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Simple Summary: Blood samples from patients with pancreatic diseases have been analysed to identify
predictive RNA-based variants. These variants are not subject to changes in the environment, as is the
case for gene expression or metabolic. The variants served together with CA19-9 as input to deep learning
for a cohort of 268 patients with pancreatic diseases. Of these patients, 183 patients had pancreatic cancer
and 85 from chronic pancreatitis. Among others, we were able to define a set of variants, which were
able to differentiate resected pancreatic cancer from chronic pancreatitis with an area under the curve of
(AUC) of 96%. Due to the ease of our approach and the wide availability of the used method, it will have
a broad impact on the clinical routine. Suspicious patients are only subjected to a blood draw of 2.5 mL
blood, and the specimen can then be sent at room temperature to a specialised laboratory.

Abstract: For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-
derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have
limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining
the biomarker CA19-9 with RNA-based variants. We use deep sequencing and deep learning to
improve differentiating pancreatic cancer and chronic pancreatitis. We obtained samples of nucleated
cells found in peripheral blood from 268 patients suffering from resectable, non-resectable pancreatic
cancer, and chronic pancreatitis. We sequenced RNA with high coverage and obtained millions of
variants. The high-quality variants served as input together with CA19-9 values to deep learning
models. Our model achieved an area under the curve (AUC) of 96% in differentiating resectable
cancer from pancreatitis using a test cohort. Moreover, we identified variants to estimate survival in
resectable cancer. We show that the blood transcriptome harbours variants, which can substantially
improve noninvasive clinical diagnosis.
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1. Background

Pancreatic cancer is one of the deadliest diseases and the eighth most common cancer
in Europe [1]. It accounts for 7–8% of cancer-related deaths in Europe, and the 5-year
survival is less than 10% [2]. Two reasons for such poor prognosis are late diagnosis and
misdiagnosis [3–5], as it shares many symptoms with chronic pancreatitis [6,7]. Late di-
agnosis can be ameliorated through non-invasive testing, which may lower the barrier
for early monitoring. Diagnosis can be improved by an accurate differentiation between
pancreatic cancer and chronic pancreatitis. Thus, it is vital to accurately stratify patients
using noninvasive blood-based testing.

Currently, the most extensively evaluated biomarker for pancreatic cancer is a serum
marker, Carbohydrate Antigen 19-9 (CA19-9) [8,9], an epitope of the sialylated Lewis blood
group antigens [10]. In pancreatic cancer diagnosis, CA19-9 achieves a median sensitivity
and specificity of around 80% [11]. There are two confounding factors for the limited
validity of CA19-9 in early diagnosis: First, CA19-9 may be elevated in chronic pancreatitis
and benign pancreatic tumours [12] and second, 5% of patients are Lewis a−/b− and
cannot produce CA19-9 [13].

Recently, a number of blood-based approaches have been pursued to complement or
go beyond CA19-9. Melo et al. described Glypican-1 as a cell surface marker for cancer
exosomes [14]. Mayerle et al. took a different approach and analysed metabolic profiles
to segregate pancreatic ductal adenocarcinoma (PDAC) and pancreatitis with an unsuper-
vised machine learning model using principal component analysis (PCA) [7]. Mellby et al.
established a signature of 29 biomarkers obtained from an antibody microarray for the
same task [15]. Their results were promising, but the variability of metabolic concentrations
and expression levels pose a challenge.

A complementary line of thought investigates genetic predisposition. Various au-
thors have proposed mutations associated with pancreatic cancer. Childs et al. introduced
four [16] and Grant et al. eleven mutations [17] associated with pancreatic cancer. However,
Grant et al. concluded that the proportion of affected patients was small (3.8%), limiting
the approach’s applicability.

Milne et al. and Klein et al. agreed in the argument that due to the complexity of the ge-
netic component of pancreatic cancer, single variants of high penetrance genes like BRCA1/2,
INK4A, STK11, Tp53, APC, and ATM could not fully explain the pathogenesis [18,19]. Vari-
ants of low penetrance genes might contribute to the susceptibility of the patient cohort
because of a lack of immunosurveillance [20]. Growing evidence suggests that changes
in immune cell composition and tumour microenvironment are associated with tumour
progression [21,22].

By and large, many biomarkers achieve good classification results but with high
variability, while known genetic variants are invariable predispositions but with limited
applicability. Here, we seek to overcome these two limitations by combining them. We
build on CA19-9 as an established biomarker and add high-quality and significant variants
in expressed genes obtained from blood samples.

We sequenced the RNA of nucleated cells found in peripheral blood and achieved
high quality through high coverage in sequencing and rigorous filtering of variants. Next,
we performed a transcriptome-wide association study to identify statistically significant
and predictive RNA-based variants (see Figure 1). By performing the analysis on the
RNA instead of the DNA, we focused on important variants that are in the regulatory or
coding region, and we saved costs. We discuss selected variants and their known links to
cancer biology.
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Figure 1. Blood samples were sequenced and processed. Millions of raw transcriptomic variants reduced to hundreds of
high-quality, significant ones. Variants, together with CA19-9, were used to stratify patient groups. In the machine learning
workflow, the dataset was divided into training and test sets before feature selection and optimisation. The test set was held
out for evaluation only.

