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Simple Summary: Cancer immunology is a rapidly evolving field. In this context, this review article
has three objectives. First, to explain the genomic origin of tumor antigens and to emphasize that
many of them are encoded by unconventional RNAs. Second, to discuss the inherent limitations of
all strategies aimed at discovering tumor antigens, and to highlight the importance of using mass
spectrometry validation for each antigen considered for clinical trials. Third, to explain that many
tumor antigens are not spontaneously detected by the immune system, because they are not presented
adequately by dendritic cells. Concepts presented in this article must be taken into account in the
design of cancer immunotherapies and of cancer vaccines in particular.

Abstract: The dominant paradigm holds that spontaneous and therapeutically induced anti-tumor
responses are mediated mainly by CD8 T cells and directed against tumor-specific antigens (TSAs).
The presence of specific TSAs on cancer cells can only be proven by mass spectrometry analyses.
Bioinformatic predictions and reverse immunology studies cannot provide this type of conclusive
evidence. Most TSAs are coded by unmutated non-canonical transcripts that arise from cancer-specific
epigenetic and splicing aberrations. When searching for TSAs, it is therefore important to perform
mass spectrometry analyses that interrogate not only the canonical reading frame of annotated exome
but all reading frames of the entire translatome. The majority of aberrantly expressed TSAs (aeTSAs)
derive from unstable short-lived proteins that are good substrates for direct major histocompatibility
complex (MHC) I presentation but poor substrates for cross-presentation. This is an important
caveat, because cancer cells are poor antigen-presenting cells, and the immune system, therefore,
depends on cross-presentation by dendritic cells (DCs) to detect the presence of TSAs. We, therefore,
postulate that, in the untreated host, most aeTSAs are undetected by the immune system. We present
evidence suggesting that vaccines inducing direct aeTSA presentation by DCs may represent an
attractive strategy for cancer treatment.

Keywords: antigen processing and presentation; cancer immunotherapy; cross-priming;
immunogenicity; major histocompatibility complex; T lymphocyte; tumor-infiltrating lymphocytes;
tumor microenvironment; tumor-specific antigen

1. Introduction

The introduction of immune checkpoint therapy in the treatment of several cancer types has
dramatically changed the landscape of oncology [1,2]. The success of this approach is based on
the paradigm that T lymphocytes, and in particular the CD8 subset [3], recognize tumor antigens
that can elicit vigorous immune responses and tumor rejection [4]. Attention has focused on major
histocompatibility complex (MHC)-associated peptides (MAPs), which are the ligands recognized by
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classic T cells. However, the precise nature of the MAPs capable of causing tumor rejection remains
unclear. Seen as promising for decades, tumor-associated antigens (TAAs) have recently fallen into
disfavor. TAAs are MAPs that are not cancer-specific but are overexpressed in cancer cells (Table 1).
Since they are part of the normal immune self, TAAs are not highly immunogenic and TAA vaccines
have yielded disappointing results [5,6]. Strong evidence suggests that anti-tumor immune responses
potentiated by immune checkpoint therapy are directed against tumor-specific antigens (TSAs); that is,
MAPs found only on cancer cells [4,7,8]. Nonetheless the molecular landscape of actionable TSAs
remains largely elusive.

Table 1. Features of tumor antigens.

Feature TAAs mTSAs aeTSAs

Cancer-specific No Yes Yes
Mutation No Yes No

Shared among tumors Yes No Yes
Number per tumor Medium-High Very low Medium-High

Selected studies containing MS analyses [9–12] [13–17] [18,19]

aeTSA, aberrantly expressed tumor-specific antigen; MS, mass spectrometry; mTSA, mutated tumor-specific antigen;
TAA, tumor-associated antigen.

