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Simple Summary: Metastasis in general represents the progression phenotype whereby cancer cells
break from a malignant primary location and travel to and invade other distant organs. Theoretically,
tumor cells that exit the primary tumor might be eliminated by immune cells. The immune system
has the ability to recognize and eliminate malignant tumor cells; however, failed immune surveillance
contributes to cancer development. Disseminated tumor cells persist and reemerge as a clinically
symptomatic disease. How do disseminated tumor cells evade immune surveillance? In this context,
tumor/immune system interactions play a key role and are the subject of intense scrutiny. After
colonization, the immunosuppressive tumor microenvironments of metastatic lesions promote tumor
growth and worsen prognosis. Here, we discuss scientific advances relating to the interaction
between disseminated tumor cells and the immune cells in tissue-specific tumor microenvironments.

Abstract: Most cancer-related deaths are a consequence of metastases, a series of linear events,
notably the invasion–metastasis cascade. The current understanding of cancer immune surveillance
derives from studies in primary tumors, but disseminated cancer cells acquire mutations and, in
some cases, appear to progress independently after spreading from primary sites. An early step in
this process is micrometastatic dissemination. As such, the equilibrium between the immune system
and disseminated cancer cells controls the fate of the cancer. Immune checkpoint inhibitors (ICIs)
exhibit significant clinical activity in patients, but the efficacy of ICIs depends on both the tumor and
its microenvironment. Data often suggest that disseminated cancer cells are not adequately targeted
by the immune system. In this review, we summarize the main basic findings of immune responses
against disseminated tumor cells and their organ-specific characteristics. Such studies may provide
new directions for cancer immune therapy.

Keywords: immune response; metastases; immune surveillance; immunotherapy; disseminated
cancer cells

1. Introduction

Metastasis is often a sluggish process, with fewer than 0.01% of cells typically surviv-
ing to reach another organ [1]. Cancer cells that metastasize to a distant organ are expected
by some to be therapy-resistant populations. The inability of current anticancer therapies to
target dormant disseminated tumor cells (DTCs) yields a specific clinical challenge, simply
highlighted by the worse survival rate of all disseminated solid malignant tumors. Various
immune cells work together to affect metastatic outgrowth. Multiple immune cell popula-
tions promote metastasis by establishing an immunosuppressive microenvironment or by
conditioning the premetastatic niche. Cancer cells, however, undergo immune surveillance
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by both the innate immune system and adaptive immune system, and each participates in
affecting cancer cell fate [2,3].

Primary tumors reduce the exposure and access between cancer cells and antitumor
immune systems. The tumor microenvironment (TME) typically has an immunosup-
pressive status that inhibits the induction of effective antitumor immunity. Given these
challenges, cancer immunotherapy has not achieved its full potential yet for treating large
primary tumors and poorly immunogenic tumors. The immunotherapeutic effect of im-
mune checkpoint inhibitors (ICIs) depends on the TME, which is constituted by different
cell types [4]. Growing evidence indicates that the TME of the primary tumor facilitates
disseminated tumors to show off dormant or proliferative states in metastatic organs. Thus,
understanding the organ-specific response of the tumor–immune system interaction is
central to future directions in this regard.

2. Immune-Mediated Metastatic Growth on Metastatic Dormancy

Cancer cell dormancy includes quiescent and slowly dividing cancer cells [5]. Cir-
culating tumor cells (CTCs) can be monitored in the peripheral circulation in the early
stages of malignant disease [6]. After CTCs implant on target organs, they are named
disseminated tumor cells (DTCs) [7]. Therefore, dormant cancer cells can be found as
CTCs in the peripheral blood or as DTCs within tissues, and typically fail to respond to
conventional anticancer therapy [8]. The biologic characteristics and the interaction be-
tween CTCs and other cells in these elusive and multistep processes are regulated by many
cancer-promoting molecules (Figure 1). For example, during the process of dissemination,
pancreatic and bile duct cancer CTCs form immune-evasive multi-ingredient cell clusters
in the peripheral circulation, indicating a continuous immune evasion status that promotes
CTC proliferation [9].
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Figure 1. Cancer metastatic cascade involving CTCs and DTCs. Tumor cell dissemination facilitates
the cancer cell to spread from its site of origin. Key events of the cascade are outlined. Changes
in cellular properties are necessary to allow the development of an invasive phenotype, including
increased glycolysis, tricarboxylic acid cycle, and proline catabolism. DTCs obtain the ability to
resist NK cell or CTL-mediated killing by upregulating antiapoptosis molecules, including BCL-2,
MCL-1, and survivin-C. DTCs dysregulate the expression of MHC molecules and immune checkpoint
molecules (CD47, CD155 and PD-L1) to evade immune surveillance.

