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Simple Summary: This multi-institutional study analyzed the patterns of care and outcomes of
external beam radiotherapy (EBRT) in localized prostate cancer to identify the optimal EBRT strategy
for each risk-stratified patient subgroup for clinical practice implementation. In 1573 patients from
17 institutions, EBRT treated prostate cancer effectively. Also, among various risk classification tools,
NCCN classification revealed the highest predictive power. The modern RT techniques and dose
escalation (≥179 Gy1.5) enhanced therapeutic effects of RT significantly, especially in the high-risk
group. On the other hand, modest doses (≥170 Gy1.5) was a significant factor in the intermediate-risk
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group and no significant impact of dose was observed in the low-risk group. IMRT+ ≥179 Gy1.5+
hypofractionation resulted in higher biochemical failure-free survival in all risk groups, and it
translated into survival benefits in the high-risk group. Therefore, risk-adapted RT (more intense
RT, high-risk patients; moderate-dose RT, low-risk patients) can be considered, although further
prospective studies are warranted.

Abstract: Purpose: This nationwide multi-institutional study analyzed the patterns of care and
outcomes of external beam radiotherapy (EBRT) in localized prostate cancer patients. We compared
various risk classification tools and assessed the need for refinements in current radiotherapy (RT)
schemes. Methods and Materials: We included non-metastatic prostate cancer patients treated
with primary EBRT from 2001 to 2015 in this study. Data of 1573 patients from 17 institutions
were analyzed and re-grouped using a risk stratification tool with the highest predictive power for
biochemical failure-free survival (BCFFS). We evaluated BCFFS, overall survival (OS), and toxicity
rates. Results: With a median follow-up of 75 months, 5- and 10-year BCFFS rates were 82% and
60%, and 5- and 10-year OS rates were 95% and 83%, respectively. NCCN risk classification revealed
the highest predictive power (AUC = 0.556, 95% CI 0.524–0.588; p < 0.001). Gleason score, iPSA
< 12 ng/mL, intensity-modulated RT (IMRT), and ≥179 Gy1.5 (EQD2, 77 Gy) were independently
significant for BCFFS (all p < 0.05). IMRT and ≥179 Gy1.5 were significant factors in the high-risk
group, whereas ≥170 Gy1.5 (EQD2, 72 Gy) was significant in the intermediate-risk group and no
significant impact of dose was observed in the low-risk group. Both BCFFS and OS improved
significantly when ≥179 Gy1.5 was delivered using IMRT and hypofractionation in the high-risk
group without increasing toxicities. Conclusions: With NCCN risk classification, dose escalation
with modern high-precision techniques might increase survivals in the high-risk group, but not in
the low-risk group, although mature results of prospective studies are awaited.

Keywords: prostate cancer; radiotherapy; NCCN; risk assessment; dose-escalation; hypofractionation

1. Introduction

External-beam radiotherapy (EBRT) is a well-established local therapy for non-metastatic
prostate cancer [1,2]. EBRT alone, or with other treatments, is highly effective for prolonging
life and preserving quality of life. Localized prostate cancer patients can be stratified into
risk groups by clinicopathological parameters. Each risk group has multiple treatment
options; the superiority of different treatments remains undetermined. Since the publication
of the D’Amico risk-stratification system [3], several risk-stratification tools have been
proposed to facilitate treatment decisions for prostate cancer [4–7].

Traditionally, prostate cancer patients receive a 64–70 Gy EBRT dose, although no
clear cutoff is recommended. Recent studies suggested these doses to be insufficient for
tumor control, and dose escalation was proposed for the best biochemical control with the
development of modern RT techniques [8–19]. Reports indicate that intensity-modulated
radiotherapy (IMRT), which has largely replaced non-modulated three-dimensional con-
formal radiation therapy (3D-CRT), delivered higher radiation doses with reduced toxicity,
without compromising treatment outcomes [20–22]. Since prostate cancer has a low α/β
ratio (1.5) [23], treating patients with higher doses/fraction over shorter periods (hy-
pofractionation (HF)) using IMRT has generated increased interest [24]. Nevertheless, the
optimum dose and fractionation remain unclear. Moreover, studies analyzing the effects of
dose escalation with modern RT techniques in each risk group are scarce.