2. Misconceptions about TSAs

2.1. Neoantigens and the Fallacy of the Converse

Efforts seeking to discover TSAs initially focused on MAPs coded by mutated exons. This makes
sense, because the cancer specificity of mutated MAPs is unquestionable, and exons have long been
considered the sole protein-coding genomic sequences. These efforts led to the discovery of mutated
TSAs (mTSAs), only a few of which were validated by mass spectrometry [4,20]. Furthermore, in several
cases, tumor-infiltrating lymphocytes specific for mTSAs were shown to have the ability to mediate
tumor regression [21,22]. Unfortunately, excitement over the discovery of exonic mTSAs led to a
misconception with major implications. As exonic mTSAs were, in selected cases, sufficient to elicit
anti-tumor responses, it was assumed that they were necessary to elicit anti-tumor responses (fallacy
of the converse). In other words, it was postulated that exonic mTSAs were the sole actionable
TSAs. This reasoning was incorrect, because the term TSA should designate any cancer-specific MAP,
whatever its genomic origin (exonic or not) and irrespective of its mutational status (i.e., mutated or not).
This concept has important implications. First, annotated exons represent only 2% of the genome
and many allegedly non-protein coding (non exonic) sequences are coding for proteins and do
generate MAPs [23–26]. Second, epigenetic and splicing aberrations as well as frameshift translation
in cancer cells lead to the appearance of numerous proteins and MAPs that are not found in normal
cells. Cancer-specific MAPs resulting from translation of any open reading frames not expressed
in normal adult cells are referred to as aberrantly expressed TSAs (aeTSAs) (Table 1). aeTSAs can
derive from i) canonical (annotated) onco-fetal genes that are normally repressed in the adult organism
(e.g., MAGEA3) or ii) from non-canonical transcripts that arise from cancer-specific epigenetic changes,
frameshift translation, or splicing aberrations. Notably, translation of a whole cancer-specific transcript
can yield more numerous TSAs than a single base pair substitution [27]. When compared to mTSAs,
aeTSAs display two advantageous features. First, they are more numerous [18]. Indeed, in a recent
study of 23 ovarian cancers, 103 TSAs were identified of which only three were exonic mTSAs [19].
Second, whereas mTSAs are generally unique to individual patients, aeTSAs are shared by many
tumors. In ovarian cancer, 78% of transcripts coding for individual aeTSAs were found in at least 10%
of tumors and 18% in at least 80% of tumors [19].

When exonic mTSAs were discovered, they were frequently labeled as neoantigens. In fact,
the terms TSA and neoantigens should be synonymous. Accordingly, we would have no objection to
talk of neoantigens and to classify them into mutated and aberrantly expressed neoantigens. However,
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many scientists still believe that neoantigens means exonic mTSAs. Therefore, as recommended by
Haen et al. [5], we will refrain from using the term neoantigen in order to avoid any ambiguity.

2.2. Can mTSAs Be Identified without Mass Spectrometry Analyses?

Mass spectrometry remains the only method that allows direct and definitive identification of
the amino acid sequence of MAPs and TSAs [5,28–30]. However, mass spectrometry analyses require
(i) large tumor samples and (ii) specialized equipment and expertise, which are not widely available.
Hence, research teams have tried to identify TSAs using genomic data (exome and/or transcriptome
sequencing) and algorithms to predict MHC-binding affinity. Unfortunately, two types of evidence
suggest that most “predicted TSAs” are false discoveries: one type is based on mass spectrometry
validation of predicted TSAs, the second on in-depth genomic analyses. Almost all studies have
focused exclusively on exonic mTSAs.

2.2.1. Mass Spectrometry Validation of Predicted mTSAs

In 16 primary human hepatocellular carcinomas, Löffler et al. predicted the occurrence of 1888
exonic mTSAs (a mean of 118 per tumor), none of which was validated by mass spectrometry [13].
In colorectal carcinomas, Newey et al. predicted the occurrence of 304 mTSAs, of which only three
were validated by mass spectrometry. In smaller scale studies, not a single mTSA was validated
by mass spectrometry analyses of four acute lymphoblastic leukemias [18] and three pancreatic
adenocarcinomas [16].