Tumor cells may disseminate throughout the body even before the primary tumor
can be detected. Tumor cells obtain the ability to escape immune system attacks, then
survive and outgrow in distant organs. Single DTCs differ from micrometastasis in that
the latter are comprised of >20-cell clusters [3]. As micrometastatic dissemination is an
early event, the destiny of DTCs is unclear. DTCs can shirk the microenvironment or
therapy-induced stresses, ultimately becoming detectable metastatic lesions [10]. In some
cases, inflammatory responses and immune cells support spreading and metastasis [11].
Whether immune microenvironments can detect dormant DTCs remains an unanswered
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question. Mouse experiments indicate that tumor cells can be continuously controlled by
CD8+ T cells in the bone marrow [12], which can also supply immune surveillance [13].
This immune equilibrium is also maintained by CD4+ T cells and cytokines, including
interferon-γ and interleukin-12.

Supportive metastatic niches provide a microenvironment enabling disseminated
cancer cells to successfully metastasize [14]. Therefore, targeting the metastatic niche is
a promising method to eradicate dormant cells [15]. Dormant cancer cells can, however,
reawaken in response to signals, resulting in recurrence and metastasis. In the process
of metastasis, DTCs obtain the ability to be resistant to natural killer cells or cytotoxic T
cell-mediated killing by upregulating antiapoptosis molecules, including BCL-2, MCL-1,
and survivin-C [16]. DTCs may evade immune surveillance through dysregulation of the
expression of MHC I and MHC II molecules, NK cell ligands, and immune-checkpoint
molecules (CD47, CD155 and PD-L1, etc.); thus, DTCs can persist for an extended pe-
riod [17].

Metastatic progression often proceeds from rare clones in primary tumors [18]. Cancer
cell plasticity makes these cells less immunogenic. The immune system eliminates more
immunogenic cancer cells through cancer immune editing. Tumor heterogeneity is in turn
related to immune infiltration in cancer [19]. In microenvironments, programs of dormancy
in DTCs are activated in a complex manner [20]. In an established congenic tumor cell
clone library derived from primary mouse pancreatic adenocarcinoma, transcriptomic
and epigenetic analyses indicated that each tumor elicits unique immune infiltrations
correlating with therapeutic responses [21]. Single-cell sequencing results have verified
that tumors are constituted by a diverse array of heterogeneous tumor cells, fibroblasts,
and immune components [22]. In the tumor microenvironment, the distribution of immune
cell subsets is spatially specific in different locations. Spatial and functional heterogeneity
of immune cells in the tumor immune microenvironment, together with other factors, drive
immunological heterogeneity.

Signaling networks and gene expression patterns are dysregulated when the metabolism
pattern is changed [23]. Metabolic plasticity significantly affects the survival of cancer
cells in the metastatic process. Once CTCs emerge in the circulation before locating the
metastatic site, they must alter their metabolism to adapt to the new environment of the tar-
get organs. Differences in CTC preferences for specific organs can be partially attributed to
their metabolic properties [24]. Depending on the metastatic site, tumor cells increase their
energy requirement via amplifying the signal activity of critical ATP-producing pathways,
including glycolysis and reactive oxygen metabolism, and unusual metabolism pathways,
such as proline catabolism, also participate in this process [25]. This is one example of
many we could provide.

