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Simple Summary: Modern profiling technologies have led to relevant progress toward precision
medicine and disease management. A new trend in patient classification is to integrate multiple
data types for the same subjects to increase the chance of identifying meaningful phenotype groups.
However, these methodologies are still in their infancy, with their performance varying widely
depending on the biological conditions analyzed. We developed MOUSSE, a new unsupervised and
normalization-free tool for multi-omics integration able to maintain good clustering performance
across a wide range of omics data. We verified its efficiency in clustering patients based on survival
for ten different cancer types. The results we obtained show a higher average score in classification
performance than ten other state-of-the-art algorithms. We have further validated the method by
identifying a list of biological features potentially involved in patient survival, finding a high degree
of concordance with the literature.

Abstract: High-throughput technologies make it possible to produce a large amount of data repre-
senting different biological layers, examples of which are genomics, proteomics, metabolomics and
transcriptomics. Omics data have been individually investigated to understand the molecular bases
of various diseases, but this may not be sufficient to fully capture the molecular mechanisms and the
multilayer regulatory processes underlying complex diseases, especially cancer. To overcome this
problem, several multi-omics integration methods have been introduced but a commonly agreed
standard of analysis is still lacking. In this paper, we present MOUSSE, a novel normalization-free
pipeline for unsupervised multi-omics integration. The main innovations are the use of rank-based
subject-specific signatures and the use of such signatures to derive subject similarity networks. A
separate similarity network was derived for each omics, and the resulting networks were then
carefully merged in a way that considered their informative content. We applied it to analyze
survival in ten different types of cancer. We produced a meaningful clusterization of the subjects
and obtained a higher average classification score than ten state-of-the-art algorithms tested on the
same data. As further validation, we extracted from the subject-specific signatures a list of relevant
features used for the clusterization and investigated their biological role in survival. We were able to
verify that, according to the literature, these features are highly involved in cancer progression and
differential survival.

Keywords: multi-omics data integration; precision medicine; biomarker identification; unsupervised
clustering; cancer

1. Introduction

In the last decade, the advances in high-throughput technologies and the decrease in
their cost and throughput time have allowed for extensive production of information at dif-
ferent layers of the biological processes, from the genome down to the metabolome level [1].
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The ensemble of information concerning these biological layers is often referred to with the
term “omics”, by itself or as a suffix (i.e., transcriptomics, proteomics, metabolomics, etc.).
The availability of such data has also led to the development of dedicated repositories,
e.g., GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) [2,3] or cBio-
Portal, which store multiple datasets covering various diseases, allowing users to easily
access and analyze them. Data availability has made possible an increase in the number
of bioinformatic investigations on the molecular basis of diseases, the identification of
putative biomarkers using different omics and the development of different integrative
data analysis techniques [4]. In particular, the possibility of obtaining multiple omics from
the same sample has dramatically increased the chances to better understand the regulative
processes underlying an observed phenotype by identifying relationships among data
layers and strengthening shared signals [5]. Overall, the trend has been in the direction
of an increase in the size of datasets and in the complexity of the employed algorithms to
carry out multi-omics data analysis [1,6–8].

Over the last few years, multiple algorithmic approaches have been proposed to
perform multi-omics analysis (e.g., iCluster+ [9], Jive [10], SNF [11], etc.). An open problem
resulting from this heterogeneity of computational approaches is the large variability of
their performance across different diseases or sets of omics. In order to achieve reliable
results, such algorithms often require a fine-tuning of parameters and some careful data
preprocessing. These steps are often difficult to select a priori, thus limiting the ease of
use and applicability of the tools. For all these reasons, a gold standard for multi-omics
analysis workflow is still missing, as shown by previous comparative analyses [12,13]. As
a result, the impact of multi-omics integration on disease knowledge is still lagging behind
the single omics analysis. In an effort to address these shortcomings, we herein introduce
MOUSSE, a novel normalization-free pipeline for unsupervised multi-omics integration
able to obtain a higher average classification score than ten state-of-the-art algorithms in
analyzing patient survival in ten different types of cancer.