2.2.2. In-Depth Genomic Analyses

According to the tenets of immunoediting [31], exonic mTSAs should be under negative selection
pressure (enforced by TSA-responsive T cells). This negative selection should decrease the ratio of
non-synonymous over synonymous mutations in mTSA-coding sequences. However, no such decrease
was found in analyses of genomic data from 8,683 tumor samples [32]. Likewise, comprehensive
analyses of over 1,000 melanoma exomes revealed no evidence of HLA-restricted negative selection
against exonic mutations [33]. Furthermore, response to immune checkpoint therapy in patients with
lung cancer did not correlate more with predicted mTSAs than with the global mutation load [34].
These data mean that the number of exonic mTSAs has been grossly overestimated in many studies
and that the mTSA repertoire of a tumor cannot be predicted with current algorithms. The reason for
this is that while these algorithms can accurately predict with reasonable accuracy the MHC-binding
affinity of a peptide, they fail to take into account the numerous translational and post-translational
events that regulate MAP biogenesis and presentation [35–37].

2.2.3. Can Reverse Immunology Eliminate False Positive TSA Predictions?

Testing the immunogenicity of validated TSAs using various in vitro methods (MHC-MAP
multimers binding, cytokine production, etc.) provides useful information. It shows which TSAs are
more likely to stimulate anti-tumor responses in vivo. However, it is commonly assumed that if a
predicted mTSA (not validated by mass spectrometry) can elicit T-cell responses from peripheral blood
mononuclear cells, it is more likely to be a genuine TSA. We disagree with this assumption. The fact that
a predicted TSA is immunogenic simply means that it can be recognized by some T cells; this does not
increase the likelihood that this predicted TSA is a genuine TSA (present on cancer cells). Two “peptide
stories” illustrate this point: those of ELAGIGILTV and RIAECILGM. The ELAGIGILTV peptide is
an in vitro modified version of the wild-type EAAGIGILTV MART-1/Melan-A26-35 decamer. Hence,
for the immune system, ELAGIGILTV is akin to an mTSA. While this peptide is not found on cancer
cells, it is so immunogenic that it is commonly used as a positive control in ex vivo immunogenicity
assays [38,39]. The TEL-AML1 fusion protein results from a 12:21 chromosomal translocation and is
frequently found in B-cell precursor acute lymphoblastic leukemia. A peptide resulting from this fusion
protein, RIAECILGM, was predicted to be presented by HLA-A*02:01, and priming of T cells against this
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peptide generated cytotoxic T cells that killed autologous leukemic cells [40]. Further in-depth studies
showed that this epitope is not presented by leukemic cells; it is not endogenously processed, because it
is cleaved by proteasomes [41]. Killing of leukemic cells by T cells primed against RIAECILGM was
most likely due to the inherent cross-reactivity of T cells, which is further amplified in T-cell lines [42].
Indeed, positive selection in the thymus preferentially rescues cross-reactive T cells [43], and a single
T-cell receptor may recognize more than a million different MAPs [44].

3. Strategies for Mass Spectrometry-Based Identification of aeTSAs

aeTSAs present several attractive features. They are more common than mTSAs, and they are
shared by many tumors of a given type (Table 1). Furthermore, in pre-clinical models, they were
shown to elicit curative anti-tumor responses [18,45]. Since aeTSAs can be coded by any reading
frame of the entire genome, their search space is greater than that of mTSAs [8,46,47]. Therefore, it is
currently impossible to rely on available bioinformatic tools to predict the aeTSA landscape of a tumor,
and mass spectrometry analyses are mandatory for aeTSA identification. The key question here is:
once a putative aeTSA is identified, how do we demonstrate its cancer-specificity? In other words,
how can we prove that an unmutated MAP is not expressed by any normal cell type? Three approaches
have been developed, each with pros and cons.