3. Immune Cell Population Composition in Immune Response

Research on immune evasion provides detailed insights into molecular mechanisms
of tumor development and metastasis [26]. Crosstalk between cancer cells and auxiliary
cell energy sources promote tumor progression. Immune cells include myeloid-derived
inhibitory cells participating in the regulation of innate immunity, and lymphoid cells
that participate in the regulation of adaptive immunity. The other immunological cells are
involved in pathogen defense. Immune cells are phenotypically plastic and thus can be
“re-programmed” or “educated” to provide protumor immune effects. Tumor cells have
obtained multiple molecular mechanisms to avoid immune cells’ attacks in peripheral circu-
lation. Tumor fate is determined by the balance between tolerogenic and effector immune
response. The role of immune cells in DTC dormancy has been confirmed in immune-
deficient nude mice models with spontaneous lung metastasis [27,28]. Most reports fo-
cus on the metastasis-promoting role of immune cells—for example, tumor-associated
macrophages (TAMs) and metastasis-associated macrophages (MAMs)—through influenc-
ing the multiple steps of cancer metastasis [3]. An effective immune response must turn
over the functions of TAMs plasmacytoid dendritic cells, neutrophils, Tregs, and Bregs to
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inhibit cytotoxic tumor lymphocyte (CTL) and/or NK cell infiltration, proliferation, and
immune surveillance functions (Figure 2).
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Figure 2. The interaction of immune cells and DTCs. As disseminated tumor cells extravasate,
they encounter a foreign microenvironment with obstacles to survival. During this process, cellular
components play key roles in the destiny of DTCs. Numerous interactions between cell types are
involved throughout tumor progression and metastasis. If the microenvironment is filled with
cytotoxic CD8+ T cells, mature DCs, and NK cells, DTCs will thus go into apoptosis (left). DTCs
survive and proliferate within immunosuppressive microenvironments containing CAFs, TAMs,
TANs, MDSCs, etc. (right).

3.1. Innate Immune Response

• Dendritic cells (DCs)

Dendritic cells (DCs) function as essential antigen-presenting cells (APCs) involved
in multiple biological processes [29]. Based on different biological functions, DCs are
classified into plasmacytoid DCs (pDCs) and “classical” or “myeloid” DCs. DCs are a
class of vital immune cells, representing a critical bond between adaptive and innate
immunity [30]. Thus, the function of DC exhaustion plays a vital role in antigen-specific
immune evasion. Immature DCs (imDCs) take up and process antigens and present
antigenic peptides on MHC molecules [31]. The accumulation of imDCs leads to decreased
immune surveillance [32]. When trended by chemokine and infiltrating into tumors or
migrating to lymphatic organs, mature DCs (mDCs) promote antigen presentation and
activate cytotoxic T lymphocytes (CTLs). Tumor-infiltrating DCs are present in many
cancer types [33]. The infiltration of mDCs in tumors is associated with the increased
recruitment of immune effector cells [34]. Cancer-derived granulocyte colony-stimulating
factor (G-CSF) leads to a systemic inhibition in DCs [35]. Tumor cell-derived IL-6 and
vascular endothelial growth factor (VEGF) also affect the differentiation and maturation
of DCs [36]. Melanoma cells secrete CCL4, which attracts conventional DC type 1 (cDC1)
and can be blocked by β-catenin signaling, indicating that the inhibition of tumor DC
recruitment may be a dominant mechanism in tumor intrinsic β-catenin activation [37].

• Natural killer (NK) cells

As innate immune cells, natural killer (NK) cells participate in eliminating infected
or transformed cells. NK cells recognize and eliminate tumor cells either directly or de-
pend on engaging NK cell CD16 receptor molecules by antibody-bound tumor cells [38].
DTCs evade the NK cells’ attack in primary tumors, circulation, and metastatic sites by
upregulating the expression of inhibitory ligands. Malignant cells are exempt from NK
cell recognition and elimination via complicated mechanisms [39]. NK cells exert an
antimetastatic response; therefore, whether metastatic cancer cells can avoid NK cell recog-
nition is crucial to dissemination. The receptor repertoires of NK cells can be differentially
regulated by cancer cells [40]. Experimental studies reveal that DTCs are exempt from
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immune elimination of NK cells by the downregulation of multiple activation receptors
on the NK cell surface [41]. These results highlight the critical function of NK cells in
inhibiting tumor progression. NK cells are promising candidates for immunotherapy given
that decreased MHC-I molecule expression is one of the important mechanisms of immune
evasion [42]. Monoclonal antibodies blocking NK cell inhibitory receptors—for example,
NKG2A and KIR—can enhance NK cell-mediated cytotoxicity [43,44].