In parallel to the TWAS, we applied machine learning to differentiate cancer from
chronic pancreatitis (CP), and in particular, resectable PDAC (rPDAC) from CP. Finally, we
demonstrate that our approach is even capable of defining a signature to estimate survival
for resectable PDAC.

2. Material and Methods
2.1. Local Ethics Committee

Patients with histopathologically confirmed resectable pancreatic ductal adenocar-
cinoma (n = 87, rPDAC), non-resectable pancreatic cancer (n = 96, nrPC), and confirmed
chronic pancreatitis (n = 85, CP) were included in the study. Cancer patients were classified
by clinicians as non-resectable either because they were distant metastatic or locally ad-
vanced. The study was reviewed by the internal review board of the University Hospital
Dresden, Germany. After approval from the local ethics committee at the University Hos-
pital Dresden (reference number: EK349122008), all patients gave their written informed
consent to take part in the study.
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2.2. Sample Preparation and Deep Sequencing

Venous blood samples were extracted from the patients using the PAXgene Blood RNA
Tube System (PreAnalytiX, Hilden, Germany) before surgery or any other planned medical
intervention. Until further analysis, the samples were stored at −20 ◦C. CA19-9 was
determined in serum using CLIA (DiaSorin). RNA was isolated from the blood using the
PAXgene Blood RNA Kit (PreAnalytiX, Hilden, Germany) according to the manufacturers’
instruction. Contaminating genomic DNA in the RNA samples was removed by the
treatment of the RNAs with Baseline Zero- DNase (Epicentre, Madison, WI, USA). After
the clean-up of the digestion with RNeasy Mini Kit (Qiagen, Hilden, Germany), the
RNA samples were subjected to quality control using the Agilent RNA 6000 Nano Kit
(Agilent, Waldbronn, Germany). Only samples displaying a RIN > 8.0 were subjected to
RNA sequencing. Messenger RNA was isolated from 1.5 µg total RNA by combining the
depletion of haemoglobin using the Globin-Zero Gold Kit (Epicentre, Madison, WI, USA)
with successive poly-dT enrichment using the NEBNext Poly-A mRNA Magnetic Isolation
Module according to the manufacturers’ instruction. Final elution was done in 15 µL 2×
NEBnext first-strand cDNA synthesis buffer (NEB, Frankfurt, Germany).

After chemical fragmentation, by incubating at 94 ◦C for 15 min, the samples were
directly subjected to the workflow for strand-specific RNA-Seq library preparation (Ultra
Directional RNA Library Prep, NEB, Frankfurt, Germany). For ligation, custom adaptors
were used: Adaptor-Oligo-1: 5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′,
2: 5′-PGATCGGAAGAGCACACGTCTGAACTCCAGTCAC3′.

Indexing was performed during the following PCR enrichment (15 cycles) using
custom amplification primers carrying the index sequence indicated with “NNNNNN”
(Primer1: Oligo_Seq5′ AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC-
GACGCTCTTCCGATCT-3′, Primer2: 5′ CAAGCAGAAGACGGCATACGAGAT-NNNNNN-
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′).

For Illumina sequencing, samples were equimolarly pooled and distributed on the
respective number of flow-cells for 75bp single-end sequencing on Illumina HiSeq 2500,
resulting in an average of 60 Mio fragments sequences per sample.

2.3. Sequence Assembly and Quality Control

FASTQC 0.10.1, Cutadapt 1.9.1, and STAR 2.7 were used sequentially for quality
checking, adapters removal, and mapping. Sequences were aligned and annotated based
on Genome Reference Consortium Human Build 38 (GRCh38). To estimate the complexity
and predict the redundancy of a genomic sequencing library at a given sequencing depth,
we used two software packages: Preseq and Genomecov (bedtools 2.30). We analysed
sequences depth and coverage based on the aligned bam files. Picard 2.9 was used to mark
PCR duplicates and sort reads. Reads were split by N operators of the CIGAR strings
into component reads and trimmed into splice junctions to remove RNA overhangs by
using the Genome Analysis Toolkit (GATK 4.1 and GATK 3.8). GATK’s base quality score
recalibration (BQSR) estimated possible systematic sequencing errors [23]. The Haplotype-
Caller of GATK single-nucleotide polymorphisms (SNVs) and insertion-deletions (INDELs)
simultaneously via the local de novo assembly of haplotypes in an active region [23].
Then these variants were hierarchically merged over the samples into one file in GVCF
format and then subjected to hard filters. Hard-filtering throws out variants below specific
thresholds for properties, such as variant confidence, root mean square of the mapping
quality and strand bias. Other standard quality control protocols were applied [24,25]
by using PLINK 2. We adopted very stringent criteria to ensure the quality of the study
and validity of the results of statistical analysis results. Missingness filter, for example,
excludes a massive number of variants that were present in less than 97% of our samples.
The second important filtering measure was the minor allele frequency (MAF). MAF is the
rate of occurrence for the second most common allele in the given population.