Our study was designed to comprehensively evaluate these gaps in the literature using
a nationwide database of localized prostate cancer patients. We first compared various
risk classification tools in our cohort. Ultimately, we aimed to identify the optimal EBRT
strategy for each risk-stratified patient subgroup and to identify risk-adapted treatment
policies for clinical practice implementation.
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2. Materials and Methods
2.1. Patient Selection

Patients with histologically confirmed non-metastatic prostate cancer who under-
went definitive EBRT in Korea (January 2001 to December 2015) were eligible for this
study. Patients with <3 years’ follow-up, insufficient EBRT data, salvage RT for any recur-
rence, or previous pelvic irradiation, prostate brachytherapy, or cytotoxic chemotherapy
were excluded. The database included 1573 patients’ data from 17 different institutions.
We reviewed medical charts and analyzed disease status, treatment, and outcomes.

All patients were re-grouped into risk subgroups per the following risk-stratification
tools: National Comprehensive Cancer Network (NCCN) [4], D’Amico [3], American
Urological Association (AUA) [5], and Cambridge Prognostic Groups (CPG) risk group
systems [6]. Table S1 describes these tools. We selected the tool that exhibited the highest
predictive power for our data and classified all patients into low-, intermediate-, and
high-risk groups according to the risk classification.

The Korean Radiation Oncology Group (KROG) authorized and cooperated with
this study (named “KROG 18-15”). The institutional review boards of each participating
hospital approved KROG 18-15. Since the study was retrospective, the need for written
informed consent was waived.

2.2. Treatment and Follow-Up

All patients underwent EBRT. The techniques and doses were determined by the
attending radiation oncologists. RT techniques included 3D-CRT, IMRT, and proton
beam therapy. The dose fractionation scheme included conventional fractionation (CF)
(1.8–2 Gy/fraction), moderate-HF (>2 Gy/fraction), and ultra-HF (≥5 Gy/fraction). To
adjust for different dose fractionation, we calculated the biologically effective dose (BED)
with prostate cancer α/β ratio of 1.5. Concerning the RT field, most patients received
radiation to the prostate (±seminal vesicle); the whole pelvis was added for some patients
with adverse features. Androgen deprivation therapy (ADT) was administered with RT or
before the referral for RT. Treatment guidelines for each risk group regulated the ADT pro-
tocol. Briefly, in patients in the unfavorable intermediate-risk, high-risk, and very-high-risk
groups, hormone therapy was administered first, unless there were contraindications. The
duration of ADT was usually 2 to 6 months in the low/intermediate-risk group. In some
patients, 2 months of neoadjuvant ADT was performed before the start of RT. The duration
was longer (usually 2 to 3 years) in the high/very-high-risk group. Also, neoadjuvant
ADT (within 6 months) was performed in some patients. However, ADT duration was
usually determined according to changes in PSA levels, and there were differences in
each institution’s policies. The attending physician (mainly, urologists) of each institution
determined ADT maintenance duration and regimen.

Per institutional protocols, patients were followed up after RT completion at 4–6 weeks,
3–6 monthly until the end of year 2, and 6–12 monthly thereafter. Prostate-specific anti-
gen (PSA) measurement was performed at every follow-up. Bone scintigraphy and/or
computerized tomography scans were performed to identify distant metastases including
lymph node metastasis, if clinically indicated. PSA relapse was defined using the Phoenix
definition (nadir + 2 ng/mL). ADT was reinitiated if PSA was persistently elevated after RT
in some patients even though PSA was not nadir + 2 ng/mL. Therefore, biochemical failure
(BCF) was defined as nadir + 2 ng/mL or ADT initiation for persistently elevated PSA. Clin-
ical failure included any type of disease progression diagnosed by radiological/histological
examinations. Radiation-related lower gastrointestinal (GI) or genitourinary (GU) toxic-
ity was assessed during RT, the first month after RT, and subsequently at 3- to 6-month
intervals (Radiation Therapy Oncology Group radiation toxicity criteria). Events occurring
within and 3 months post-RT were classified as acute and late toxicities, respectively.