3.2. Adaptive Immune Response

• T cells

T cells encompass complicated subsets that take part in lymphomagenesis, includ-
ing memory T cells, Tregs, and naive T cells [45]. Tumor-infiltrating lymphocytes (TILs)
participate in antitumor immunity in the lung tumor niche, and increased infiltration of
TILs correlates with a better prognosis in several solid cancers [46]. Activated CD8+ T
cells, γδ-T cells, and CD4+ Th1 cells are important in regulating type I immune responses,
while Th2, Tregs, and Th17 are frequently associated with cancer progression and a worse
prognosis [47]. DCs effectively acquire, process, and present tumor-associated antigens
(TAAs) participating in activating the antitumor function of CD8+ T cells. Immunologically
‘hot’ tumors, such as melanoma and non-small-cell lung cancer (NSCLC), demonstrate an
abundance of T cell infiltration. The antitumor immunity of CD8+ T cells may effectively
eliminate DTCs [28]. By rejuvenating the endogenous antitumor function of T cells during
tumor progression, ICIs exert therapeutic activity against a variety of cancer types. The T
cell-induced gene expression profiles of ‘hot’ tumors are associated with a higher response
rate to ICI immunotherapies [48]. However, immune-tolerant T cells assist tumor cells to
adapt to the tumor microenvironment and facilitate cancer inflammation. Along with T cell
dysfunction, the apoptosis of T cells has been confirmed as a potential mechanism of tumor
resistance to immunotherapy [49]. Tumor rejection mediated by tissue-resident memory
CD8+ T (Trm) cells sparks the cascade delivery of CTL responses via dermal DCs [50]. A pro-
tective subgroup of the CD8+ T cell population recently identified with CD39+PD-1+CD8+

T cells correlates with prolonged disease-free survival after resection [51]. CD4+CD25+

regulatory T cells decrease the antitumor immune response and inhibit the curative effect
of cancer immunotherapies. Tregs are widely considered to be protumorigenic, as they
express inhibitory cytokines and immune checkpoint molecules which inhibit CD4+ and
CD8+ T cell function [52]. Tregs are selectively trended into tumor tissues by tumor cells in
a CCL22- and CCL28-dependent manner; subsequent Treg-induced secretion of VEGF-A
by cancer cells promotes endothelial cell proliferation [53]. Local immunomodulation of
Treg cell depletion can eradicate tumor cells at distant sites [54].

• B cells

B cells constitute a critical portion of TILs in several cancers. They modulate immune
responses by secreting antibodies, delivering antigens, and interplaying with other cells in
TME. Previous studies reported that B cells play a critical role in regulating the function of
T cells, including T cell activation, proliferation, and the formation of memory T cells [55].
Tumor-infiltrating B lymphocytes (TIBs) exist in all stages of human lung cancer during the
disease progression [56]. TIBs are mainly positioned at the lymphoid aggregates in lung
tumors and named as tertiary lymphoid structures (TLS) [57]. TIBs preserve the function
and structure of the TLS in the lung TME by secreting cytokines and chemokines. Activated
B cells can also directly attack tumor cells via releasing the granzyme B and the cytokine
TRAIL [58].

Regulatory B cells (Bregs) are a subgroup of B cells with the function of promoting
tumor progression. Memory CD27+ and transitional CD38+ B cells are canonical character-
istics of Bregs [59]. Bregs execute their immunoregulatory functions by releasing inhibitory
cytokine and intercellular communication. Bregs have a distinct function in attenuating
antitumor response, namely, releasing anti-inflammatory mediators, such as IL-10 and
TGF-β, which induce T cell differentiation to Tregs [60]. The effects of Bregs include modu-
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lating antitumor response through directly inhibiting the function of effector T cells [61].
Bregs inhibit immune responses via regulating intercellular immune checkpoint molecular
interaction: for example, CD40/CD40L, Fas/FasL, and CTLA-4/CD86 [62,63]. Human
CD19+CD25hi Bregs can also strengthen the biological function of Tregs [64].