The method is based on replacing the whole patient profile with a rank-based subject-
specific signature. This has different advantages, such as dimensionality reduction and
increased robustness to measurement noise or data quality issues. This approach demon-
strated its efficacy in a previous single omics algorithm, SCUDO (Signature-based ClUs-
tering for DiagnOstic purposes) [14], which ranked second overall in the SBV Improver
Diagnostic Signature Challenge [15], and which has been successfully used to analyze
single omics datasets in multiple biological contexts [16–22]. With respect to SCUDO, our
novel method extends the use of patient-specific signatures to provide a complete multi-
omics pipeline. As part of the design, we employed additional principles borrowed from
information theory, such as the Kullback–Leibler divergence [23] (DKL), and a methodol-
ogy centered on a transformation-based integration relying on tailored subjects’ similarity
networks. The first principle is optionally used to select signature lengths automatically,
whilst the latter is used to fuse different types of data through a common intermediate form,
the similarity network, calculated through a highly sensitive measure, the rank-biased
overlap [24].

We verified the variation in the performance of our tool by testing it on ten different
TCGA datasets, including methylome, transcriptome and miRNAome data for every
subject. We used the same benchmark datasets of previously published reviews, including
a comparative evaluation of multiple state-of-the-art integration algorithms [12]. We
performed a survival analysis of the obtained clusters, following the benchmark protocol,
and compared our results with ten state-of-the-art algorithms. We achieved the highest
median performance, confirming the stability of our pipeline. To verify if our clusters were
biologically meaningful, we then investigated the signatures computed by our method and
obtained a high concordance with previous findings from the literature.
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2. Results

To achieve top-level performances, we designed the MOUSSE pipeline by leveraging
a wide range of original computational approaches to process and transform our input
data (see Figure 1). For a more detailed explanation of their use and additional technical
details, we refer to the Discussion and Materials and Methods.
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Figure 1. Graphical representation of the MOUSSE methodology (see Materials and Methods for details). (1) Omics datasets
have to be provided in the form of matrices sharing the same set of subjects (in our analysis, data were downloaded from
TCGA). (2) Input is converted into ranked subject-specific lists and then reduced to produce the signatures. (3) For each
omics, the subjects are mapped into a network based on signature similarity. (3b) Optional optimization step in order to
select the best signature length by calculating and comparing the networks built from signatures of different lengths. (4) The
networks are fused into one. (5) Clusters are identified in an unsupervised manner from the joint network.

2.1. Benchmark vs. State-of-the-Art Software

To effectively verify the tool’s performance and its reliability in different conditions, we
decided to test it on multiple types of cancer, a highly heterogeneous and complex disorder.
We used a set of ten multi-omics datasets from TCGA, which were used in a previously
published benchmark [12] to test our performance versus ten multi-omics algorithms
representing the current state of the art. In particular, we included: K-means [25], Spectral
Clustering [26,27], LRAcluster [28], PINS [29], rMKL-LPP [30], MCCA [31], MultiNMF [32],
iClusterBayes [33], SNF [11] and NeMo [34].

For each considered multi-omics dataset, we applied the algorithms to group the
patients included in the study into clusters representing different degrees of survival. We
then present the classification score of each algorithm by identifying clusters of subjects
displaying different average survival times (see Materials and Methods for details). Sur-
vival analysis is a common validation methodology for unsupervised algorithms due to
the absence of a clear patient classification for many cancers and the large variation in
clinical parameters. In Figure 2, we compare the performance of MOUSSE against the
performance of the other tools, as reported in Rappoport et al. [12] using a box-and-whisker
plot of classification score values across the ten cancer datasets; in Table 1 we summarize
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the results of this performance comparison. The clusters obtained for each cancer and the
Kaplan–Meier curves associated are reported in Figures S1–S10.

Cancers 2021, 13, x  4 of 15 
 

 

Due to the extreme differences in the biology of cancers of different tissues, achieving 
the best survival-based clustering in all datasets is a very challenging task, as indicated by 
the relatively low overall average performances reported in Table 1. 

  
Figure 2. Box-and-whisker plot of classification score values for all the tools analyzed across the ten cancer datasets con-
sidered in the benchmark. The algorithms are sorted from left to right in decreasing order of their median classification 
score. 