For samples, the following quality control steps were applied: missingness, which
excludes the samples with high missing variants; heterozygosity, which filters samples with
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too high or low heterozygosity rate, relatedness, which find pairs of samples looking too
similar to each other, and finally stratification, which checks whether the samples belong
to the same population. Table S1_1 gives an overview of the tools and configurations
described in this section.

2.4. Statistical Analysis

The transcriptome-wide association study (TWAS) was implemented as a logistic
regression model on the 16,934 high-quality variants using PLINK 2. Three cohorts of
patients were used for different analysis, namely rPDACr, nrPC, and CP. The significant
variants that have a p-value with minus four orders of magnitude or better were studied. We
also evaluated rare variants that passed the minor allele frequency (MAF) filter and showed
a distinct level of association (e.g., with an odds ratio of around ten). We still call them rare,
although they pass the MAF filter because of their relatively low MAF (around 10%). In all
of our statistical analysis, gender was added as a covariate in the logistic regression models
to prevent bias. However, this has an ignorable influence on the variants ranking.

2.5. Feature Selection for Machine Learning

Firstly, the dataset was divided into a training set (80%) and a test set (20%). The feature
selection process was performed with a logistic regression model on the 16,934 high-quality
variants using only the training set. Variants were ranked and evaluated independently
for each task (cancer vs. CP, rPDAC vs. CP, nrPC vs. CP). By using the training set, the
features (variants) were ranked according to their significance (p-value and odds ratio). We
applied principal component analysis on an incremental number of variants to identify
a minimum number of features that present a higher possible segregation level. For each
task, variants with a p-value below 0.005 or an odds ratio higher than ten (or below 0.1)
were nominated and kept as features. They were normalised to a binary format (zero for
the reference allele and one for an alternative allele). CA19-9 was used as a feature and fed
to the models in a binary format (below or higher than the clinical threshold of 37 U/mL).

2.6. Machine Learning

A deep feed-forward neural network approach was implemented and optimised with
Adam optimiser in a fivefold cross-validation process on the training set. Networks were
built for the tasks and optimised with Keras 2.2.4. It consisted of a visible layer, five
dense fully connected hidden layers with ReLu activation functions, and an output layer
with Softmax function. A batch normalisation and dropout of 0.4 were applied for some
tasks. For stochastic learning, the Adam optimiser [26] was used with learning rate decay.
The fivefold cross-validation process resulted in five models, which were optimised and
evaluated separately (see Figure 1). At the final evaluation, the test set (a holdout) was
used. For each task, the area under the ROC curve (AUC), accuracy, precision, sensitivity,
and F1-score were calculated and reported. We calculated the average performance of the
five models. Additionally, we ensembled decisions of the five models per task by averaging
their probabilities in identifying the positive class. Overall, the two averaging methods
gave very close measures in all classification tasks.

2.7. Survival Analysis

A linear regression, using PLINK 2, was applied to the training set to evaluate the
predictivity of each variant on its own. Box-Cox power transformation was applied to
approximate the normal distribution of the survival time [27] of rPDAC samples. Then,
Kaplan–Meier plots and log-rank test were performed to evaluate the best variant.

The multivariate analysis, using a proportional-hazards model (Cox regression), was
implemented to define a signature of multiple variants by using the R packages: survminer
and survival. The backward elimination selection procedure [28] on the training set kept
the effective predictors as features and excluded detrimental or time-dependent ones. The
likelihood ratio test, Wald test, and the log-rank test were applied.
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To check if the requirements for the proportional hazards model are met, the pro-
portional hazards assumption of the Cox regression was tested by using the Schoenfeld
residuals against the transformed time. Having high p-values (e.g., above 0.05) in this
test indicates that there are not time-dependent coefficients in the final model; therefore,
the assumptions are valid. By using the test set, the time-dependent area under the ROC
curve [29] and the covariate specific ROC curve [30] were determined.

3. Results

In this study, we aimed to explore combining an established biomarker with RNA-
based variants to accurately distinguish pancreatic cancer in its two profiles (resectable and
non-resectable) from chronic pancreatitis, as well as to estimate survival in the resectable
type. Of the sequenced patients, 68% suffered from pancreatic cancer and 32% from chronic
pancreatitis. Most of the cancer patients were above 60 years old, while most pancreatitis
patients were between 50 and 60 years old. The cancer group was gender-balanced, while
the pancreatitis group was predominantly male. Gender was included as a covariate to
accommodate the imbalanced regression models. CA19-9 values were obtained for nearly
all cancer and pancreatitis patients. Survival for rPDAC was nearly twice as long as for
non-resectable cancer (see Table 1).

Table 1. Patients’ age, gender, survival, and CA19-9 values.