3.3. Immunosuppressive Cell Subsets

• Tumor-associated macrophages (TAMs)

Based on the biological function, activated macrophages were classified as proinflam-
matory (M1 type) or anti-inflammatory (M2 type or TAMs). High-grade tumor-associated
macrophages (TAMs) are correlated with a worse prognosis and decreased overall survival
in xenograft and cancer patients [65]. TAMs can secrete IL-1β expression via the WNT
pathway, promoting IL-17 secretion by activated γδ T cells. This increases systemic G-CSF,
which in turn facilitates DTC proliferation and pulmonary metastases [26]. TAMs can also
promote tumor progression by fostering angiogenesis, stimulating cancer cell proliferation,
remodeling the extracellular matrix, accelerating metastasis, and expediting the functional
exhaustion of antitumor effector immune cells. Even before dissemination, TAMs induce
protein expression, which promotes a pro-37 dissemination (MenaINV) and pro-dormancy
(NR2F1) phenotype in the tumors [66]. Cancer cells and stroma can also secret chemokine
ligand 2 (CCL-2) to recruit C-C chemokine receptor type 2 (CCR2+) monocytes in metastatic
lesion, facilitating tumor seeding [67]. Furthermore, TAMs can foster a fibrotic microen-
vironment with increased endothelial permeability, thus nurturing colony development
of disseminated cancer cells [68]. In a genetically engineered breast cancer mouse model,
Prune-1 expression augmented the M2 polarization of TAMs through TGF-β enhancement
and IL-17F secretion, thus facilitating lung metastasis [69].

• Tumor-associated neutrophils (TANs)

Neutrophils are one of the most common myeloid cell subtypes and the earliest im-
mune cells to be recruited to injury tissue. Neutrophils may be the initial cells in the
lung premetastatic niche [70]. As the innate immune system to eliminate pathogens, neu-
trophils are quickly activated in response to intrusive tumor cells. Based on their functional
heterogeneity, the two polarization states of TANs, “N1” and “N2”, have been described, al-
though their distinction remains disputed [71]. N1-neutrophils express antitumor cytokines
(TNF-α, IL-12, etc.), while N2-neutrophils express proangiogenic and immunosuppressive
cytokines (VEGF, TGF-β1, etc.) [72]. Tumor-associated neutrophils (TANs) are associated
with a worse prognosis in several malignancies. TAN recruitment to the TME is mainly
induced by CXCR2 ligands and TGF-β [73]. Furthermore, neutrophils promote breast
cancer cell metastasis and colonization in the lung by inhibiting CD8+ T effector cells [74].
TANs induce T cell exhaustion by facilitating tumor-derived granulocyte macrophage
colony-stimulating factor-mediated PD-L1 upregulation [75]. TANs can initiate cancer
metastasis through MAC-1/ICAM-1 axis-mediated cell-to-cell communication between
TANs and cancer cells [76]. However, results regarding the role of TANs are conflicting,
and the dual biological function of TANs in promoting and suppressing the cancer of
tumor cells remains controversial [77]. In human colorectal cancer, increased CD66b+

TANs in tumors enhance the tumoricidal capacity of CD8+ T cells and are associated with
better prognosis. Neutrophils inhibit intraluminal NK-mediated cancer cell elimination
and enhance the extravasation of metastatic malignant cells [78]. Breast cancer cells can
accelerate neutrophils to comprise metastasis-supporting neutrophil extracellular traps
(NETs) [79]. Premetastatic lung cancer shows a high infiltration of cytotoxic neutrophils
that prevent tumor cell seeding in a niche with low TGFβ activity [80].

• Myeloid-derived suppressor cells (MDSC)

Myeloid-derived suppressor cells (MDSC) are a class of a heterogeneous subtype
of immature myeloid cells that accumulate in tumor-bearing hosts. By promoting TIL
exhaustion, MDSC demonstrate significant features for inhibiting the immune response [81].
One of the main mediators, ARG1, is a pivotal enzyme for the urea cycle and maintains
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an immunosuppressive microenvironment by the depletion of L-arginine, subsequently
blockading T cell infiltration [82]. MDSC also expresses inducible nitric oxide synthase
(iNOS), which can catabolize L-arginine to induce T cell anergy [83]. MDSC characteristic
molecular markers include CD11b and Gr-1, CD11b+Ly6ClowLy6G+ cells ranging as a
granulocytic subset, while CD11b+Ly6ChighLy6G− classified as a monocytic subset [84].
The immunologic landscape and TME vary among organs and this discretely shapes MDSC
repertoires [85]. In liver and lung metastasis, pSTAT3 and pSTAT5 signaling, respectively,
exert dominant effects on MDSC programming, indicating that MDSC programming as a
response to malignant tumors is highly dependent upon organ-specific conditions and is
adaptable. Macrophage depletion effectively reduces the CSC fraction, sensitizing them to
chemotherapy in vivo [86].