Cancers 2021, 13, 2732 4 of 16

2.3. Statistical Analysis

The primary endpoint was BCF-free survival (BCFFS): the interval between the date
of diagnosis and the date of BCF or last follow-up. The secondary endpoints were the
overall survival (OS) and cancer-specific survival rates. The OS rate was defined as the
time from the date of diagnosis to death due to any cause or the last follow-up. The cancer-
specific survival rate only accounted for deaths due to prostate cancer. Survival rates
were estimated using the Kaplan–Meier method. To identify the highest predictive power
among the risk-grouping systems, we generated receiver operating characteristic curves
for BCFFS in each system and estimated the area under the curve (AUC). The prognostic
impact of clinical or RT-related factors was analyzed (log-rank test, categorical variables;
logistic regression analysis, continuous variables) in all patients or in each risk subgroup.
All variables that showed statistical significance in univariate analyses were entered into
multivariate analyses using a Cox proportional hazard model. The most significant radia-
tion dose (Gy) cutoff was determined by categorizing prescribed doses per patient into two
groups using the cutoff point with the highest Youden’s index value, and the patients were
divided into “high-dose” and “low-dose” groups. Other subgroup characteristics were
compared using Pearson χ2 test, Fisher exact test, and Student’s t-test. p-values < 0.05 de-
noted statistical significance. Furthermore, we used propensity score matching to estimate
the average marginal effect of RT modality (3D vs. IMRT/proton) on those who received it,
accounting for confounding by the included covariates. We performed 1:1 nearest-neighbor
propensity score matching without replacement with a propensity score estimated using
logistic regression of the treatment on the covariates. After matching, we confirmed that all
standardized mean differences for the covariates were below 0.1 and that all standardized
mean differences for squares and two-way interactions between covariates were below 0.15,
indicating adequate balance. The propensity score was estimated using logistic regression
of the RT modality (3D vs. IMRT/proton) on the covariates. We conducted propensity
score matching using the Matchlt package in R [25]. All other analyses were performed
using SPSS version 25.0 (IBM Inc., Armonk, NY, USA).

3. Results
3.1. Patient Characteristics

From 2001 to 2015, we enrolled 1573 patients per the inclusion criteria. Each risk group
had the following number of patients: (1) NCCN: low, 177; intermediate, 408; high, 761;
very high, 227. (2) D’Amico: low, 177; intermediate, 383; high, 1013. (3) AUA: low, 177;
intermediate, 539; high, 857. (4) CPG: low, 178; intermediate, 407; high, 366; very high,
622. In total, 63% received ADT before RT and/or concurrently. Concurrent ADT was
performed in 61% NCCN high-risk group patients and 55% NCCN very-high-risk group
patients. Whole pelvis RT (WPRT) was performed in 34% of patients, predominantly in
high-risk patients (NCCN high risk 47%; NCCN very high risk, 53%). With regards to
RT modality, 3D-CRT, IMRT, and proton therapy were performed in 24%, 74%, and 3%
of patients, respectively. With regards to RT dose scheme, conventional fractionation, HF,
and ultra-HF were selected for 44%, 47%, and 9% of patients, respectively. The median
total irradiated dose was 179.1 (range, 107.3–225.0) Gy1.5. Significantly higher doses were
delivered with the selection of more hypofractionated schedules (Dmean: conventional,
167.9 Gy; HF, 185.5 Gy; and ultra-HF, 214.9 Gy; p < 0.001) (Figure S1a) or more modern RT
techniques (Dmean: 3D, 166.0 Gy; IMRT, 185.1 Gy, and proton therapy, 191.3 Gy; p < 0.001)
(Figure S1b). The use of modern RT techniques (IMRT or proton therapy, HF or ultra-HF,
and higher dose) had increased in more recent years (Figure S2). Table 1 summarizes
patient characteristics.
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Table 1. Clinical and treatment characteristics of all patients (n = 1573).

Characteristics No. %

Age (year) Median 73 (30–90)
≤70 592 39.9
>70 981 60.1

Treatment year 2005 53 3.4
2006 101 6.4
2007 143 9.1
2008 125 7.9
2009 95 6.0
2010 132 8.4
2011 161 10.2
2012 200 12.7
2013 205 13.0
2014 199 12.7
2015 155 9.9
2016 4 0.3

T stage

T1 216 12.1
T2 680 39.6
T3 618 42.7
T4 56 5.4
Tx 3 0.3

Gleason score Median 7 (2–10)
≤6 464 29.6
7 515 32.7
8 346 22.0
≥9 241 15.3
Unknown 7 0.4

Initial PSA (ng/mL) Median 26.3 (0.03–535.0)
<10 674 43.1
10~20 366 23.4
>20 525 33.5

NCCN risk group

Low 177 9.8
Intermediate 408 22.9
High 761 43.1
Very high 227 12.9

D’Amico risk group Low 177 11.3
Intermediate 383 24.3
High 1013 64.4

AUA risk group Low 177 11.3
Intermediate 539 34.3
High 857 54.5

CPG risk group Low 178 11.3
Intermediate 407 25.9
High 366 23.3
Very high 622 39.5

ADT

No 543 34.5
Before RT 210 13.4
Before/concurrent RT 747 47.5
Concurrent RT 27 1.7
Post-RT 46 2.9

RT volume

Prostate (±SV) 1020 64.8
Whole pelvis 534 33.9
Half pelvis 8 0.5
Unknown 11 0.7

RT modality

3D CRT 378 24.0
IMRT 1119 71.1
Proton therapy 44 2.8
3D + IMRT 21 1.3
Unknown 11 0.7
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Table 1. Cont.