Category
Cohort rPDAC (n = 87) Cohort nrPC (n = 96) Cohort CP (n = 85)

n (%) n (%) n (%)

Gender

Male 46 (53%) 51 (53) 73 (86%)

Female 41 (47%) 45 (47%) 12 (14%)

Age (years)

<50 8 (10%) 8 (8%) 36 (42%)

50–60 10 (11%) 19 (20%) 35 (41%)

<60 69 (79%) 69 (72%) 14 (17%)

Median 69 68 51

Q1, Q3, IQR 62, 74, 12 60, 73, 13 45, 56, 11

Median of survival (days) 615 297 NA

CA 19-9 Values

≤37 24 (28%) 27 (28%) 68 (80%)

>37 61 (70%) 68 (71%) 16 (19%)

Unknown 2 (2%) 1 (1%) 1 (1%)

In clinical practice, a CA19-9 value higher than 37 U/mL is an indication of pancreatic
cancer [9]. With around 84% AUC and 76% accuracy, CA19-9 distinguishes cancer from
pancreatitis and serves as a baseline. Adjusting the clinical threshold for CA19-9 does not
improve classification results because false positives and false negatives do not cluster
around the threshold of 37 U/mL, but they spread out widely (see Figure S1_1).

Overall, we rigorously reduced millions of raw variants to hundreds of high-quality,
highly significant variants. Our transcriptomic-wide association study identified variants
highly associated with pancreatic cancer or chronic pancreatitis. Encouraged by these
results, we trained machine learning models and tested them using an independent test
set. The receiver operating curves demonstrate: Variants on their own differentiate the
resectable pancreatic cancer from chronic pancreatitis with 89% AUC. Combined with CA19-
9, they reach 96%. Deep learning on high-quality, highly significant variants together with
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CA19-9 nearly perfectly distinguishes resectable PDAC from pancreatitis using 76 RNA-
based variants.

3.1. Sequencing at 60 Mio Read Depth

We sequenced the RNA of blood samples at 60 Mio read depth. We examined the
utility of further sequencing and optimisation of the sequencing depth. Figure S1_2 shows
the average of all reads in each base position over our samples. Some of the base positions
were covered with less than ten reads, which are likely to be lost if we sequence with less
coverage. Importantly, the significant variants that were selected as features for machine
learning (i.e., with a p-value below 0.005) are in the middle region of the graph, where
base positions were covered with at least 50 reads. This means that it is possible to reduce
the cost and to sequence at a lower depth without losing significant information. For
example, sequencing with 30 Mio instead of 60 Mio fragments will result in keeping the
hypergeometric probability of having more than 20 reads in each of these positions around
95% (by assuming that calling variants requires around 20 reads).

Furthermore, we computed the expected yield of distinct fragments of reads for
experiments smaller than the input experiment (c_curve) by resampling our bam files for
all samples. We found that sequencing with an average of 30 Mio fragments per sample
instead of 60 Mio will not lead to losing more than 0.6 Mio distinct fragments out of 7 Mio,
which corresponds to around 9% (see Figure S1_3).

3.2. Consistency of Cell Types between Groups

We judged the average consistency of cell types between groups using CIBERSORT,
which estimates the abundances of member cell types in a mixed cell population, using
gene expression data [31]. All blood samples were comprised mostly of neutrophils, natural
killer cells (NK cells), and T cells. The composition of cells was consistent and did only
differ in the least abundant cell types (see Figure 2) so that the difference in cell type
composition between patient groups does not influence variant calling.
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3.3. Variants and Samples Quality Control

Our sequences have a high base call accuracy with Phred quality scores per base pair
position above 25 (see Figure S1_4). To obtain high-quality variants, we followed standard
quality control procedures [24,25]. In the quality control workflow, 2,039,151 raw variants
were reduced to 16,934 high-quality variants in around 9000 genes. Mostly, variants were
filtered out because of their high missingness among samples or their low minor allele
frequency. Missingness initially excluded 93% of variants. After exclusion of variants with
low genotype quality, another 28% of the variants were removed. Minor allele frequency
filtering removed 80% of variants. All other steps had a comparatively minor impact. The
sample’s quality control removed around 5% (see Table 2).

Table 2. Quality control (QC) steps for variants and samples. The workflow resulted in 16,934 high-quality variants for 255
high-quality samples.

Type QC Step Passed n (%) Excluded n (%)

Variant QC 2,309,151
1. Hard filters 2,028,582 (87.8%) 280,569 (12.2%)
2. Missingness 124,078 (7%) 1,904,504 (93%)
3. Genotype quality (GQ) filter 89,614 (72.3%) 34,464 (27.7%)
4. Minor allele frequency (MAF) 17,961 (20%) 71,923 (80%)
5. Hardy Weinberg Equilibrium 16,934 (95.7%) 757 (4.3%)

16,934

Samples QC 268
6. Missingness 268 (>99%) 1 (<1%) {1 nrPC}
7. Heterozygosity 265 (99%) 3 (1%) {1 nrPC, 1 rPDAC and 1 CP}
8. Relatedness 260 (98%) 5 (2%) {3 nrPC, and 2 CP}
9. Stratification 255 (98%) 5 (2%) {2 nrPC, 1 rPDAC and 2 CP}

255

3.4. Statistical Analysis (TWAS)

From the high-quality variants, we identified highly significant variants through car-
rying out a transcriptome-wide association study. First, we sought variants differentiating
pancreatic cancer in its two profiles (rPDAC or nrPC) from chronic pancreatitis (CP). Then
we compared each profile with CP (see Figure S1_5 for Manhattan plots). Table 3 shows the
identified significant variants for each analysis. Overall, four variants in the genes GSDMD,
B4GALT5, and VPS36 were significantly associated with pancreatic cancer, with p-values of
minus four orders of magnitude or better. Other variants were associated with CP with
high affinity. Moreover, six variants present in 10% or below of our samples were highly
significant. More than 90% of these variants appeared in cancer, and only less than 10%
were in CP. One of them (rs3093553) was already defined as a risk factor for breast cancer
in two GWAS studies (see Table 4).