• Cancer-associated fibroblasts (CAFs)

Fibroblasts, normally found in the connective tissue, regulate tissue remodeling during
wound healing and development. They are also a major cell type in the tumor stroma.
Disseminated breast cancer cells arouse adaptive characteristic changes in lung fibroblasts
by secreting interleukin-1α (IL-1α) and IL-1β, forming a supportive metastatic niche [87].
Moreover, immune cell-derived IL-1β accelerates nuclear factor-κB (NF-κB) activation in
fibroblasts [88]. CAFs are highly heterogeneous in tumor tissues. Among the different
CAF populations, the immunosuppressive role of FAP+ CAFs has been explored [89]. As
a heterogenous group of mesenchymal cells, CAFs grafted with breast carcinoma cells
enhance tumor formation in mice [90]. CAF-directed cancer invasion is seen in a zebrafish
xenograft, while prostate and colorectal cancer-derived fibroblasts facilitate metastasis
during the early stage of these malignant diseases [91]. CAFs persistently receive and/or
respond to stimuli, affecting other immune cells in the TME [92]. CAFs regulate the
outgrowth of dormant metastatic CSCs by modulating their metabolism [93].

4. Metastatic Organ Differences in Immune Characteristics

Whether a primary cancer cell forms a colonized lesion depends on the ability to sur-
vive within the circulation system and specific organs. Organ-specific growth of malignant
tumors is an adaptation of the selection and growth process (Figure 3). Host organs are
not passive receivers of CTCs; instead, they are actively and selectively modified by the
primary tumor before metastatic spread. Understanding organ-specific mechanisms which
enable metastatic growth is of great importance. Some cancers primarily spread to one
specific organ or show sequential organ-specific colonization. Different tumor types exhibit
significant variability in their metastatic route (by the varied length of latency periods), the
organs affected, and the type of metastasis. The immune responses of the primary tumor
versus the metastatic sites vary depending on the organs involved. Experimental animal
models have revealed tumor extrinsic and intrinsic mechanisms that dictate organ-specific
metastasis against massive attrition of DTCs [94]. The quest to find supportive niches is key
for the survival of DTCs [14]. Cancer stem cells preferentially upregulate PD-L1 expression,
and thus, ICIs can potentially eradicate disseminated stem cells [95].

The pattern of metastatic organs varies significantly depending on tumor types [96].
Variation in pretreatment infiltration of immune cells may lead to differential activity of
nivolumab depending on the metastatic organ. In addition, the anatomy of vessels and
organ-specific circulation patterns influence metastatic spread [97]. Krausgruber et al.
showed that organ-specific and cell-type-specific differences in immune gene activity are
reflected in the patterns of chromatin regulation [98]. Tumor-immune microenvironments
of different organs and gene expression of various tumors may influence immune responses
to checkpoint inhibitors [99].
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Figure 3. Colonization of DTCs in different organs. Disseminating cells selectively colonize in
different tissues and commence the process of further dissemination. The expansion to a metastatic
colony relies on the ability to initiate organ-specific colonization programs that allow the tumor cells
to survive in a new microenvironment. Colonization is dependent upon a combination of tumor cell
and tissue-specific factors. Description of organ-specific metastatic programs is described in the text.

4.1. Organ-Specific Responses

The dissemination process depends on extrinsic factors, such as vascular wall ac-
cessibility and circulation patterns, as well as on the innate capacities of the metastatic
tumor cells [100]. As types of foreign invaders may vary by anatomic location, the immune
system has evolved to customize host defenses accordingly. Published research provides a
greater focus on how the fate of DTC is influenced by specific organs, with less emphasis
on the mechanisms of primary tumor dormancy [101].The tissue-specific biology in the
TMEs contributes to different therapeutic responses. Furthermore, distinct TIMEs (tumor
immune microenvironments) can coexist within an individual patient [99]. Tumor cells
require similar molecular profiles to escape immune surveillance and grow in a secondary
niche, regardless of their origin. The anatomy of vessels and organ-specific circulation
patterns influence metastatic spread [97]. Different organ sites have distinctive immune
microenvironments typified by the presence of tissue-resident innate immune cells [102].
Multiomic profiling and integrative bioinformatic analysis of structural cells, including
fibroblasts, endothelium, and epithelium are important contributors to our understanding
of immune responses [98].

