Prognostic Impact of Pedicle Clamping during Liver Resection for Colorectal Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Patients’ and Tumor Characteristics
2.2. Pedicle Clamping, Blood Loss and Transfusion
2.3. Survival Analysis
2.4. Propensity-Score Matching
3. Discussion
4. Patients and Methods
4.1. Design and Study Population
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooper, G.S.; Yuan, Z.; Landefeld, C.S.; Johanson, J.F.; Rimm, A.A. A national population-based study of incidence of colorectal cancer and age: Implications for screening in older Americans. Cancer 1995, 75, 775–781. [Google Scholar] [CrossRef]
- Brown, R.E.; Bower, M.R.; Martin, R.C. Hepatic resection for colorectal liver metastases. Surg. Clin. 2010, 90, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Quan, D.; Gallinger, S.; Nhan, C.; Auer, R.A.; Biagi, J.J.; Fletcher, G.G.; Law, C.H.; Moulton, C.A.; Ruo, L.; Wei, A.C.; et al. The role of liver resection for colorectal cancer metastases in an era of multimodality treatment: A systematic review. Surgery 2012, 151, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Schiergens, T.S.; von Einem, J.; Thomas, M.N.; Albertsmeier, M.; Giessen-Jung, C.; Dörsch, M.; Heiliger, C.; Drefs, M.; Andrassy, J.; Modest, D.P.; et al. Multidisciplinary treatment of colorectal liver metastases. Minerva Med. 2017, 108, 527–546. [Google Scholar] [CrossRef]
- Jones, R.P.; Kokudo, N.; Folprecht, G.; Mise, Y.; Unno, M.; Malik, H.Z.; Fenwick, S.W.; Poston, G.J. Colorectal liver metastases: A critical review of state of the art. Liver Cancer 2016, 6, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torzilli, G.; Cimino, M.M. Extending the limits of resection for colorectal liver metastases enhanced one stage surgery. J. Gastrointest. Surg. 2017, 21, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Schiergens, T.S.; Rentsch, M.; Kasparek, M.S.; Frenes, K.; Jauch, K.W.; Thasler, W.E. Impact of perioperative allogeneic red blood cell transfusion on recurrence and overall survival after resection of colorectal liver metastases. Dis. Colon. Rectum. 2015, 58, 74–82. [Google Scholar] [CrossRef]
- Schiergens, T.S.; Stielow, C.; Schreiber, S.; Hornuss, C.; Jauch, K.W.; Rentsch, M.; Thasler, W.E. Liver resection in the elderly: Significance of comorbidities and blood loss. J. Gastrointest. Surg. 2014, 18, 1161–1170. [Google Scholar] [CrossRef]
- Lyu, X.; Qiao, W.; Li, D.; Leng, Y. Impact of perioperative blood transfusion on clinical outcomes in patients with colorectal liver metastasis after hepatectomy: A meta-analysis. Oncotarget 2017, 8, 41740–41748. [Google Scholar] [CrossRef] [Green Version]
- Hallet, J.; Tsang, M.; Cheng, E.S.; Habashi, R.; Kulyk, I.; Hanna, S.S.; Coburn, N.G.; Lin, Y.; Law, C.H.; Karanicolas, P.J. The impact of perioperative red blood cell transfusions on long-term outcomes after hepatectomy for colorectal liver metastases. Ann. Surg. Oncol. 2015, 22, 4038–4045. [Google Scholar] [CrossRef]