An analysis for linkage disequilibrium showed that alleles occur together less often
than expected on the same haplotype (negative linkage disequilibrium) in the two variants
of GSDMD. For the two variants of CD5, two alleles occur together more often than
expected on the same haplotype (positive linkage disequilibrium). The two variants in
B4GALT5 were in moderate positive linkage disequilibrium. Variants in different genes
were independent (see Figure S1_5 for linkage disequilibrium plots).

3.5. Deep Learning Accurately Differentiates Cancer

By using logistic regression on the training set, we carried out a feature ranking and
selection process. We selected variants with a p-value below 0.005 or an odds ratio higher
than 10 (or below 0.1) as features for our machine learning model. The numbers of the
obtained features were 70, 76, and 67 for cancer vs. CP, rPDAC vs. CP, and nrPC vs. CP,
respectively (see Sheet S2_1, Sheet S2_2 and Sheet S2_3 for the full lists). Overall, we
rigorously reduced millions of variants to hundreds of high-quality, highly significant
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features. We do not only exploit affinity towards cancer but also against cancer (associated
with CP). Every single variant achieved an AUC lower than 67% on its own, which is below
the predictivity of CA19-9.

Table 3. The significant variants (with a p-value of minus four orders of magnitude or better) for different analysis on our data. The
last column (additional association) gives information about more associations for the variant in our data or citations for that variant in
other GWAS studies (PMIDs are provided). OR is odds ratio.

SNV BP Rs Id Gene p-Value OR Additional Association

Cancer (rPDAC + nrPC) vs. CP:
8:143561151 rs12541790 GSDMD 1.54× 10−5 3.26 In particular, with nrPC

20:49633437 rs11471493 B4GALT5 5.11× 10−5 2.60 rPDAC & CA19 False Negative
(p-value = 2.81× 10−4)

8:143562235 rs11551198 GSDMD 5.21× 10−5 0.31

20:49634210 rs235032 B4GALT5 1.37× 10−4 2.17 rPDAC & CA19 False Negative
(p-value = 1.44× 10−4)

16:3067936 rs2239303 IL32 1.91× 10−4 0.43 Another GWAS study with acute lung,
PMID: 21649914

4:128039414 rs11098945 ABHD18 3.72× 10−4 0.47
Other GWAS studies with type 2 diabetes,
PMIDs: 26964836, 25774817, 25145545,
24843659 & 21490949

11:61127379 rs375347163 CD5 4.04× 10−4 0.35
11:61127380 rs72912997 CD5 4.04× 10−4 0.35

6:70579486 rs1048886 SDHAF4 6.16× 10−4 0.43
Other GWAS studies with type 2 diabetes,
PMIDs: 26964836, 25774817, 25145545,
24843659 & 21490949

14:99169513 rs375191905 BCL11B 7.27× 10−4 0.36

rPDAC vs. CP
12:9083754 rs1385820032 A2M 5.59× 10−5 0.22
16:3067936 rs2239303 IL32 7.04× 10−5 0.34
8:23188960 rs1334003684 RP11-1149O23.2 8.37× 10−5 0.24
15:61856531 15:61856531 RP11-16B9.1 8.80× 10−5 0.3
14:99169513 rs375191905 BCL11B 1.38× 10−4 0.23

20:49633437 rs1555810424 B4GALT5 2.11× 10−4 2.86 CA19 False Negative
(p-value = 1.2× 10−4)

20:49634210 rs235032 B4GALT5 2.24× 10−4 2.49 CA19 False Negative
(p-value = 1.2× 10−4)

3:64000218 rs112759850 PSMD6-AS2 2.94× 10−4 0.11
12:107733077 rs1045749 PRDM4 4.45× 10−4 0.42
3:70957989 rs1387507994 FOXP1 4.48× 10−4 0.27

13:52413342 rs13431 VPS36 6.70× 10−4 2.36 Another GWAS study with Ulcerative
colitis, PMID: 27902482

12:107733387 12:107733387 PRDM4 8.41× 10−4 0.43
12:115821 rs66898998 MED13L 9.33× 10−4 0.43
17:42315197 rs368910594 STAT3 9.54× 10−4 0.33
17:50862895 17:50862895 TOB1 9.86× 10−4 0.13
4:128039414 rs11098945 ABHD18 9.92× 10−4 0.43

nrPC vs. CP
8:143561151 rs12541790 GSDMD 8.93× 10−5 3.541
8:133458886 rs879077709 ST3GAL1 9.08× 10−5 0.21
8:143562235 rs11551198 GSDMD 1.50× 10−4 0.26
2:74969604 rs7881 POLE4 2.11× 10−4 0.347
2:96834655 rs10643982 CNNM3 2.71× 10−4 0.33
6:70579486 rs1048886 SDHAF4 3.72× 10−4 0.3
8:17229247 rs1043093 CNOT7 7.59× 10−4 0.12
17:1736164 rs11549259 WDR81 9.30× 10−4 0.41

rPDAC vs. nrPC

12:131922463 rs3088051 ULK1 6.31× 10−5 0.34 Another GWAS study with Crohn’s
disease, PMID: 22536218