Characteristics No. %

RT dose scheme
CF 692 44.0
HF 738 46.9
Ultra-HF 143 9.1

Fractional dose (Gy) Median 2.2 (1.7–7.5)
Total dose (Gy) Median 72.6 (35.0–81.0)
Total dose in BED (Gy1.5) Median 179.1 (107.3–225.0)

PSA, Prostate-Specific Antigen; NCCN, National Comprehensive Cancer Network; AUA, American Urological
Association; CPG, Cambridge Prognostic Group; ADT, Androgen deprivation therapy; RT, Radiotherapy; SV,
Seminal vesicle; 3D CRT, 3-dimensional conformal radiotherapy; IMRT, Intensity-modulated radiotherapy; CF,
conventional fractionation; HF, hypofractionation; BED, Biologically effective dose; conventional fractionation:
1.8–2 Gy per fraction, moderate hypofractionation: >2 Gy per fraction, ultra-hypofractionation: ≥5 Gy per
fraction.

3.2. Treatment Outcomes and Risk Stratification

The median follow-up was 75 (36–239) months from the first diagnosis. The 5- and
10-year rates were as follows (Figure 1): BCFFS; 82.4%, 59.8%, respectively. OS; 95.4%,
82.8%, respectively. Cause-specific survival rates; 98.8%, 96.6%, respectively. Of 148 deaths,
most were age-related, 33 were disease-related. At a median of 46 (2–211) months after the
first diagnosis, 19.3% of patients developed BCF events, with/without clinical recurrence.
Table S2 shows details of recurrence patterns.
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Figure 1. Kaplan–Meier survival curves of biochemical failure (BCF)-free survival, overall survival
(OS), and cause-specific survival rates in all patients.

AUC values for BCFFS rates were highest with NCCN risk classification (0.556, 95%
confidence interval (CI): 0.524–0.588; p < 0.001), followed by AUA, CPG, and D’Amico
(Figure 2a). All risk-stratification tools differentiated BCFFS rates (Figure 2b) and cause-
specific survival rates (Figure 2c) significantly. OS rates were not significantly different
in all risk groups (NCCN: p = 0.387, hazard ratio (HR) = 1.085, 95% CI = 0.902–1.305;
D’Amico: p = 0.576, HR = 1.121, 95% CI = 0.885–1.420; AUA: p = 0.589, HR = 1.097, 95% CI
= 0.868–1.386; CPG: p = 0.712, HR = 1.070, 95% CI = 0.918–1.246). Appendix A summarizes
the BCFFS, BCF, OS, and cause-specific survival rates in each NCCN risk group.
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Figure 2. (a) Receiver operating characteristic curves for each risk-stratification tool as a predictor
of biochemical failure (BCF)-free survival, and (b) BCF-free survival and (c) cause-specific survival
rates according to risk groups stratified using four different classification tools (NCCN, D’Amico,
AUA, and CPG guidelines). AUA, American Urological Association; CPG, Cambridge Prognostic
Groups; NCCN, National Comprehensive Cancer Network. * denotes statistically significant p value.

3.3. Prognostic Factors in Each NCCN Risk Group

Univariate and multivariate analyses for BCFFS in all patients revealed that Gleason
score, initial PSA <12 ng/mL, RT modality (IMRT/proton), and RT dose ≥179 Gy1.5 were
independent significant factors (p; 0.016, <0.001, 0.036, 0.022, respectively) (Table 2). BED
and BCFFS showed a significant linear relationship (p = 0.026), with 179 Gy1.5 (equivalent
dose in 2 Gy fractions (EQD2), 77 Gy)) as the most significant cutoff. After propensity
score matching according to RT technique (3D vs. IMRT/proton), no RT-related factors
were significant for BCFFS. Only Gleason score, initial PSA, and ADT were independent
significant factors (p < 0.001, 0.003, <0.001, respectively). Patient characteristics of the
matched groups are shown in Table S3, and the results of the analyses are shown in
Table S4.
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Table 2. Results of univariate and multivariate analyses for biochemical failure-free survival in all patients.