- Cata, J.P.; Wang, H.; Gottumukkala, V.; Reuben, J.; Sessler, D.I. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions. Br. J. Anaesth. 2013, 110, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagante, F.; Spolverato, G.; Ruzzenente, A.; Wilson, A.; Gani, F.; Conci, S.; Yahanda, A.; Campagnaro, T.; Guglielmi, A.; Pawlik, T.M. Validation of a nomogram to predict the risk of perioperative blood transfusion for liver resection. World J. Surg. 2016, 40, 2481–2489. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Bagante, F.; Gani, F.; Ejaz, A.; Xu, L.; Wasey, J.O.; Johnson, D.J.; Frank, S.M.; Pawlik, T.M. Nomogram to predict perioperative blood transfusion for hepatopancreaticobiliary and colorectal surgery. Br. J. Surg. 2016, 103, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Soreide, K. Blood transfusion in liver surgery for colorectal metastasis: Time for triggers and trials. Dis. Colon. Rectum 2015, 58, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.H.V. Notes on the arrest of hepatic hemorrhage due to trauma. Ann. Surg. 1908, 48, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, A.; Miyashita, M.; Matsumoto, S.; Matsutani, T.; Sakurazawa, N.; Akagi, I.; Kishi, T.; Yokoi, K.; Uchida, E. Hepatic pedicle clamping does not worsen survival after hepatic resection for colorectal liver metastasis: Results from a systematic review and meta-analysis. Ann. Surg. Oncol. 2013, 20, 3771–3778. [Google Scholar] [CrossRef]
- Roberts, K.J.; White, A.; Cockbain, A.; Hodson, J.; Hidalgo, E.; Toogood, G.J.; Lodge, J.P. Performance of prognostic scores in predicting long-term outcome following resection of colorectal liver metastases. Br. J. Surg. 2014, 101, 856–866. [Google Scholar] [CrossRef]
- Fong, Y.; Fortner, J.; Sun, R.L.; Brennan, M.F.; Blumgart, L.H. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: Analysis of 1001 consecutive cases. Ann. Surg. 1999, 230, 309–321. [Google Scholar] [CrossRef]
- Rees, M.; Tekkis, P.P.; Welsh, F.K.; O’Rourke, T.; John, T.G. Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: A multifactorial model of 929 patients. Ann. Surg. 2008, 247, 125–135. [Google Scholar] [CrossRef]
- Kim, Y.; Amini, N.; Gani, F.; Wagner, D.; Johnson, D.J.; Scott, A.; Ejaz, A.; Margonis, G.A.; Xu, L.; Buettner, S.; et al. Age of transfused blood impacts perioperative outcomes among patients who undergo major gastrointestinal surgery. Ann. Surg. 2017, 265, 103–110. [Google Scholar] [CrossRef]
- Lucas, D.J.; Ejaz, A.; Spolverato, G.; Kim, Y.; Gani, F.; Frank, S.M.; Pawlik, T.M. Packed red blood cell transfusion after surgery: Are we “overtranfusing” our patients? Am. J. Surg. 2016, 212, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Margonis, G.A.; Kim, Y.; Samaha, M.; Buettner, S.; Sasaki, K.; Gani, F.; Amini, N.; Pawlik, T.M. Blood loss and outcomes after resection of colorectal liver metastases. J. Surg. Res. 2016, 202, 473–480. [Google Scholar] [CrossRef]
- Pathak, S.; Al-Duwaisan, A.; Khoyratty, F.; Lodge, J.; Toogood, G.J.; Salib, E.; Prasad, K.R.; Miskovic, D. Impact of blood transfusion on outcomes following resection for colorectal liver metastases in the modern era. ANZ J. Surg. 2018, 88. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Seath, B.E.; Huang, V.; Barth, R.J., Jr. Impact of autologous blood transfusion on survival and recurrence among patients undergoing partial hepatectomy for colorectal cancer liver metastases. J. Am. Coll. Surg. 2019, 228, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Scoggins, C.R.; Zorzi, D.; Abdalla, E.K.; Andres, A.; Eng, C.; Curley, S.A.; Loyer, E.M.; Muratore, A.; Mentha, G. Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann. Surg. 2005, 241, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Karagkounis, G.; Torbenson, M.S.; Daniel, H.D.; Azad, N.S.; Diaz, L.A., Jr.; Donehower, R.C.; Hirose, K.; Ahuja, N.; Pawlik, T.M.; Choti, M.A. Incidence and prognostic impact of KRAS and BRAF mutation in patients undergoing liver surgery for colorectal metastases. Cancer 2013, 119, 4137–4144. [Google Scholar] [CrossRef] [Green Version]
- Vauthey, J.N.; Zimmitti, G.; Kopetz, S.E.; Shindoh, J.; Chen, S.S.; Andreou, A.; Curley, S.A.; Aloia, T.A.; Maru, D.M. RAS mutation status predicts survival and patterns of recurrence in patients undergoing hepatectomy for colorectal liver metastases. Ann. Surg. 2013, 258, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Bagante, F.; Moris, D.; Cloyd, J.; Spartalis, E.; Pawlik, T.M. Clinical significance and prognostic relevance of KRAS, BRAF, PI3K and TP53 genetic mutation analysis for resectable and unresectable colorectal liver metastases: A systematic review of the current evidence. Surg. Oncol. 2018, 27, 280–288. [Google Scholar] [CrossRef]
- Margonis, G.A.; Sasaki, K.; Kim, Y.; Samaha, M.; Buettner, S.; Amini, N.; Antoniou, E.; Pawlik, T.M. Tumor biology rather than surgical technique dictates prognosis in colorectal cancer liver metastases. J. Gastrointest. Surg. 2016, 20, 1821–1829. [Google Scholar] [CrossRef]
- Man, K.; Fan, S.T.; Ng, I.O.; Lo, C.M.; Liu, C.L.; Wong, J. Prospective evaluation of pringle maneuver in hepatectomy for liver tumors by a randomized study. Ann. Surg. 1997, 226, 704–713. [Google Scholar] [CrossRef]
- Man, K.; Lo, C.M.; Liu, C.L.; Zhang, Z.W.; Lee, T.K.; Ng, I.O.; Fan, S.T.; Wong, J. Effects of the intermittent pringle manoeuvre on hepatic gene expression and ultrastructure in a randomized clinical study. Br. J. Surg. 2003, 90, 183–189. [Google Scholar] [CrossRef]
- Lee, K.F.; Cheung, Y.S.; Wong, J.; Chong, C.C.; Wong, J.S.; Lai, P.B. Randomized clinical trial of open hepatectomy with or without intermittent Pringle manoeuvre. Br. J. Surg. 2012, 99, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Capussotti, L.; Muratore, A.; Ferrero, A.; Massucco, P.; Ribero, D.; Polastri, R. Randomized clinical trial of liver resection with and without hepatic pedicle clamping. Br. J. Surg. 2006, 93, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, N.N.; Wente, M.N.; Schemmer, P.; Diener, M.K.; Hoffmann, K.; Motschall, E.; Schmidt, J.; Weitz, J.; Büchler, M.W. Systematic review and meta-analysis of the effect of portal triad clamping on outcome after hepatic resection. Br. J. Surg. 2008, 95, 424–432. [Google Scholar] [CrossRef]
- Van der Bilt, J.D.; Livestro, D.P.; Borren, A.; van Hillegersberg, R.; Rinkes, I.B. European survey on the application of vascular clamping in liver surgery. Dig. Surg. 2007, 24, 423–435. [Google Scholar] [CrossRef]