12:27755670 rs3751233 MRPS35 7.91× 10−4 0.30

11:112084759 rs544184 C11orf57 8.01× 10−4 2.17 Another GWAS study with colorectal
cancer, PMID: 26377099
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Table 4. Significant variants with low minor allele frequency were additionally identified, mainly in cancer patients. The
last three columns show the number of the samples with these variants in all groups, only in cancer groups, and only in CP.
Number in cancer and CP in this table means number of samples that carry this variant.

SNV BP Rs Id Gene No. in Cancer n No. in CP n Additional Association

11:77616654 CLNS1A 29 3

11:77616653 CLNS1A 29 3

6:31581779 rs3093553 LTB 23 4 Another GWAS study with breast
cancer, PMID: 23095343 & 21523452

5:140535437 ANKHD1 23 3

7:36707016 AOAH 22 2

9:34634803 SIGMAR1 21 1

For each classification task, we trained feed-forward deep neural networks by using
the selected features and another by using the selected features and CA19-9 together. The
models were optimised using the training set with fivefold cross-validation and evaluated
using an independent test set. The receiver operating curves in Figure 3 demonstrate: Deep
learning on high-quality, highly significant features (variants) together with CA19-9 nearly
perfectly distinguishes resectable PDAC from pancreatitis and improves the performance
of CA19-9 on its own from 84% to 96%. Our models significantly improve the diagnosis
across all classification tasks. The selected features without CA19-9 achieved an AUC of
89% in differentiating rPDAC from CP. Table 5 and Figure 3 summarise AUC as well as
accuracy, precision, and recall for all tasks and show the predictivity of variants and CA19-9
separately and together. Performance of each fold in the cross validation on training and
test sets are reported in Table S1_2 and Table S1_3, respectively.

3.6. Estimating Survival

Next, we estimated survival from variants. In our patient cohort, resectable PDAC
patients survive nearly twice as long as non-resectable ones (see Table 1). In the group
of resectable PDAC, we applied a linear regression model for evaluating the association
between each variant on its own with survival time in a univariate model. Among the
16,934 high-quality variants, rs6728689 in SP100 was highly associated with poor prognosis
in rPDAC.

Table 5. Classification results of CA19-9 only, variants (with deep learning), and CA19-9 and variants together (with deep
learning). Variants together with CA19-9 achieved very high performance, especially for rPDAC vs. CP.

Task
Variable Performance on the Test Set

Type No of Features AUC Precision Recall F1 Accuracy

Cancer vs. CP

CA19-9 1 0.84 0.89 0.72 0.79 0.75

Variants 70 0.83 0.76 0.83 0.79 0.71

CA19-9 & Variants 71 0.96 0.89 0.97 0.93 0.90

rPDAC vs. CP

CA19-9 1 0.85 0.78 0.72 0.75 0.77

Variants 76 0.89 0.88 0.88 0.88 0.88

CA19-9 & Variants 77 0.96 0.93 0.88 0.90 0.91

nrPC vs. CP

CA19-9 1 0.84 0.80 0.72 0.76 0.76

Variants 67 0.76 0.68 0.89 0.77 0.72

CA19-9 & Variants 68 0.92 0.75 0.95 0.84 0.81
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Toward a multivariate model, we developed a proportional hazards model to estimate
survival. Using the training set, our model identified 16 features. Some of these were
associated with good prognosis and others with poor prognosis (see Figure 4 and Table S1_4).
p-values for the likelihood ratio test, Wald test, and the log-rank test were below 1× 10−9, and
the concordance was 0.89 (standard error = 0.19). The main driver in the model was rs6728689
(in SP100), which shows a distinctive level of significance with a p-value of 6.87× 10−10

and a hazard ratio of around 14. Evaluating its predictivity using the independent test set
reveals a high level of association (see Figure 5 for Kaplan–Meier plots in the training and
testing sets).

Checking for proportionality assumption by using the Schoenfeld residuals against
the transformed time showed that the global model and each of the selected predictors
were having p-values above 0.05. In this test, having very small p-values is an indication of
time-dependent coefficients, which is not desirable; however, that was not the case in our
analysis (see Table S1_5). Therefore, the requirements for the proportional hazards model
are met, and the hazard rate of an individual is relatively constant in time. Using the test
set, we computed time-dependent AUC and the covariate specific AUC, and they were
92% and 89%, respectively.
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independent test set.
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3.7. Variants’ Biological Connection to the Disease

The variants were obtained from peripheral blood, but interestingly, the genes harbour-
ing the variants appear to play a role in cancer tissue. Table 3 summarises the significant
variants. In the analysis of cancer (rPDAC + nrPC) vs. CP, three variants in the genes
GSDMD and B4GALT5 showed a high association with pancreatic cancer in its two profiles
(rPDAC and nrPC). In the gene GSDMD, one variant was significantly associated with
cancer and another with CP. Wang et al. discuss GSDMD’s potential as a cancer target
due to its role in pyroptosis gasdermin mediated programmed cell death [32]. It is highly
connected with the CASP gene family (see Figure S1_6a), which is strongly related to the
poor prognosis of pancreatic cancer [33].