However, our tool was able to achieve the highest median performance across the 
ten cancers and the best z-scores. MOUSSE has a median classification score that is almost 
two standard deviations (+1.71 z-score) higher than the average value, achieving a slightly 
higher score than the second-best method, NeMo (+1.49). These two methods performed 
similarly well, being almost one standard deviation above the third (MultiNMF = 0.59 z-
score) and more than three from the lowest scoring one (−1.64, see Figure 3). However, 
MOUSSE has a lower performance variability and a higher upper quantile (Figure 2). Dif-
ferently from NeMo, MOUSSE can readily produce an informative biomarker as a result 
of its computation, as shown in the following section. 

Table 1. Classification score results across the ten cancers considered in the benchmark. The results are expressed as log10 
p-value of the survival analysis. The blue bars are a graphical representation of the results normalized by the maximum 
value of each column. The last two columns report the median and the median absolute deviation (MAD) obtained by 
each tool. 

AML BIC COAD GBM KIRC LIHC LUSC OV SARC SKCM median MAD

MOUSSE 2.75 2.62 0.08 2.29 3.27 2.19 0.60 0.44 0.75 1.24 1.71 1.00

NeMo 2.12 1.42 0.19 1.96 1.20 3.34 0.37 3.86 0.15 1.84 1.63 0.88

MultiNMF 1.27 1.29 0.35 2.14 1.94 2.90 0.34 0.28 1.07 4.49 1.28 0.90

PINS 1.15 0.00 0.01 3.64 1.81 1.95 0.09 0.05 1.19 2.85 1.17 1.10

rMKL-LPP 2.43 0.62 0.50 2.98 1.13 1.01 0.33 0.08 2.47 2.63 1.07 0.87

MCCA 3.49 1.02 0.16 2.30 1.82 0.15 0.47 4.07 0.55 1.08 1.05 0.83

iClusterBayes 0.98 0.20 0.25 1.03 1.97 0.98 0.59 0.02 0.83 4.43 0.90 0.48

Spectral Clust. 1.73 1.56 0.20 2.25 0.30 0.41 0.28 0.78 1.30 0.89 0.83 0.55

SNF 2.86 1.01 0.16 4.14 2.10 0.18 0.60 0.24 2.07 0.61 0.81 0.63

LRAcluster 0.68 1.38 0.22 0.12 2.04 0.72 0.52 4.08 0.05 1.42 0.70 0.62

K-means 2.89 0.62 0.01 2.32 0.16 0.23 0.24 0.07 1.30 0.60 0.42 0.30  
 

0

1

2

3

4

MOUSSE NeMo MultiNMF PINS rMKL−LPP MCCA iClusterBayes Spectral.Clustering SNF LRAcluster K−means

C
la

ss
ifi

ca
tio

n 
Sc

or
e

Figure 2. Box-and-whisker plot of classification score values for all the tools analyzed across the ten cancer datasets consid-
ered in the benchmark. The algorithms are sorted from left to right in decreasing order of their median classification score.

Table 1. Classification score results across the ten cancers considered in the benchmark. The results are expressed as log10
p-value of the survival analysis. The blue bars are a graphical representation of the results normalized by the maximum
value of each column. The last two columns report the median and the median absolute deviation (MAD) obtained by
each tool.
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Due to the extreme differences in the biology of cancers of different tissues, achieving
the best survival-based clustering in all datasets is a very challenging task, as indicated by
the relatively low overall average performances reported in Table 1.

However, our tool was able to achieve the highest median performance across the ten
cancers and the best z-scores. MOUSSE has a median classification score that is almost
two standard deviations (+1.71 z-score) higher than the average value, achieving a slightly
higher score than the second-best method, NeMo (+1.49). These two methods performed
similarly well, being almost one standard deviation above the third (MultiNMF = 0.59
z-score) and more than three from the lowest scoring one (−1.64, see Figure 3). However,
MOUSSE has a lower performance variability and a higher upper quantile (Figure 2).
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Differently from NeMo, MOUSSE can readily produce an informative biomarker as a result
of its computation, as shown in the following section.
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2.2. Biological Validation