- Ishizaki, Y.; Yoshimoto, J.; Miwa, K.; Sugo, H.; Kawasaki, S. Safety of prolonged intermittent pringle maneuver during hepatic resection. Arch. Surg. 2006, 141, 649–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannoun, L.; Borie, D.; Delva, E.; Jones, D.; Vaillant, J.C.; Nordlinger, B.; Parc, R. Liver resection with normothermic ischaemia exceeding 1 h. Br. J. Surg. 1993, 80, 1161–1165. [Google Scholar] [CrossRef]
- Weiss, M.J.; Ito, H.; Araujo, R.L.; Zabor, E.C.; Gonen, M.; D’Angelica, M.I.; Allen, P.J.; DeMatteo, R.P.; Fong, Y.; Blumgart, L.H.; et al. Hepatic pedicle clamping during hepatic resection for colorectal liver metastases: No impact on survival or hepatic recurrence. Ann. Surg. Oncol. 2013, 20, 285–294. [Google Scholar] [CrossRef]
- Narita, M.; Oussoultzoglou, E.; Fuchshuber, P.; Chenard, M.P.; Rosso, E.; Yamamoto, K.; Jaeck, D.; Bachellier, P. Prolonged portal triad clamping increases postoperative sepsis after major hepatectomy in patients with sinusoidal obstruction syndrome and/or steatohepatitis. World J. Surg. 2012, 36, 1848–1857. [Google Scholar] [CrossRef]
- Ferrero, A.; Russolillo, N.; Vigano, L.; Lo Tesoriere, R.; Muratore, A.; Capussotti, L. Does pringle maneuver affect survival in patients with colorectal liver metastases? World J. Surg. 2010, 34, 2418–2425. [Google Scholar] [CrossRef]
- Giuliante, F.; Ardito, F.; Pulitanò, C.; Vellone, M.; Giovannini, I.; Aldrighetti, L.; Ferla, G.; Nuzzo, G. Does hepatic pedicle clamping affect disease-free survival following liver resection for colorectal metastases? Ann. Surg. 2010, 252, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Hamady, Z.Z.; Malik, H.Z.; Prasad, R.; Lodge, J.P.; Toogood, G.J. Intermittent pringle manoeuvre is not associated with adverse long-term prognosis after resection for colorectal liver metastases. Br. J. Surg. 2008, 95, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Tsang, M.E.; Karanicolas, P.J.; Habashi, R.; Cheng, E.; Hanna, S.S.; Coburn, N.G.; Law, C.H.; Hallet, J. The impact of portal pedicle clamping on survival from colorectal liver metastases in the contemporary era of liver resection: A matched cohort study. HPB 2015, 17, 796–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olthof, P.B.; Huiskens, J.; Schulte, N.R.; Wicherts, D.A.; Besselink, M.G.; Busch, O.R.; Tanis, P.J.; van Gulik, T.M. Hepatic vascular inflow occlusion is associated with reduced disease free survival following resection of colorectal liver metastases. Eur. J. Surg. Oncol. 2017, 43, 100–106. [Google Scholar] [CrossRef]
- Van der Bilt, J.D.; Kranenburg, O.; Nijkamp, M.W.; Smakman, N.; Veenendaal, L.M.; Te Velde, E.A.; Voest, E.E.; van Diest, P.J.; Borel Rinkes, I.H. Ischemia/reperfusion accelerates the outgrowth of hepatic micrometastases in a highly standardized murine model. Hepatology 2005, 42, 165–175. [Google Scholar] [CrossRef]
- Doi, K.; Horiuchi, T.; Uchinami, M.; Tabo, T.; Kimura, N.; Yokomachi, J.; Yoshida, M.; Tanaka, K. Hepatic ischemia-reperfusion promotes liver metastasis of colon cancer. J. Surg. Res. 2002, 105, 243–247. [Google Scholar] [CrossRef]
- Nicoud, I.B.; Jones, C.M.; Pierce, J.M.; Earl, T.M.; Matrisian, L.M.; Chari, R.S.; Gorden, D.L. Warm hepatic ischemia-reperfusion promotes growth of colorectal carcinoma micrometastases in mouse liver via matrix metalloproteinase-9 induction. Cancer Res. 2007, 67, 2720–2728. [Google Scholar] [CrossRef] [Green Version]