The first approach postulates that a MAP is a TSA if it is found in cancer cells but not in an
atlas of MAPs identified in normal tissue extracts [9,10]. The problem here is that this atlas does not
contain the MAP repertoire of all cell types. Thus, since most epithelial cells express lower levels of
MHC molecules than hematopoietic cells [48,49], whole tissue extracts are enriched in hematopoietic
relative to epithelial MAPs. Furthermore, several cell types in the organism are not present in numbers
sufficient for mass spectrometry analyses. Hence, some TSAs identified with this approach may be
false positives.

In the second approach, normal adjacent tissue (not tumor-infiltrated) is used as a negative
control [50]. Once again, the absence of a MAP in the normal adjacent tissue does not guarantee that
it is not present in other cell types in the organism. We speculate that this approach can also lead to
dismissal of genuine TSAs. Our assumption is based on the notion that normal tumor-adjacent tissue
may in fact not be normal but rather pre-neoplastic and, therefore, share TSAs with the tumor [51].
Indeed, as we age, physiologically healthy tissues such as skin [52,53], colon [54,55], esophagus [56,57],
and blood [58–65] acquire mutations in cancer-associated genes. Timing analyses suggest that driver
mutations often precede diagnosis by many years, if not decades. A notable example is ovarian
adenocarcinoma, which appears to have a median latency of more than 10 years [66].

The third approach is based on the assumption that a TSA cannot be present in cells that do not
express TSA-coding transcripts. In contrast to mass spectrometry analyses, transcriptomic analyses
have been performed in many subjects on practically all cell types. Hence, when we identify aeTSA
candidates, we evaluate whether its coding transcript is found in normal tissues from the GTEx
database (https://gtexportal.org/home/) or in our datasets of medullary thymic epithelial cells [26].
We believe that inclusion of medullary thymic epithelial cells in the “negative controls” is important for
three reasons: (i) they orchestrate central immune tolerance [67], (ii) they express much higher levels
of MHC I molecules than other epithelial cell types [49], and (iii) they promiscuously express more
genes than other types of somatic cells [68,69]. Promiscuous gene expression in medullary thymic
epithelial cells involves not only classic genes, but also other genomic regions such as endogenous
retroelements [26]. The downside of this approach is that it can lead to the dismissal of genuine
aeTSAs. Indeed, expression of a transcript in some normal cell does not necessarily lead to expression
processing and presentation of the corresponding TSA.

It must nonetheless be acknowledged that mass spectrometry studies come with intrinsic
challenges and limitations [5]. First and foremost, in discovery mode, “shotgun mass spectrometry”
has limited sensitivity and, therefore, requires large amounts of starting material for in-depth coverage
of the immunopeptidome (e.g., 1 g of tumor tissue). Second, relative to transcriptome sequencing,

https://gtexportal.org/home/


Cancers 2020, 12, 2607 5 of 13

mass spectrometry has a relatively low throughput and is not quantitative. Finally, mass spectrometry
fails to differentiate between isobaric amino acids (Leucine vs. Isoleucine) and is relatively costly
in terms of reagents and resources. Several technical innovations are being developed in order to
overcome these limitations [30,70].

4. Immune Recognition of TSAs

4.1. Cancer Cells Are Poor T-Cell Activators

The general rules of T-cell priming also apply to cancer cells. Indeed, T-cell recognition of tumors
requires both signal 1 (TCR ligands such as TSAs) and signal 2 (co-stimulation) [71]. The most critical
positive co-stimulatory signal is provided by CD28 upon interaction with its ligands of the B7 family
(CD80/86) on antigen-presenting cells (APCs) [72]. Tumor cells are poor APCs: they express no/low
levels of CD28 ligands, and carcinomas (90% of cancers) derive from epithelial cells expressing 10 to
100-fold less MHC I molecules than DCs [49]. As a result, tumor cells are inefficient at directly priming
naïve CD8 T cells, and activation of T cells against tumor antigens depends on cross-presentation
by professional APCs [73]. Accordingly, anti-tumor responses, either spontaneous or induced with
immune checkpoint therapy, correlate with intratumoral infiltration and maturation of cross-presenting
CD8α+CD103+ dendritic cells (DCs) [20,74,75]. These specialized DCs internalize and cross-present
tumor antigens to T cells and induce a CD28-dependent proliferation of tumor-specific T cells,
which regulates the strength of the immune response [76–79].