A useful feature of MOUSSE is that the user can leverage the subject-specific signatures
automatically computed by the pipeline to extract a biomarker underlying the identified
patient clusters. This allows using the pipeline not only to stratify patients but also to
suggest important biological actors that can be further analyzed to provide new insights
on the considered cancers. To further validate this important feature of the pipeline,
we analyzed the biomarkers extracted from the three cancer types for which MOUSSE
provided the best classification performance based on survival analysis (BIC, GBM, and
LIHC). To maximize the strength of the experimental evidence in our analysis, we extracted
the biomarkers by considering the subjects from the two identified clusters with the highest
and lowest mean survival. The features included in the biomarkers were taken from
the subjects’ specific signatures, filtered using a Wilcoxon test with Bonferroni correction
(corrected p-value < 0.05). The full list of all the significant features extracted for each cancer
and their p-value is available in Material S2. We then searched the current literature to see
if the features extracted from each omics were known to be involved in the development
of the investigated cancer. Furthermore, when possible, we verified if their differential
expression in our clusters was consistent with the literature. The methylation data that we
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integrated contain many methylation probes which are hard to associate with differential
expression. Therefore, we focused our analysis on the miRNAs and gene signatures
(Table 2).

Table 2. List of the 10 most significant features (miRNAs on the left, genes on the right) extracted from
the MOUSSE signatures of the selected cancers (BIC: Breast Invasive Carcinoma; GBM: Glioblastoma
Multiform, LIHC: Liver Hepatocellular carcinoma). Features with a green background are those
already reported in the literature to have a strong influence on prognosis in the selected cancer,
especially as prognostic predictors. The directionality (defined as the sign of the logarithm of fold
change) of their expression is the same in literature and our biomarker. Yellow background instead
identifies genes that have been as-sociated with their cancer but without a quantitative analysis of
their expression or a link to survival, thus without directionality information.

miRNA Genes
BIC GBM LIHC BIC GBM LIHC

let-7c miR-222 mir-105-2 LOC728264 TOX3 DSCR4
mir-140 miR-23a mir-767 SLC7A3 SEC61G SSX6
mir-1307 miR-204 mir-105-1 HSPD1 C20orf42 EXO1
mir-101-2 miR-34b mir-139 IGFN1 PLA2G2A NEK2
mir-33b miR-221 mir-199a-1 AURKA CRTAC1 RHOXF2B
mir-99b miR-340 mir-199a-2 ANGPTL7 CA10 DCAF8L1
mir-324 miR-181a* mir-10a TPX2 GPR17 PAGE2
mir-760 miR-17-5p mir-214 CCL16 COL16A1 RNF17

mir-130b miR-106a mir-199b SGOL1 MAB21L1 DDX53
mir-331 miR-301 mir-22 NPY2R SLC11A1 MAGEB16

According to the current literature, 86% of the miRNAs and a third of the genes
identified by MOUSSE are highly involved in cancer progression and/or prognosis (in
green in Table 2). The directionality of differential expression (defined as the sign of the
logarithm of fold change) is consistent with results reported in the literature regarding
survival, with no exception. A list of the literature supporting the biomarker and its
involvement in cancer development and/or prognosis can be found in Tables S1 and S2,
while some of the most relevant will be discussed later. The high presence of features
related to differential survival further supports the reliability of the clusterization computed
by MOUSSE and highlights the potential of our pipeline as a tool to investigate biological
processes and suggest novel actors underlying the observed phenomenon.

3. Discussion

We focus our discussion on the novel aspects of the pipeline and the analysis of the
benchmark results.

3.1. Pipeline Novelties

We present a reliable multi-omics analysis tool that is easy to use and that can be
potentially used with any kind of omics data and easily adapted to a wide range of applica-
tions. The modularity of the produced pipeline makes it possible to change any component
block with an updated or customized implementation without loss of functionality.

One of the main problems encountered when handling different kinds of biological
data together is the wide range of variability that different datasets of multiple omics can
have [4]. This may include a different scale of measurements or ranges. To overcome this,
we decided to rely on a rank-based signature approach. This methodology allows for the
reduction in the size of the input profile of each subject into a smaller subset, here referred
to as a signature, representing the list of the most and least expressed features within the
profile (i.e., the features with the highest and the lowest ranks). The use of ranks reduces
the impact of the heterogeneity of the omics data and allows for the development of a
normalization-free method. This approach has been proven to maintain the information
necessary to characterize the clusters, despite reducing the size of the input datasets, as
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shown by our current results and by previous studies [16–22]. While the dataset reduction
has very often a positive impact on the total runtime, it may lead to loss of important
information, especially if the dataset noise is extremely high or the arbitrary selection of the
signature length is not ideal. For this reason, we inserted an optional optimization strategy
to identify the signature length and we also allowed the user to provide a manual selection.
While the optimization strategy automatically selects the signature that, according to
the Kullback–Leibler Divergence, has the highest information, the manual selection is
to be preferred if additional biological information is available, or when working on a
characterized short set of biological entities (genes, miRNAs, proteins, etc.).