- Khandoga, A.; Kessler, J.S.; Hanschen, M.; Khandoga, A.G.; Burggraf, D.; Reichel, C.; Hamann, G.F.; Enders, G.; Krombach, F. Matrix metalloproteinase-9 promotes neutrophil and T cell recruitment and migration in the postischemic liver. J. Leukoc. Biol. 2006, 79, 1295–1305. [Google Scholar] [CrossRef]
- Jiao, S.F.; Sun, K.; Chen, X.J.; Zhao, X.; Cai, N.; Liu, Y.J.; Xu, L.M.; Kong, X.M.; Wei, L.X. Inhibition of tumor necrosis factor alpha reduces the outgrowth of hepatic micrometastasis of colorectal tumors in a mouse model of liver ischemia-reperfusion injury. J. Biomed. Sci. 2014, 21, 1. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Venkatesan, A.M.; Mizuno, T.; Aloia, T.A.; Chun, Y.S.; Lee, J.E.; Vauthey, J.N.; Conrad, C. Remnant liver ischemia as a prognostic factor for cancer-specific survival after resection of colorectal liver metastases. JAMA Surg. 2017, 152, e172986. [Google Scholar] [CrossRef]
- Farges, O. Randomized clinical trial of open hepatectomy with or without intermittent pringle manoeuvre. Br. J. Surg. 2012, 99, 1209–1210. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Team, R. Integrated Development Environment; RStudio Inc.: Boston, MA, USA, 2015. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
Characteristic | All Patients N (%) | No PC N (%) | PC N (%) | p1 |
---|---|---|---|---|
No. of patients | 336 (100) | 261 (77.7) | 75 (22.3) | |
Median Age (range) | 62 (21–86) | 64 (21–86) | 63 (41–82) | 0.610 |
Gender Female Male | 114 (34) 222 (66) | 98 (38) 163 (62) | 16 (21) 59 (79) | 0.009 |
ASA > 2 | 226 (67) | 174 (67) | 52 (69) | 0.388 |
Charlson comorbidity index (CCI) | 8 (8–13) | 8 (8–13) | 8 (8–10) | 0.737 |
Hepatic pre-conditions Steatosis Cirrhosis | 185 (55) 3 (1) | 138 (53) 3 (1) | 47 (63) 0 | 0.148 0.100 |
Primary tumor Colon Rectum | 174 (52) 162 (48) | 136 (52) 125 (48) | 38 (51) 37 (49) | 0.896 |
Primary tumor stagepT3/pT4 pN+ | 240 (71) 179 (53) | 181 (69) 140 (54) | 59 (79) 39 (52) | 0.845 0.184 |
Neoadjuvant chemotherapy | 241 (72) | 186 (71) | 55 (73) | 0.773 |
Tumor markers CEA elevated CA 19-9 elevated | 130 (39) 84 (25) | 102 (39) 66 (25) | 28 (37) 18 (24) | 0.685 0.650 |
Timing of development Synchronous 2 Metachronous | 122 (36) 214 (64) | 102 (39) 159 (61) | 20 (27) 55 (73) | 0.057 |
>3 hepatic metastases | 47 (14) | 37 (14) | 10 (13) | 1.000 |
Maximum metastasis diameter ≥ 50 mm | 63 (19) | 43 (16) | 20 (27) | 0.064 |
Extent of liver resection Major hepatectomy 3 Minor hepatectomy | 116 (35) 220 (65) | 90 (34) 171 (66) | 26 (35) 49 (65) | 0.100 |
Type of resection Anatomic Non-anatomic (wedge/atypical) | 235 (70) 101 (30) | 173 (66) 88 (34) | 62 (83) 13 (17) | 0.006 |
Duration of resection (min) | 180 (60–580) | 180 (60–580) | 180 (70–310) | 0.559 |
Estimated blood loss (mL) | 650 (100–6000) | 700 (100–6000) | 600 (100–6000) | 0.502 |
Major estimated blood loss 4 | 83 (25) | 59 (23) | 24 (32) | 0.100 |
Perioperative ABT 5 | 123 (37) | 97 (37) | 26 (35) | 0.786 |
Increased ABT-demand 5,6 | 52 (15) | 46 (18) | 6 (8) | 0.046 |
Number of perioperative ABT 5 | 1.48 ± 3.80 | 1.66 ± 4.20 | 0.84 ± 1.80 | 0.393 |