Variable
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

Age (continuous) 0.995 (0.981–1.008) 0.430
Age (>70 vs. ≤70) 0.966 (0.793–1.177) 0.730
Age (>60 vs. ≤60) 0.897 (0.634–1.269) 0.539

T stage 1.142 (1.015–1.285) 0.027
T3 vs. T1 1.434 (1.048–1.961) 0.024

T2, T3, T4 vs. T1 1.389 (1.035–1.864) 0.029 0.817 (0.601–1.111) 0.198
Gleason score 1.160 (1.071–1.256) <0.001
≥9 vs. <9 1.501 (1.175–1.916) 0.003
≥9 vs. <6 1.783 (1.332–2.386) <0.001 1.359 (1.058–1.746) 0.016
≥9 vs. 7–8 1.784 (1.333–2.388) <0.001
7–8 vs. <6 1.303 (1.033–1.644) 0.025
initial PSA 1.004 (1.002–1.006) <0.001
≥12 vs. <12 1.637 (1.343–1.996) <0.001 1.508 (1.227–1.854) <0.001

ADT combination (Yes vs. No) 0.744 (0.612–0.905) 0.003
RT volume

Prostate ± SV vs. Pelvis 0.970 (0.866–1.087) 0.604
RT modality

IMRT/Proton vs. 3D 0.719 (0.586–0.881) 0.001 0.761 (0.589–0.983) 0.036
Proton vs. 3D/IMRT 1.036 (0.644–1.666) 0.885

RT dose scheme
CF vs. HF/ultra-HF 1.346 (1.104–1.641) 0.003 0.773 (0.512–1.166) 0.220

HF vs. CF 0.723 (0.585–0.893) 0.003
Ultra-HF vs. CF 0.840 (0.585–1.205) 0.343
HF vs. ultra-HF 0.861 (0.592–1.252) 0.433

Total dose, BED (Gy1.5) (continuous) 0.993 (0.988–0.999) 0.026
BED ≥ 179 Gy1.5 vs. < 179 Gy1.5 0.701 (0.575–0.853) <0.001 0.644 (0.441–0.939) 0.022

HR, Hazard ratio; CI, Confidence Interval; ADT, Androgen deprivation therapy; RT, Radiotherapy; SV, Seminal vesicle; 3D CRT, 3-
dimensional conformal radiotherapy; IMRT, Intensity-modulated radiotherapy; CF, conventional fractionation; HF, hypofractionation;
BED, Biologically effective dose; conventional fractionation: 1.8–2 Gy per fraction, moderate hypofractionation: >2 Gy per fraction,
ultra-hypofractionation: ≥5 Gy per fraction.

NCCN low-risk group: No significant prognostic factor for BCFFS or OS was identified,
and no significant impact of a higher dose was observed. NCCN intermediate-risk group:
ADT combination, HF/ultra-HF, and ≥170 Gy1.5 (EQD2, 72 Gy) were significant favorable
factors for BCFFS in univariate analysis (p; 0.047, 0.013, 0.014, respectively); only ADT
was significant in multivariate analysis (p = 0.028, HR = 0.606, 95% CI = 0.388–0.947). On
the other hand, there was no significant factor for OS in both univariate and multivariate
analyses. NCCN high-risk group: ADT (p < 0.001, HR = 0.505, 95% CI = 0.379–0.672),
IMRT/proton therapy (p = 0.014, HR = 0.638, 95% CI = 0.446–0.915), and ≥179 Gy1.5
(p = 0.009, HR = 0.503, 95% CI = 0.300–0.844) were independent significant factors for
BCFFS in both univariate and multivariate analyses. For OS, although IMRT/proton
therapy (p < 0.001, HR = 0.367, 95% CI = 0.226–0.596), CF (p = 0.002, HR = 2.271, 95%
CI = 1.353–3.811), and ≥179 Gy1.5 (p = 0.003, HR = 0.466, 95% CI = 0.282–0.770) were
significant factors in univariate analysis, none was significant in multivariate analysis.
NCCN very-high-risk group: Gleason score and HF/ultra-HF were significant factors for
BCFFS in univariate analysis (p = 0.019, 0.038, respectively), but not in multivariate analysis.
Similarly, no factor was significant in univariate and multivariate analyses for OS. Similar
results were shown even after propensity score matching (Table S4).