Interestingly, studying other possible associations in the data showed that the variant of
B4GALT5 was associated with patients that were false negatives of CA19-9. This observation
is in agreement with Indellicato et al. in pointing out an association between B4GALT5 and
glycosylation profiles and its connection to the elevation of CA19-9 values [34]. Generally,
B4GALT5 is a membrane-bound glycoprotein, which is associated with MUC4 (see Figure
S1_6b, STRINGDB [35]). MUC4 is associated with pancreatic cancer and was proposed as
a marker to differentiate pancreatic cancer from pancreatitis [36].

Other variants were identified because of their significant association with CP. Some
of them were already studied and defined in other genomic association studies as markers
for other diseases such as type 2 diabetes (see Table 3).

In the survival analysis, rs6728689 in SP100 was highly associated with poor prognosis
in rPDAC. SP100 can activate p53-dependent transcription, which is important for regulat-
ing apoptosis by supporting the stimulatory effect of homeodomain interacting protein
kinase-2 (HIPK2) [37]. Accordingly, we suggest that variations in SP100 may reduce the
activity of HIPK2 and attenuate p53-dependent apoptosis.

4. Discussion

In 1981, Koprowski et al. introduced CA19-9 based on a small case study with two
pancreatic cancer patients [38]. Today, it serves as a monitoring tool after pancreatic
cancer resection. Its use in diagnosis is still limited because of its low accuracy of around
80% [11]. To date, there is no single biomarker or genetic variant that outperforms CA19-9 in
detecting pancreatic cancer. However, combinations of biomarkers or variants [7,15,18,19]
promise improvements.

In our approach, we wanted to exploit the synergy between CA19-9 as an estab-
lished clinical biomarker with RNA-based variants, which capture a form of dynamic
predisposition obtained from the transcriptome. Combining the tumour marker CA19-9
with signatures of selected variants in a deep learning approach results in highly accurate
classification. They span a variety of tasks, such as distinguishing cancer from CP and
estimating survival in the resectable type. Interestingly, deep learning with variants as
input but without CA19-9 achieves a performance comparable to the established CA19-9
on its own. This means that our approach can replace CA19-9 for Lewis-antigen negative
patients, where CA19-9 on its own is not applicable.

In differentiating rPDAC from pancreatitis, we obtained an AUC of 96%, which is above
the 94% AUC reported in [7] and significantly above the 84% AUC in [15]. But importantly,
their approaches were built on biomarkers, which are continuous, namely metabolic and
gene expressions, respectively. They could carry noise inherent to the method and read-out.
In contrast, we observe discrete features whose read-out is binary (present or absent) and
whose noise can be controlled by the sequencing depth. Thus, we believe that our selected
features provide a very robust and stable signature, which can be analysed in laboratories
specialised in genetic analysis without the need for special equipment. Moreover, the
accuracy (or F1 score) of our models indicates that we were able to improve the diagnosis
by 14% over CA19-9, whose accuracy is 77%.

In fact, we believe that many of the selected variants can contribute to a causal disease
model. In agreement with Milne et al. and Klein et al., we do not solely focus on well-
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known high penetrance genes but include low penetrance genes [18,19]. We found that
many of the identified variants do not directly affect protein function and structure, as they
are located in the three prime untranslated regions (3′-UTR). These variants can influence
tumour susceptibility by polyadenylation, translation efficiency, localisation, and stability
of the mRNA [39].

Although some of the genes harbouring variants appear to play a role in cancer tissue,
it was not our primary intention to find genes expressed in the tumour tissue or, for that
matter, to find mutations. For example, speaking about tumour tissue, one would expect to
capture signals from KRAS mutations, especially in non-resectable cancer (nrPC), which
includes metastasis patients. Nevertheless, there is no single variant in KRAS that shows
any level of significance for all the comparison groups. Therefore, the assay was developed
mainly to perform diagnosis without tumour tissue to support the performance of the
biomarker CA19-9 and introduce a reliable diagnosis model. The basic idea started from
attempts to evaluate gene expression changes in the nucleotide cells of peripheral blood,
but it successfully resulted in developing a marker panel in single-nucleotide variants
(germline variants) because of its superior accuracy and higher stability.

The germline variants do not change over time and the only dynamic component in the
developed model is CA19-9, but it is not fully precise to argue that we introduced a patient
sub-stratification system based on static predispositions. Rather, we successfully exploit the
synergy between the dynamic biomarker CA19-9 and those static predisposition variants.
Moreover, there is another dynamic component in the model, which is the expression
of the genes carrying the variants. While the variant itself is static, its gene is behaving
dynamically and may or may not be expressed. We consider only variants on expressed
genes, and hence it is a combination of static and dynamic aspects.