Major complications | 80 (24) | 59 (23) | 21 (28) | 0.361 |
Post hepatectomy liver failure | 15 (4) | 13 (5) | 2 (3) | 0.536 |
ICU | 148 (44) | 114 (44) | 34 (45) | 0.790 |
ICU length of stay | 2.3 ± 6.9 | 2.4 ± 7.3 | 2.0 ± 5.3 | 0.595 |
30-day-mortality | 7 (2) | 6 (2) | 1 (1) | 0.513 |
90-day-mortality | 14 (5) | 13 (5) | 1 (1) | 0.207 |
Resection margins involved (R1) | 25 (7) | 18 (7) | 7 (9) | 0.461 |
Additive chemotherapy 7 (N = 282) | 159/282 (56) | 122/214 (57) | 37/68 (54) | 0.779 |
Prognostic Factor | Recurrence-Free Survival | ||
---|---|---|---|
p | HR 1 | 95%-CI 2 | |
Pedicle clamping (Pringle) | 0.017 | 0.67 | 0.48–0.93 |
>3 hepatic metastases | 0.011 | 1.63 | 1.12–2.36 |
Allogeneic blood transfusion | 0.002 | 1.05 3 | 1.02–1.08 |
Charlson co-morbidity index | 0.014 | 1.23 | 1.04–1.45 |
Positive resection margins | 0.003 | 2.08 | 1.29–3.34 |
Overall Survival | |||
p | HR 1 | 95%-CI 2 | |
Age > 70 years | 0.034 | 1.43 | 1.03–1.98 |
Pedicle clamping (Pringle) | 0.009 | 0.60 | 0.41–0.88 |
>3 hepatic metastases | 0.012 | 1.68 | 1.12–2.51 |
Allogeneic blood transfusion | 0.001 | 1.06 3 | 1.02–1.10 |
Charlson co-morbidity index | 0.009 | 1.30 | 1.07–1.57 |
Positive resection margins | <0.001 | 3.18 | 1.92–5.27 |
Matching Variable | SMD 1 Before PS-Matching | SMD 1 After PS-Matching | p 2 |
---|---|---|---|
Gender | 0.26 | 0.08 | 0.722 |
Age | 0.01 | 0.05 | 0.707 |
Primary tumor stage (pT stage) | 0.14 | 0.11 | 0.628 |
Primary tumor stage (pN stage) | 0.20 | 0.09 | 0.608 |
Synchronous vs. metachronous occurrence of CRLM | 0.22 | 0.09 | 0.600 |
Serum CEA elevated | 0.12 | 0.07 | 0.869 |
Type of CRLM resection (anatomic vs. non-anatomic) | 0.50 | 0.07 | 0.662 |
Number of liver lesions | 0.06 | 0.02 | 0.857 |
Largest diameter of liver lesions | 0.08 | 0.04 | 0.987 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiergens, T.S.; Drefs, M.; Dörsch, M.; Kühn, F.; Albertsmeier, M.; Niess, H.; Schoenberg, M.B.; Assenmacher, M.; Küchenhoff, H.; Thasler, W.E.; et al. Prognostic Impact of Pedicle Clamping during Liver Resection for Colorectal Metastases. Cancers 2021, 13, 72. https://doi.org/10.3390/cancers13010072
Schiergens TS, Drefs M, Dörsch M, Kühn F, Albertsmeier M, Niess H, Schoenberg MB, Assenmacher M, Küchenhoff H, Thasler WE, et al. Prognostic Impact of Pedicle Clamping during Liver Resection for Colorectal Metastases. Cancers. 2021; 13(1):72. https://doi.org/10.3390/cancers13010072
Chicago/Turabian StyleSchiergens, Tobias S., Moritz Drefs, Maximilian Dörsch, Florian Kühn, Markus Albertsmeier, Hanno Niess, Markus B. Schoenberg, Matthias Assenmacher, Helmut Küchenhoff, Wolfgang E. Thasler, and et al. 2021. "Prognostic Impact of Pedicle Clamping during Liver Resection for Colorectal Metastases" Cancers 13, no. 1: 72. https://doi.org/10.3390/cancers13010072
APA StyleSchiergens, T. S., Drefs, M., Dörsch, M., Kühn, F., Albertsmeier, M., Niess, H., Schoenberg, M. B., Assenmacher, M., Küchenhoff, H., Thasler, W. E., Guba, M. O., Angele, M. K., Rentsch, M., Werner, J., & Andrassy, J. (2021). Prognostic Impact of Pedicle Clamping during Liver Resection for Colorectal Metastases. Cancers, 13(1), 72. https://doi.org/10.3390/cancers13010072