3.4. Radiotherapy-Related Factors

RT comprising IMRT, HF, and higher dose (≥179 Gy1.5) was administered to 829
(53%) patients. BCFFS and OS rates significantly improved in these patients (p = 0.003,
0.002, respectively) (Figure 3a). Cause-specific survival rates did not have significant
differences (p = 0.288). Following patient subgrouping (NCCN classification), this triple
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combination (IMRT + HF + ≥179 Gy1.5) elicited a significant impact on BCFFS in the NCCN
intermediate- and high-risk groups (p = 0.048, 0.028, respectively). HR for BCFFS was
largest in the NCCN high-risk group (Figure 3b, Table 3). Also, this combination decreased
BCF rates significantly in NCCN intermediate-, high-, and very-high-risk groups (p = 0.004,
0.010, 0.007, respectively): the HR for BCF rate was largest in the NCCN high-risk group
(Table 3). This combination significantly increased OS rate only in the NCCN high-risk
group (p = 0.006, HR = 0.477, 95% CI = 0.279–0.815) (Figure 3c).
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Figure 3. Kaplan–Meier survival curves of patients treated with radiotherapy using intensity-
modulated radiotherapy (IMRT), hypofractionation (HF), and higher dose (≥179 Gy1.5). (a) Biochem-
ical failure (BCF)-free survival (BCFFS), overall survival (OS), and cause-specific survival rates in
all patients (829 patients with all three factors vs. the rest). BCFFS and OS rates were significantly
improved with this combination, but no significant differences were observed in cause-specific sur-
vival rates. (b) BCFFS rates in each NCCN risk group. BCFFS rates were significantly improved with
this combination in intermediate- and high-risk groups. (c) OS rates in each NCCN risk group. OS
rate was significantly improved with this combination only in the high-risk group. NCCN, National
Comprehensive Cancer Network. * denotes statistically significant p value.

Table 3. Results of Cox regression analysis for BCF-free survival and logistic regression analysis for
BCF rate of combined radiotherapy-related factors (intensity-modulated radiotherapy, hypofractiona-
tion, and higher dose (≥179 Gy1.5)).

Subgroup HR for BCFFS 95% CI p Value

All patients 0.735 0.601–0.900 0.003
NCCN low-risk group 1.159 0.543–2.471 0.703

NCCN intermediate-risk group 0.650 0.423–1.000 0.048
NCCN high-risk group 0.731 0.553–0.966 0.028

NCCN very-high-risk group 0.712 0.441–1.152 0.167

HR for BCF Rate 95% CI p Value

All patients 0.580 0.450–0.747 <0.001
NCCN low-risk group 1.326 0.451–3.896 0.608

NCCN intermediate-risk group 0.432 0.246–0.761 0.004
NCCN high-risk group 0.634 0.449–0.895 0.010

NCCN very-high-risk group 0.432 0.234–0.797 0.007
HR, Hazard ratio; CI, Confidence Interval; NCCN, National Comprehensive Cancer Network; BCFFS, Biochemical
failure-free survival; BCF, Biochemical failure.

3.5. Toxicities

Radiation-related toxicity (≥grade II) rates were acceptable (acute GU, 10.7%; acute
GI, 6.2%; late GU, 13.4%; late GI, 6.5%). There was no significant increase in toxicity in
patients with a longer follow-up duration (Table S5). Multivariate analysis revealed that
acute GU toxicity (≥grade II) incidences decreased significantly with ultra-HF (CF, 10.1%;
HF, 13%; ultra-HF, 1%; p = 0.006) and IMRT (10% vs. 13%, p = 0.054). Acute GI toxicity
(≥grade II) incidences increased significantly with WPRT (11% vs. 4%, p < 0.001). Late
GU toxicity (≥grade II) incidences were significantly higher with HF than with CF (19%
vs. 8%, p = 0.035) and with WPRT than with prostate-only RT (22% vs. 9%, p < 0.001).
IMRT/HF/dose escalation did not increase grade III toxicities.
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IMRT + HF + higher dose (≥179 Gy1.5) had the following toxicity (≥grade II) rates:
acute GU, 15.3%; acute GI, 7.9%; late GU, 22.7%; late GI, 6.3%. The late GU toxicity rate
was higher than that in all patients. Most events were grade II, and the grade III toxicity
rates were similar (Table S6).

4. Discussion

Our study showed a significant linear relationship between total radiation dose and
BCFFS with 179 Gy1.5 (EQD2, 77 Gy) as the most significant cutoff. Dose escalation promi-
nently benefited the high-risk group. In the intermediate-risk group, modest doses over
170 Gy1.5 (EQD2, 72 Gy) delivered significantly better outcomes. IMRT + dose escalation
+ HF resulted in 5-year BCFFS rates of 80–90% in all risk groups; the improvement in
BCFFS translated into survival benefits in the high-risk group. Although HF increased
the late GU toxicity rate, IMRT/HF/dose escalation did not increase grade III toxicities.
The combination of contemporary RT techniques did not increase acute/late toxicities
significantly.