4.2. Cross-Presentation Yields a Biased Representation of the TSA Repertoire

The rules governing direct presentation and cross-presentation are different. Direct presentation
favors short-lived and rapidly degraded proteins, many of which represent unstable defective
ribosomal products that may derive from specialized ribosomes (immunoribosomes) [80–82]. In contrast,
cross-presentation of exogenous antigens preferentially samples long-lived, stable proteins [83,84].
Thus, direct presentation correlates with the rate of protein translation and proteasomal degradation,
whereas cross-presentation correlates with steady-state protein amounts [85]. APCs acquire proteins
from donor cells (e.g., cancer cells) through endocytic mechanisms of which the most efficient is
phagocytosis [86]. Internalized proteins can then be degraded by proteasomes, either in endocytic
organelles or in the cytosol [86,87]. A key implication is that cross-presentation can only display a
fraction of TSAs; that is, TSAs derived from highly abundant and stable proteins. Hence, the immune
system remains ignorant of TSAs found in unstable and rapidly degraded proteins.

4.3. The Strength of Effector T-Cell Responses

The amplitude of anti-tumor T-cell responses depends on two factors: (i) epitope density on
APCs and cancer cells, and (ii) the frequency of antigen-responsive T cells in the pre-immune
repertoire. Epitope density (number of MAPs per cell) on APCs during initial priming regulates not
only the magnitude but also the avidity and functionality of the effector T-cell population [88,89].
For most—though not all—antigens, cross-presentation yields a lower epitope density than direct
presentation [90]. In addition, epitope density on tumor cells dictates their susceptibility to CD8 T-cell
cytotoxicity. At this point, intratumoral heterogeneity has to be taken into consideration, because it
is a hallmark of all cancers. For immuno-oncologists, this means that individual tumor cells may
display different levels of TSA expression. Both in mice and humans, the proportion of TSA-positive
tumor cells positively regulates the outcome of interactions between CD8 T cells and the tumor [91–93].
The presence of some TSA-negative tumor cells does not necessarily lead to immunotherapy failure.
Indeed, TSA-negative tumor cells can be eradicated by T-cell targeting of the tumor stroma and,
in particular, endothelial cells [94]. Intratumoral T cells can damage the tumor vasculature via two
mechanisms: (i) killing of endothelial cells that cross-present TSAs and (ii) via the potent angiostatic
effect of IFN-γ and TNF-α [89,95,96]. Nonetheless, these data suggest that chances of success of
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immunotherapy should be improved by selecting clonal TSAs (present on most/all cancer cells) and
targeting multiple TSAs.

4.4. Vaccination-Induced T-Cell Priming

DC-based vaccines can elicit strong anti-tumor responses against TSAs that are ignored when
presented solely by cancer cells (Figure 1). This is illustrated well by the aeTSA VNYLHRNV. While this
peptide is expressed at high levels on EL4 cells (908 copies per cell), immunization with irradiated
EL4 cells does not prolong the survival of mice upon subsequent injection of unirradiated EL4 cells.
However, 100% of mice immunized with DCs coated with VNYLHRNV survive when injected with
EL4 cells [18]. Moreover, immunization generates TSA-responsive memory CD8 T cells, since mice
survive a novel injection of EL4 cells 100 days later. Hence, VNYLHRNV is highly immunogenic when
presented by DCs, but in the absence of therapeutic vaccination, this EL4 TSA is not cross-presented by
DCs in vivo.