The use of short subject-specific signatures allows the user to focus on the most
important properties of each patient profile but has the drawback of increasing the number
of non-shared features between the signatures. Such a low overlap and the importance of
considering the features ranks during the comparison prevents the use of standard metrics
such as Euclidean distance or edit distance for our analysis. For this reason, our pipeline is
based on RBO [24], a similarity measure created to compare ranked lists. Using this kind
of measure, we were able to selectively weigh overlapping and non-overlapping features
depending on their ranks, thus building a more reliable similarity network. When using
data of different omics, datasets with a low number of variables or signatures with low
intra-subject variability, other metrics may be more suitable. For this reason, we left the
possibility in MOUSSE to switch to a different similarity measure to produce the similarity
matrix, if needed. It is also possible to change our default clustering algorithm, which
is currently set to spectral clustering, having shown its reliability in multiple biological
applications [35–37]. The combined effect of these design choices grants MOUSSE a rather
stable performance across different datasets. It is interesting to note that MOUSSE, NeMo
and SNF share a general architecture that relies on similarity networks. However, while
MOUSSE and NeMo obtain a similar average performance and result in the two most
reliable algorithms, SNF achieves a considerably lower median performance. MOUSSE and
NeMo build their similarity networks using a more advanced metric than the Euclidean
distance employed by SNF. Since MOUSSE utilizes the same integration as SNF, the
resulting differences in performance suggest that the method used for the construction of
the similarity network is crucial. However, it is hard to precisely decouple the contribution
of the similarity network construction and the integration method. When we tried to
integrate our omics-specific similarity network with an average-based method, similarly
to NeMo or using the SNFtools “Similarity Matrix” function to convert the distance to a
similarity, we obtained a lower performance.

3.2. Benchmark Results

Our results and previous comparisons [12,34] show how all the investigated multi-
omics integrating tools are unable to maintain the uniform quality of their clustering
performance when applied to multiple cancers. No single method appears to consistently
perform better than the others; this fact is observable in Figure S11, which shows the
relative performance of each tool across the ten types of cancer in the dataset. In this context,
the performance advantage of MOUSSE derives from the robustness of its classification
performance, consistently achieving an above-average ranking across the majority of
the datasets.

MOUSSE hits the top spot in three out of ten datasets. This is in contrast with almost all
of the other algorithms, which achieve top performance in single studies, typically the one
considered in the original publication. When applied to multiple cancers, the average result
is considerably lower (e.g., SNF in GBM = 4.136, mean across cancers = 1.4), highlighting
the importance of a sufficiently large and diverse collection of datasets in carrying out
a thorough performance evaluation. This effect could be due to the high heterogeneity
between different types of cancers, affecting completely different tissues or organ systems.
One practical consequence of this observation is that the method that is going to perform
best on a specific cancer is very dependent on the nature of the data, and there is currently
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no way to predict a priori the winning method, given a dataset. Intriguingly, some of the
methods have highly complementary performance profiles, as shown in Figure S11. For
example, rMKL-LPP appears to reach the top rank with the COAD and SARC datasets, for
which MOUSSE achieves its worst performance; the roles are exactly reversed for the BIC,
KIRK and LUSK datasets. This observation suggests a possible path forward for the design
of the next generation of multi-omics analysis algorithms, in which sufficiently diverse
methods are combined into a single ensemble method. It was shown previously [38,39]
that by combining predictions from different classifiers, the quality and robustness of
predictions can be improved. The crucial issues to be solved to implement this type of
design are the selection of a set of algorithms with sufficiently complementary classification
outcomes (such as those of rMKL-LPP and MOUSSE), and the details on how to combine
the individual outputs to obtain a single outcome.