This study holds both similarities and differences from existing studies. We predomi-
nantly analyzed RT-related factors in each risk group to derive conclusions for application
in clinical practice. Before analyses, patients were classified into low-, intermediate-, and
high-risk groups (NCCN classification). Consistent with previous reports, we confirmed
that dose escalation benefited BCF, most prominently in the high-risk group. Higher RT
dose did not increase ≥grade 2 RT-related toxicities. However, given the risk of toxicities,
our data suggested using only moderate doses for low/intermediate-risk groups. Dose
escalation was a significant factor for OS in the high-risk group, but not in multivariate
analysis. However, together with IMRT and HF, dose escalation may be more effective,
even at improving survival. It should not be forgotten that modern RT techniques have
prognostic meaning when enabling dose escalation. Ultimately, the use of contemporary
techniques may increase survival gains with intensified and risk-adapted RT.

Standard options for the initial management for localized prostate cancer include
RT (EBRT and/or brachytherapy with or without ADT), radical prostatectomy, or active
surveillance in select patient populations. In clinical practice, the choice of treatment is
determined by various factors, including risk stratification, patient preference, clinicians’
judgment, and resource availability [1,2]. Based on NCCN guidelines [4], EBRT is a
definitive initial treatment option in low-, intermediate-, and high-risk patients. EBRT may
be considered post-surgery if there is a high risk of recurrence based on surgical pathology,
increase in PSA levels during follow-up, or detection of local recurrence. Although there
are no randomized trials comparing RT with radical prostatectomy yet, trials completed to
date and observational data suggest that outcomes with either EBRT or brachytherapy are
similar to those with radical prostatectomy when men with clinically localized prostate
cancer are stratified based on clinical tumor (T) stage, pretreatment PSA, and Gleason score.

Various risk-stratification tools exist for selecting treatments for prostate cancer, and
dividing patients into subgroups according to major risk factors to predict BCFs is recom-
mended, and similarities between tools are evident [3–7]. The superiority of each tool for
predicting prostate cancer-related deaths is unclear. In a recently published study, which
used the Prostate Cancer database in Sweden [26], a population-based research database
including both untreated and treated patients followed for prostate cancer-related deaths
for up to 19 years, a total of nine pretreatment risk stratification tools were compared.
The MSKCC nomogram (C-index: 0.81, 95% CI = 0.80–0.81), CAPRA score (C-index: 0.80,
95% CI = 0.79–0.81), and CPG system (C-index: 0.78, 95% CI = 0.78–0.79) exhibited the
best performance for discriminating prostate cancer-related deaths. However, complete
information on all variables used in the risk stratification tools were only available for 35%
of the cohort. Furthermore, information on cT2 to T3 substages was not recorded in the
database. In our nationwide database, we demonstrated that the NCCN system exhibited
the highest AUC value for BCFFS, although the other classification systems demonstrated
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comparable significance. Future well-controlled studies with a larger sample size and
long-term follow-up are warranted to identify the superiority of the different tools.

Various fractionation and dose regimens can be considered for RT depending on
clinical conditions. The irradiated dose for definitive RT in localized prostate cancer was
70 Gy or lower in the past, but there have been attempts to improve treatment outcomes
by increasing the radiation dose. Retrospective studies [8–11] reported increased BCFFS
and OS rates with dose escalations. Randomized trials [10,13–19] reported significantly
lower biochemical/clinical failure rates in the higher-dose arms than in the lower-dose
arms. Nevertheless, these studies revealed greater late GI/GU toxicity rates with higher
RT dose arm than in the lower-dose arm. Furthermore, although dose escalation signifi-
cantly reduced BCFs, no improvements in OS were noted. A major limitation is that the
therapeutic ratio of tumor control versus previously reported toxicity is less applicable at
present given the employment of more modern treatment methods.

Multiple randomized trials and a meta-analysis evaluated the role of hypofractionated
RT and concluded that its efficacy is equivalent to that of CF [27–35]. Data on whether
HF increases overall treatment-related toxicity are inconclusive. Most trials [28–30,33]
reported a small increase in acute GI toxicity risk. Two studies [34,35] identified a notable
increase in late toxicity risk. A 2019 Cochrane review of 10 randomized trials concluded
that the effects of HF on late GI toxicity were unclear and that there was little to no
difference in acute/late GU toxicity [31]. Although the optimal regimen for HF remains
unestablished, the AUA/ASTRO/ASCO guidelines [24] endorsed either 60 Gy/20 fractions
or 70 Gy/28 fractions; most evidence supported these regimens. In our study, the most
frequently selected schedule was 2.1–2.2 Gy/fraction or 2.5–2.6 Gy/fraction, although there
were substantial differences between institutions. The total dose increased with an increase
in dose/fraction, indicating that HF is useful for administering higher doses. Subsequent
studies will help determine the optimal schedule to deliver higher RT doses.