Multiple checkpoint pathways regulate T cell activation at different stages in tumor
immunology. Central to this process are programmed cell death 1 (PD-1) and cytotoxic T-
lymphocyte-associated antigen 4 (CLA-4) immune checkpoint pathways. PD-1 and CTLA-4
pathways operate at different stages of an immune response [103]. Studies investigating
whether responses of different metastasis sites vary suggest that site-specific metastasis
exhibits differential responsiveness to ICI therapy [104]. Meta-analysis based on clinical
trial data also indicates that different metastatic sites have varied responses to ICIs [105].
Based on clinical observations, “organ-specific response criteria” adapted from RECIST 1.1
and irRECIST (immune-related RECIST) are used to evaluate ICI response [106].
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4.2. Lymph Nodes

An immune response induced by ICI treatment is mostly observed in tumor-draining
lymph nodes (TDLNs) [107]. A study that retrospectively analyzed CT scans of patients
with metastatic NSCLC receiving nivolumab found that treatment was more significant
in the lymph nodes compared to other organs such as the bone, adrenals, and liver [108].
Mouse tumor models show that TDLNs are abundant with tumor-specific PD-1+ T cells
that strongly associate with PD-L1+ cDCs [109]. However, removing TDLNs concurrently
with primary tumors does not affect the response to ICIs on secondary tumors due to the
immunotolerance in TDLNs [110]. PD-L1 expression of lymph node metastases specimens
is low and thus inadequate to guide ICI treatment in clinical practice [111]. PD-1 expression
on CD3+ T cells is significantly increased in the metastatic lymph nodes of NSCLC [112].
On the other hand, studies investigating benign regional lymph nodes have found mor-
phological differences with unique immune cell populations observed across responders
and non-responders to immunotherapy [113].

4.3. The Brain

Historically, the brain was considered an immune suppressive microenvironment [114].
The PD-L1 expression of brain metastases is relatively low, which may be related to the im-
mune sanctuary features of the brain [111]. The TME of the brain consists of multiple types
of cells, including microglia, pericytes, fibroblasts, astrocytes, and a variety of suppressive
or stimulatory immune cells [115]. It is unclear whether adaptive immune cells exert an
antimetastatic response within the brain parenchyma or in perivascular spaces. Preclinical
findings suggest that T cell priming in the extracranial compartment is essential for an
effective immune response in the CNS [116]. That immune surveillance in brain metastasis
shares similarities with that in extracranial tumors argues for research to investigate the
role of ICIs for the treatment of solid tumor brain metastasis. The efficacy of ICIs for
brain metastases are similar in ICI monotherapy and combination regimens, indicating
that PD-(L)1 inhibition has similar activity inside and outside the brain. Genome-wide
sequencing analyses of metastatic variants have identified MYC as a crucial regulator for
the adaptation of disseminated tumor cells to the activated brain microenvironment [117].
Infiltration of FOXP3+ regulatory TILs and exhausted PD-1+ TILs have been observed in
brain metastasis specimens [118]. Epigenetic modeling also contributes to the immune-
suppressive tumor and the profile of the brain metastasis TME [119]. Retrospective studies
and prospective trials with immune ICIs demonstrate that the brain can harbor an “active”
immune microenvironment for immunotherapy [120].