Some variants may be pinpointed due to indirect correlation with other phenomena
associated with the false diagnosis of CA19-9. For example, variants in the gene B4GALT5
were associated with rPDAC in our data. Evaluating all possible associations indicates that
these two variants were also associated with false negatives of CA19-9 diagnosis, and this
was exploited by our model to improve CA19-9 prediction. This was not a surprise due
to several studies linking B4GALT5 to glycosylation and then to the elevation of CA19-9
values [33]. Generally, B4GALT5 is a membrane-bound glycoprotein, and it was linked
with pancreatic cancer through MUC4 [36,40]. Cataloguing germline predispositions is
invaluable for cancer screening, prevention, and early detection. However, this does
not necessarily mean that PDAC or CP is encoded in the patients’ DNA. The patient’s
dynamic response to the disease may have a static variant signature that we utilised in
our prediction.

Furthermore, we exploit affinity towards cancer and also against cancer (associated
with CP). We believe that the former can also be used to indicate pancreatic cancer compared
with normal patients without pancreatitis. Some of the cancer variants were particularly
associated with rPDAC or nrPC, and others with pancreatic cancer in general (see Table 3).

Finally, a key to these results is high-quality data. We sequenced at 60 Mio coverage of
high-quality mRNA. While whole-exome sequencing (WES) is primarily for DNA variant
discovery and RNA-Seq is mainly for measuring gene expression, both can be used to
detect single nucleotide variants (SNVs) [41]. WES is the sequencing of genomic DNA that
has been enriched for exonic regions. This is cheaper than sequencing an entire genome.
RNA-seq is even cheaper and less complicated than WES. By performing the analysis
on the RNA level instead of the WES, we focused on important variants that are in the
regulatory or coding region, and we saved costs. Furthermore, as shown in Figure S1_3,
half the coverage leads to a 9% decrease, while double the coverage to a 10% increase.
In comparison to the reduction of variants due to missingness, these changes are small,
and a further increase in coverage is unlikely to have a positive effect. However, the
large reduction due to missingness in some samples means that future improvements
in sequence quality are likely to increase the number of significant variants, which is
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unlikely to improve the nearly perfect classification results but likely to improve a causal
understanding of the disease processes.

5. Conclusions

We have shown that deep sequencing and machine learning can significantly improve
pancreatic cancer diagnosis from blood samples. The combination of the established
biomarker CA19-9 with new high quality and significant RNA-based variants resulted in
the ability to differentiate pancreatic cancer from pancreatitis with an AUC of 96%. We also
defined a signature of 16 variants significant for estimating survival in resectable PDAC.

Conceptually, our approach combines dynamic and static read-outs. CA19-9 captures
a dynamic reaction to cancer, while the variants in the expressed genes are static predis-
position. The former may reflect dynamic disease progression, while the latter captures
dynamic predispositions obtained from the transcriptome. As a first step towards a deeper
understanding of the causal relationships, we discussed the variants that were significant
for cancer. In particular, the genes B4GALT5 and GSDMD, which harbour three of the most
significant variants, are closely related to cancer progression and the elevation of CA19-9
levels. In an additional analysis, we identified six statistically significant variants, one of
which was already defined as a breast cancer risk factor in several publications. However,
these six variants are having limited impact due to their lower minor allele frequency
(around ten).

Overall, our results show that deep sequencing and machine learning can pave the
way to early and accurate diagnosis as well as personalised treatment options.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13112654/s1, Figure S1_1: CA19-9 values of the target classes. Figure S1_2: (a) Manhattan
plot shows the mean of the total reads for each base position over samples. (b) A chart to summarise
the coverage of the distinct reads that are pointed in (a). Figure S1_3: Sequencing depth analysis using
population sampling models to infer the behaviour under less or more in-depth sampling. (a) Median
of the c_curves over the samples for the expected complexity. (b) Median of lc_extrap_curves over
the samples, which simulates the expected future yield of distinct fragments of reads bound by the
number of total distinct fragments in the library (lc_extrap_curves) based on bootstrapping when
sequencing deeper. Figure S1_4: Sequences quality. (a) Phred quality scores per base pair position,
(b) Phred quality scores per read. Figure S1_5: Manhattan plots to show the p-value of the evaluated
variants (on the left side), and heatmap for linkage disequilibrium for the loci of the significant variants,
which are identified in Table 2. (a) and (b) for cancer vs CP analysis. (c) and (d) for rPDAC vs CP
analysis. (e) and (f) for nrPC vs CP. Figure S1_6: Protein-protein interactions of the genes: B4GALT5
and GSDMD from STRING Database. Table S1_1: An overview of the functions and configurations for
variants calling and quality control using GATK & Plink. Table S1_2. Performance of each fold in the
cross-validation on training and test sets for deep learning model using variants and CA19-9 together.
Table S1_3. Performance of each fold in the cross-validation on training and test sets for deep learning
model using variants only. Table S1_4. The significant predictors of the proportional hazard model for
estimating the survival time of rPDAC patients. Table S1_5. Results of checking for proportionality
assumption by using the Schoenfeld residuals against the transformed time. Sheet S2_1, Sheet S2_2
and Sheet S2_3 includes lists for the description for the selected features (variants) that have been
used in the machine learning.
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