Ultra-HF, also called stereotactic body radiation therapy (SBRT), is an appropriate
alternative to CF RT in low/intermediate-risk prostate cancer patients who do not require
nodal irradiation. Several prospective trials reported favorable efficacy and toxicities of
ultra-HF [36–39]. Nevertheless, median follow-up time has generally been limited to
3–5 years, and there is concern regarding long-term outcomes and higher late GU toxicity
with SBRT vs. IMRT. SBRT has not been directly compared with moderate HF. We were
unable to demonstrate the benefits of HF over CF in BCFFS or BCF rates using multivariate
analyses of the entire cohort. The significance of HF was larger in the intermediate-
and high-risk groups than in the others. Therefore, radiation dose is a more important
prognostic factor than fractionation schedule. Like previous reports, ultra-HF and HF
increased acute and late GU toxicities (≥grade II), respectively. Thus, long-term follow-up
and careful patient monitoring are necessary.

Our study has several limitations. First, no significant difference was identified in prog-
nosis between the favorable and unfavorable intermediate-risk groups (data not shown).
A potential reason was that “<50% positive cores,” the diagnostic criteria for the favorable
intermediate-risk group, could not be identified in our retrospective database. As the
classification of favorable and unfavorable groups was developed recently, precise classifi-
cation of patients diagnosed in the past was difficult. Second, the omission or duration of
ADT may not have reflected the modern standard of care for unfavorable intermediate-
and high-risk patients. Further, salvage therapy was initiated at the clinician’s discretion,
distinct to a standardized threshold. However, since we aimed to propose an optimal
RT strategy, ADT-related analyses were not performed in detail. Third, it is necessary to
demonstrate survival benefits or changes in long-term side effects via long-term follow-up,
because disease-related events may occur even 5 and 10 years after diagnosis in prostate
cancer patients. Therefore, a longer follow-up is essential to obtain solid conclusions with
sufficient evidence to change clinical practice.
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5. Conclusions

EBRT treats localized prostate cancer effectively. Also, the prognostic utility of NCCN
risk grouping was validated in our nationwide cohort study. HF and IMRT may effectively
deliver higher doses without significantly increasing severe toxicities. In the high-risk
group, radiation dose escalation with modern high-precision RT techniques effectively
increased survival rates, but not in the low-risk group. Risk-adapted RT (more intense
RT, high-risk patients; moderate-dose RT, low-risk patients) can be considered, although
further prospective, long-term follow-up studies are warranted.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13112732/s1, Figure S1: Distribution of total dose in biologically effective dose
(BED) against different fractional doses (a) or different radiotherapy (RT) modalities (b), Figure S2:
Temporal trends according to treatment year on specific radiotherapy (RT) techniques: (a) patients
with intensity-modulated RT (IMRT) or proton therapy vs. 3-dimensional conformal RT, (b) patients
with hypofractionation (HF) or ultra-HF vs. conventional fractionation (CF) RT, (c) patients with
higher RT dose (≥179 Gy1.5) vs. lower RT dose (<179 Gy1.5), and (d) patients with combined RT-
related factors (IMRT, HF, and higher dose (≥179 Gy1.5)), Table S1: Prostate cancer risk stratification
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Toxicity rates stratified by RTOG radiation toxicity criteria in all patients (n = 1573), Table S4: Toxicity
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Appendix A

Based on the National Comprehensive Cancer Network (NCCN) guidelines, the 5- and
10-year biochemical failure-free survival rates were 91.6% and 75.4% in the low-risk group,
83.7% and 65.3% in the intermediate-risk group, 80.6% and 54.7% in the high-risk group,
and 77.1% and 51.9% in the very-high-risk group, respectively. The actual biochemical
failure rates were 8.5%, 15.4%, 22.1%, and 25.6% in the low-, intermediate-, high-, and
very-high-risk groups, respectively. The 5- and 10-year overall survival rates were 91.6%
and 75.4% in the low-risk group, 83.7% and 65.3% in the intermediate-risk group, 80.6% and
54.7% in the high-risk group, and 77.1% and 51.9% in the very-high-risk group, respectively.
The 5- and 10-year cause-specific survival rates were all 100% in the low-risk group, 99.7%
and 98.8% in the intermediate-risk group, 98.7% and 95.3% in the high-risk group, and
96.4% and 93.6% in the very-high-risk group, respectively.
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