Properly designed nanoparticulate liposomal RNA vaccines are efficiently taken up by DCs
in secondary lymphoid organs in vivo [97]. In these conditions, since the DC-targeted RNAs drive
synthesis of antigenic peptides inside DCs, their processing follows the rule of direct presentation as
opposed to cross-presentation. A phase I trial evaluating a nanoparticulate liposomal RNA vaccine
in immune checkpoint therapy-experienced melanoma patients (stage III B, C and stage IV) recently
provided suggestive evidence that, when presented by DCs, aeTSAs can elicit anti-tumor responses [98].
This vaccine contained four antigens that were originally labeled as TAAs. However, while one of
these antigens is clearly a TAA (TYR), the other three are probably aeTSAs coded by conventional
annotated genes: MAGEA3, CTAG1B (NY-ESO-1), and TPTE. Indeed, while TYR is expressed in the
normal skin, the three putative aeTSAs are not expressed in normal extra-thymic tissues (except for the
testis). However, MAGEA3, CTAG1B, and TPTE RNAs are expressed at very low levels in medullary
thymic epithelial cells (<0.5 transcripts per kilobase million [26]). The probability that transcripts
expressed at such levels might generate MAPs is very low [35,99] but cannot be formally excluded
in the absence of immunopeptidomic studies on medullary thymic epithelial cells. We, therefore,
consider that these three antigens are probably, but not certainly, aeTSAs. Notably, objective anti-tumor
response correlated more closely with the expansion of T cells recognizing MAGEA3 and CTAG1B [98].
This study, therefore, (i) supports the immunogenicity of aeTSAs in humans and (ii) suggests that
direct aeTSA presentation by DCs activates and expands a pool of complementary aeTSA-specific T
cells that were insensitive to immune checkpoint therapy and likely tumor-naïve.

4.5. Combining Vaccines and Immune Checkpoint Therapy

In general, a high density of tumor-infiltrating lymphocytes positively correlates response to
immune checkpoint therapy [100]. This suggests that immune checkpoint therapy works at least in part
by invigorating T cells responding to cross-presented TSAs. Likewise, preliminary evidence suggests
that immune checkpoint therapy may potentiate T-cell response to aeTSAs directly presented by DCs [98].
The idea of combining vaccines and immune checkpoint therapy, therefore, appears very attractive.
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Figure 1. Priming of anti-tumor CD8+ T cells by dendritic cells (DCs). (A) Most cancer cells are poor
antigen-presenting cells (APCs) that are not efficient at direct antigen presentation. DCs are potent
APCs, but under basal conditions, they can cross-present only a fraction of the tumor-specific antigens
(TSA) repertoire generated by cancer cells. TSAs derived from unstable rapidly degraded proteins (the
most common of TSAs) are not cross-presented by DCs and are, therefore, ignored by the immune
system. (B) Therapeutic mRNA vaccines can deliver any TSA-coding transcripts to DCs for direct
presentation to CD8 T cells. In this way, TSAs derived from both short-lived proteins and stable proteins
can be detected by CD8 T cells.

5. Conclusions

Therapeutic vaccines can induce durable regressions of premalignant oncogenic human papilloma
virus type 16-induced anogenital lesions [101]. To the best of our knowledge, this vaccine containing
viral peptides remains the sole therapeutic TSA-based vaccine that has shown reliable efficacy. The first
non-viral TSA vaccines tested in clinical trials were based on predicted mTSAs not validated by mass
spectrometry [102–105]. Evidence that most predicted mTSAs not validated by mass spectrometry
may be false discoveries does not bode well for the success of these studies. aeTSAs present attractive
features and give encouraging results in pre-clinical models. However, evidence supporting their value
or superiority over TAAs in humans remains anecdotal and has yet to be formally assessed. For cancer
immunologists wishing to develop therapeutic vaccines, the time is not for celebrations but rather to
develop innovative research strategies in a climate tinged with both optimism and critical thinking.
We also propose that TSAs should be validated by mass spectrometry analyses of primary human
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tumors before they are tested in clinical trials. Finally, we strongly encourage the sharing of mass
spectrometry datasets via the SysteMHC Atlas whose primary objective is to provide a systems-level
definition of MAP and TSA repertoires presented by normal and neoplastic cells [30,106].
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