The use of a benchmark on multiple datasets also allowed us to identify the most
difficult datasets for multi-omics analysis, as shown by the drop of absolute classification
score values in COAD, LUSC and OV, shared by all the algorithms. We were not able to
ascertain whether this underperformance was caused by a higher biological complexity or
by data quality, or a combination of both, but future studies may shed some light on the
matter and possibly suggest a remedy. Even suffering this performance drop, MOUSSE
was able to maintain the most stable performance across the ten cancer types, suggesting
higher consistency of results if applied to a wider range of diseases.

To further confirm the validity of our methodology, especially on the use of the subject-
specific signatures, we looked at the biological information carried by the biomarker
features extracted from the BIC, GBM and LIHC datasets. In each cancer, we focused on
the clusters with the highest difference in survival to investigate differentially expressed
features. As expected, the extracted biomarker, shown in Table 2, contained features in-
volved in prognostic changes or with a relevant impact within cancer: 46 out of 60 features
were reported to be altered in their respective cancer literature, 35 of which were strictly
linked to cancer severity, heavily impacting its development, and thus influencing survival.
Furthermore, when looking at low and high prognosis clusters, we always found the same
directionality in our data and literature. All the identified significant miRNAs have been
reported in regulatory mechanisms involved in cancer development, by directly targeting
genes (e.g., mir-760 [40], mir-106a [41], mir-214 [42], mir-199b [43]) or by working in a
complex with other miRNAs (e.g., mir-105-1/mir105-2/mir767 [44], mir-221/222 [45])
or even by interacting with other classes of RNAs (e.g., mir-324 is sponged by a long
non-coding RNA [46]). Furthermore, some of the miRNAs have high relevance for treat-
ment due to their ability to target multiple genes and pathways (e.g., mir-204 [47–49],
mir-340 [50]) or because they influence treatment resistance, both chemical and radiother-
apeutic (e.g., mir-760 [51] with doxorubicin mir-130b [52]). Four miRNAs have already
been reported as potential prognostic biomarkers (mir-221 [45], mir-222 [45], mir-301 [53],
mir-199a [54]). Similarly, among the relevant genes, TPX2 [55], SEC61G [56], CRTAC1 [57],
SLC11A1 [58] and EXO1 [59] have been suggested as prognostic biomarkers and/or po-
tential therapeutic targets. In a GBM deep learning model, with a concordance index
of ≈0.70, PLA2G2A [60] was one of the 10 most relevant genes for predicting survival.
SEC61G [56], NEK2 [61] and DDX53 [62] are known to alter the response to chemicals
(e.g., sec61g/temozolomide) or radiotherapies, thus influencing survival. Interestingly,
MOUSSE’s biomarker suggests potential targets for future investigations. For example,
both NEK2 and the mir-105-1/105-2/767 miRNAs complexes are found in the LIHC
biomarker. These nucleic acids share the effect on sorafenib resistance, a kinase inhibitor
approved as a treatment in multiple cancers. The mechanisms underlying this resistance
are still unknown, thus an interaction between the gene and the miRNA should be inves-
tigated in the future. COL16A1 has been found to reduce glioma invasiveness [63], and
while we could not find a study that associated it with survival, an automatized survival
analysis reported by The Human Protein Atlas suggests a link to differential survival in
glioma (https://www.proteinatlas.org/ENSG00000084636-COL16A1/pathology; accessed

https://www.proteinatlas.org/ENSG00000084636-COL16A1/pathology
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on 2 July 2021). The transcription factor TOX3 [64] is not associated with GBM survival but
was found to be co-expressed with Nestin and can bind its promoter. The involvement of
Nestin in GBM and its use as a biomarker for glioma stem cells [65] suggests a possible
interaction of TOX3 in this cancer. Similarly, GPR17 is linked to an altered pathway in
glioblastoma and its targeting has led to a significant reduction in neurospheres in rodent
models [66]. These cellular structures influence glioblastoma aggressiveness and are used
as clinical predictors [67].

