. [19] | 2013 | 19 | 1555 | Restaging | 0.86 | 0.93 | NA | NA | 62.12 | NA |
Evangelista et al. [20] | 2013 | 10 | 441 | Staging | 0.49 | 0.95 | 8.35 | 0.55 | 18.99 | NA |
Authors | Year | Articles | Patients | Topic | Pooled Sensitivity | Pooled Specificity | Pooled LR+ | Pooled LR− | Pooled DOR | Pooled DR |
---|---|---|---|---|---|---|---|---|---|---|
Tan et al. [32] | 2020 | 38 | 3217 | Restaging | NA | NA | NA | NA | NA | NA (*) |
Kimura et al. [21] | 2020 | 9 | NA | Restaging | 0.84 | 0.97 | 30.3 | 0.16 | 189 | NA |
Wu et al. [23] | 2020 | 13 | 1597 | Staging | 0.65 | 0.94 | 10.6 | 0.37 | 29 | NA |
Perera et al. [24] | 2020 | 37 | 4790 | Staging/restaging | 0.77 | 0.97 | NA | NA | NA | NA |
Tan et al. [31] | 2019 | 43 | 5113 | Restaging | NA | NA | NA | NA | NA | 0.70 |
Treglia et al. [3] | 2019 | 5 | 257 | Restaging | NA | NA | NA | NA | NA | 0.78 |
Zhou et al. [4] | 2019 | 6 | NA | Detection of bone metastases | 0.97 | 1.00 | NA | NA | NA | NA |
Treglia et al. [22] | 2019 | 6 | 645 | Restaging | NA | NA | NA | NA | NA | 0.81 |
Lin et al. [6] | 2019 | 13 | 652 | Staging/restaging | 0.92 | 0.94 | 7.91 | 0.14 | 79.04 | NA |
Pereira Mestre et al. [25] | 2019 | 8 | NA | Restaging | NA | NA | NA | NA | NA | 0.72 |
Hope et al. [26] | 2019 | 29 | NA | Staging/restaging | 0.74/0.99 | 0.96/0.76 | NA | NA | NA | NA |
Kim et al. [27] | 2019 | 6 | 298 | Staging | 0.71 | 0.95 | 15.6 | 0.30 | 51 | NA |
Han et al. [28] | 2018 | 15 | 1163 | Impact on management | NA | NA | NA | NA | NA | NA |
Von Eyben et al. [29] | 2018 | 15 | 1256 | Staging/restaging | 0.61–0.7/0.87–0.93 | 0.84–0.97/0.93–1 | NA | NA | NA | 0.74/0.81 |
Perera et al. [30] | 2016 | 16 | 1309 | Staging/restaging | 0.86 | 0.86 | NA | NA | NA | 0.40/0.76 |
Authors | Year | Articles | Patients | Topic | Pooled Sensitivity | Pooled Specificity | Pooled LR+ | Pooled LR− | Pooled DOR | Pooled DR |
---|---|---|---|---|---|---|---|---|---|---|
Tan et al. [32] | 2020 | 6 | 482 | Restaging | NA | NA | NA | NA | NA | NA (*) |
Bin et al. [33] | 2020 | 9 | 363 | Staging/restaging | 0.88 | 0.73 | 3.3 | 0.17 | 20 | NA |
Laudicella et al. [34] | 2019 | 9 | NA | Staging/restaging | 0.86 | 0.76 | 4.5 | 0.34 | 16.4 | NA |
Kim et al. [35] | 2019 | 13 | 563 | Staging/restaging | 0.56–0.87/0.79 | 0.84–0.98/0.69 | 5.3–19.3/2.5 | 0.16–0.48/0.3 | 34–44/9 | NA |
Sathianathen et al. [8] | 2019 | 5 | NA | Restaging | 0.80 | 0.62 | 2.1 | 0.36 | 8 | 0.59 |
Ren et al. [36] | 2016 | 6 | 251 | Restaging | 0.87 | 0.66 | NA | NA | NA | NA |
Authors | Year | Articles | Patients | Topic | Pooled Sensitivity | Pooled Specificity | Pooled LR+ | Pooled LR− | Pooled DOR | Pooled DR |
---|---|---|---|---|---|---|---|---|---|---|
Liu et al. [11] | 2016 | 5 | NA | Staging/restaging | 0.79 | 0.59 | 1.90 | 0.35 | 6 | NA |
Ouyang et al. [14] | 2016 | 5 | NA | Staging | 0.79 | 0.59 | NA | NA | NA | NA |
Mohsen et al. [38] | 2013 | 23 | NA | Staging/restaging | 0.75/0.64 | 0.76/0.93 | 1.8 | 0.45 | 3.9 | NA |
Authors | Year | Articles | Patients | Topic | Pooled Sensitivity | Pooled Specificity | Pooled LR+ | Pooled LR− | Pooled DOR | Pooled DR |
---|---|---|---|---|---|---|---|---|---|---|
Zhou et al. [4] | 2019 | 7 | NA | Detection of bone metastases | 0.96 | 0.97 | NA | NA | 674 | NA |
Sheikhbahaei et al. [37] | 2019 | 12 | 507 | Detection of bone metastases | 0.98 | 0.90 | 6.6 | 0.07 | 123.2 | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annunziata, S.; Pizzuto, D.A.; Treglia, G. Diagnostic Performance of PET Imaging Using Different Radiopharmaceuticals in Prostate Cancer According to Published Meta-Analyses. Cancers 2020, 12, 2153. https://doi.org/10.3390/cancers12082153
Annunziata S, Pizzuto DA, Treglia G. Diagnostic Performance of PET Imaging Using Different Radiopharmaceuticals in Prostate Cancer According to Published Meta-Analyses. Cancers. 2020; 12(8):2153. https://doi.org/10.3390/cancers12082153
Chicago/Turabian StyleAnnunziata, Salvatore, Daniele Antonio Pizzuto, and Giorgio Treglia. 2020. "Diagnostic Performance of PET Imaging Using Different Radiopharmaceuticals in Prostate Cancer According to Published Meta-Analyses" Cancers 12, no. 8: 2153. https://doi.org/10.3390/cancers12082153
APA StyleAnnunziata, S., Pizzuto, D. A., & Treglia, G. (2020). Diagnostic Performance of PET Imaging Using Different Radiopharmaceuticals in Prostate Cancer According to Published Meta-Analyses. Cancers, 12(8), 2153. https://doi.org/10.3390/cancers12082153