4.4. The Liver

The liver is a distinct organ with an immunosuppressive environment. Circulating
metastatic tumor cells that reach the liver are faced with unique cellular populations. Liver
parenchyma is abundant with cells of the innate immune system that can be obstacles to
cancer cells, including Kupffer, stellate, the sinusoidal endothelium, and inflammatory cells
that are mediated through cell–extracellular matrix adhesion [121]. Hepatic stellate cells
(HSCs) can release chemokines and cytokines to recruit immune cells, thus shaping the
immune microenvironment [122]. HSCs orchestrate a prometastatic niche following tumor
extravasation. Furthermore, macrophages, hepatocytes, and liver sinusoidal endothelial
cells contribute to this process by releasing TNFα and TGFβ [123]. Metastasis to the liver
remains a therapeutic challenge for ICIs, as confirmed in a mouse model where liver
metastasis triggered apoptosis of tumor-specific T cells [124]. Liver metastases limit the
efficacy of immunotherapy via T cell elimination mediated by macrophages. Using a
mouse model of dual tumor immunocompetency, it is found that immune response in the
presence of tumor antigen within the liver leads to immune suppression. The immune
suppression is associated with the Tregs activation and modulation of intratumoral CD11b+

monocytes [125]. ICIs are less effective in cancer patients with liver metastasis [126].
However, due to the limited number of studies and patients, it is still controversial whether
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patients with liver metastases would benefit less from ICIs compared with other metastatic
sites. A survival benefit was not observed with ICIs simply with chemotherapy, unless in
combination with anti-VEGF therapy, indicating the role of angiogenesis blockade with
ICIs [105].

4.5. The Lung

The lungs are the most common metastatic site for a variety of cancers. CTCs shed from
primary tumors follow a systemic path and reach the lungs, where blood is oxygenated.
Lungs thus appear as the first host for DTCs, and the lungs are the mostly seeded organ
during metastasis. Cells that do not metastasize to the lungs are then recirculated to
remote organs via the arterial system, leading to a wider distribution of metastasis [127].
Lung capillaries are equipped with a basement membrane and the mediators of tumor
extravasation in the lung have been identified (e.g., COX2, MMP2 and SPARC) [100,128].
Cytokines are essential in sculpting the tumor microenvironment, and various studies
investigated the role of cytokines in promoting lung metastasis. In an animal tumor model,
neutrophils propagate metastasis-initiating cancer cells via the secretion of leukotrienes,
thus facilitating lung metastasis [70]. Using heterotopic and intravenous injection models
of lung metastasis of mice, interleukin-5 (IL-5) was found to be a pivotal factor in metastatic
colonization in lungs through the regulation of immune cells in the microenvironment
of the distal lung [129]. Based on different immune statuses, metastatic samples can be
organized into three immune clusters [128]. Compared with other metastatic sites (brain,
liver, or bone), metastasis to the lung presents with a higher immunogenic score. In
hepatocellular carcinoma, lung metastases respond most favorably to ICIs in terms of
objective response rate [106].

4.6. Bones

Bone metastasis is an adverse predictor the for efficacy of ICIs in clinical scenar-
ios [129,130]. Specific cellular and molecular niches in the bone microenvironment may
impact tumor-to-bone metastasis, including multiple immune cell types [131]. Bone tissues
have less effective cytotoxic cells and a large amount of suppressor immune cells [132].
Therefore, PD-L1 expression in bone metastases is less important to the process of immune
escape. In bone marrow, immature myeloid cells differentiating into MDSCs may acquire
immunosuppressive activity [133]. Other factors, such as bone morphogenetic protein 7
(BMP7), can induce dormancy of prostate cancer cells [134]. An animal model of bone
metastasis of breast cancer indicates that tumor cells become integrated into the bone ma-
trix shortly after reaching the bone, but that only a minority reach the bone marrow [135].
During metastasis to bone, cancer cells acquire a mesenchymal phenotype to facilitate im-
mune escape and dissemination [136]. Analysis of bone marrow samples of prostate cancer
patients reveals a lack of Th1 cells in the tumor; high levels of TGF-β in prostate cancer
bone metastases constrain the Th1 lineage, which confers resistance to ICI therapy [137].
These data emphasize the significance of the organ-specific niche in dictating differences in
T cell lineages.

5. Conclusions

This review identifies the abundance of work still to be done and the many chal-
lenges that remain for clinical practice. Immune responses toward disseminated tumor
cells during cancer metastasis are complex and dynamic processes. The distinct TME at
metastatic organs interacts with the adaptive immune system to determine responses to
immunotherapy, which is partly mediated by the resident innate immune cells. Interpatient
differences in the TME and organ-specific responses influence the duration and type of
responses to ICIs. More effort toward understanding immune surveillance mechanisms in
different metastasis sites, including the brain, bone, and liver, is needed.
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