To investigate the diseases and therapeutic areas that could be linked to our biomark-
ers, we used the 200 most relevant genes identified for BIC, GBM and LIHC in OpenTargets
(https://www.targetvalidation.org/; accessed on 2 July 2021). Even if our biomarker is
an extremely small fraction of the original dataset (200/≈18800), we always found cell
proliferation disorder as the first therapeutic area, with at least 120/200 genes involved.
We also found an extremely high association with cancer (min 115/200 genes involved),
neoplasm (min 118/200), carcinoma (min 99/200) and organ-specific diseases even when
reducing the biomarker to the top 50 genes (Supplementary Material 3).

The enrichment in the biomarkers of genes and miRNAs associated with cancer
development supports the capability of MOUSSE in identifying biologically meaningful
clusters. It also shows the power of this methodology to investigate the regulative processes
behind the development of the identified phenotype classes.

While encouraged by MOUSSE’s positive results, we are well aware that both the
comparative analysis carried out in this study and the pipeline itself have some limitations.
First, the absence of ground truth to verify the correctness of the subjects’ classification
has led both us and the authors of the previous papers to use survival as the classification
phenotype. This information, especially for TCGA data, is often incomplete or imprecise,
due to the lack of complete follow-up for a subset of the subjects, complicating the accurate
performance assessment of the algorithms. Second, while we strived to include a large
assortment of cancer types, our collection of datasets does not fully represent the biological
heterogeneity of human diseases, and thus it is hard to predict how our and other algo-
rithms would fare on an entirely different set of data. Regarding the limitations of the
proposed pipeline, one potential shortcoming of MOUSSE is its reliance on the extremal
value of each profile. Therefore, it is possible in principle that some types of low-quality
data might interfere with the signature selection and have a disproportionate impact on the
classification outcome due to the resulting aberrant profile reduction. Furthermore, even
if it has a positive impact on the clustering performance, the use of RBO as a similarity
measure is computationally demanding. Indeed, the running time of MOUSSE grows more
than linearly both with signature length and the number of subjects.

In the future, we aim to refine our analysis by improving the quality of the input
data. In our tests, we used a previous benchmark dataset [12,34] based on TCGA data to
compare our results with as many state-of-the-art algorithms as possible. Our choice was
driven by the lack of literature on multi-omics benchmarking and data standardization.
Therefore, we did not investigate confounding variables and used the overall survival for
all the cancer types, following the same approach employed in the original analysis. This
choice, together with the unsupervised setting, was shared by all the multi-omics tools
considered for the benchmark, ensuring a neutral ground for the performance comparisons.
However, we are aware of studies that have shown how overall survival is not always
reliable, due to the quality of the data themself, and that different survival time variables
(e.g., disease-free survival) can improve the survival analysis performances depending
on the type of cancer [68]. We aim to take advantage of this knowledge in future work
to provide a better survival-based validation, together with improved cluster analysis,
possibly accounting for the presence of confounding variables (e.g., sex, age, ethnicity,
follow-ups, etc.).

https://www.targetvalidation.org/
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4. Materials and Methods
4.1. Data Availability

All the raw data for the analysis and the software performances were taken from
previous multi-omics reviews [12,34] and can be found at http://acgt.cs.tau.ac.il/multi_
omic_benchmark/download.html (accessed on 2 July 2021).

We utilized the revised data for MCCA and LRACluster (http://acgt.cs.tau.ac.il/
multi_omic_benchmark/silhouette_error.html; accessed on 2 July 2021)). The data are
composed of ten level 3 TCGA datasets, covering different cancers:

• AML (acute myeloid leukemia);
• BIC (breast invasive carcinoma);
• COAD (colon adenocarcinoma);
• GBM (glioblastoma multiform);
• KIRC (kidney renal clear cell carcinoma);
• LIHC (liver hepatocellular carcinoma);
• LUSC (lung squamous cell carcinoma);
• SKCM (skin cutaneous melanoma);
• SARC (sarcoma);
• OV (ovarian serous cystadenocarcinoma).

Each dataset contains transcriptome, methylome and miRNAome data for each subject.
The number of subjects varies across the studies from 170 in AML to 620 in BIC. Cluster
validation was carried out using the overall survival time (OS) of the subjects as the
benchmark. Similarly, subjects with primary tumors were selected for all cancer types but
AML, which included non-solid samples.

4.2. Pipeline Methodology

The technical details of MOUSSE are reported in the following subsection. All the
analyses were implemented in R software, using RStudio as a visualizer. A more detailed
description of the pipeline is provided in Supplementary Material 1.

4.2.1. Preprocessing

First, all the data underwent the same early preprocessing suggested for all the tools
in the Rappoport et al. benchmark [12,34]. We then performed the same preprocessing
used for SNF in the review: removal of miRNAs with zero variance, expression data log-
transformed and all the features were normalized to have mean 0 and standard deviation
1. Then, features with a coefficient of variation CVar = σ

µ [13] lower than the 5th percentile
were removed, to maintain only features with a minimum of variation across subjects.

4.2.2. Subject-Specific Signature Extraction

To extract the signatures, the features of each subject were sorted decreasingly and
substituted with their rank. The extraction was then performed by selecting the n1 most
expressed and the n2 least expressed features (e.g., genes, miRNAs, methylation probes) of
each subject. Both n1 and n2 can be arbitrarily set depending on the biological application
and case specifics. This procedure was repeated for each omics and cancer.

To reduce the arbitrary choices in our survival analysis, we developed an optimization
to automatically select the best value for n1 and n2 among a predefined range of signature
lengths, as later explained. The values used for our analysis are reported in Table S3.

4.2.3. Omics-Specific Similarity Networks

For each omics, we used the rank-biased overlap (RBO) [24] to obtain a similarity matrix:

RBO(S, T, p, k) =
XK
k
∗ pk +

1− p
p

k

∑
d=1

Xd
d
∗ pd (1)

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
http://acgt.cs.tau.ac.il/multi_omic_benchmark/silhouette_error.html
http://acgt.cs.tau.ac.il/multi_omic_benchmark/silhouette_error.html
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Briefly, this metric measures the similarity between two lists (S, T) of length k, by
calculating the overlap at a certain depth (Xd) and adjusting it through the p parameter to
give higher relevance to changes at the top of the lists. This parameter depends both on the
list length and on a weight that determines how much significance to give to a percentage
of the list (set to 0.8 in our implementation). In our analysis, p was automatically set to
maintain a stable weight, given the changes in the length of the signatures.

Starting from the signatures of length n1 and n2 extracted in the previous step
(Section 4.2.2), we calculated a pair of similarity matrices by computing the RBO between
all the possible pairs of subjects. The average between these two matrices was used as the
similarity matrix for one omics when the optimization described in Section 4.2.4 was not
used. We considered the omics similarity matrix as the adjacency matrix of the network
between the subjects, where each similarity measurement corresponds to the weight of
the link between two subjects. To reduce the computational time of the similarity, in the
analysis the R package “parallel” was used.

4.2.4. Signature Length Optimization

To automatically select the best signature length for each omics, we relied on the
Kullback–Leibler divergence [23], an information theory method that can be applied
to measure the information gain obtained by using a distribution (Q) to approximate
another (P).

DKL (P||Q) = ∑
i

P(i) log2

(
P(i)
Q(i)

)
(2)

To select the best length, we used a set of different lengths for n1 in each omics. We
produced a similarity matrix for each length chosen. We then calculated the distribution
of the values of the similarity matrices computed for each n1 value. We added a pseudo
count of one to each bin and normalized the distribution by dividing it by the area of the
distribution. We then calculated the DKL between the shortest signature (Q) and each
one of the others (P) to evaluate the information gained with an increase in length. We
chose the length where DKL first reached its maximum value, corresponding to the highest
information/noise ratio, and set it as the final n1. It can be appreciated from Table S4
that the longest signature was not always the most informative. We repeated the same
procedure for n2.

4.2.5. Network Integration and Clustering

The networks resulting from each omics were fused into a single one using the
“SNFtools” R package. A single network for each cancer was thus produced. Subjects were
then divided into groups using the spectral clustering function of the same package.

4.3. Survival Analysis and Benchmark Comparison

To obtain comparable results and evaluate our method against the other tools tested
by Rappoport et al. [12,34], we validated our clustering using the overall survival time and
overall survival of the subjects.

For each cancer, we calculated a log-rank curve and compared the survival between
the clusters using the “SurvDiff” function of the R package “Survival”. We extracted an
empirical p-value using the chi-squared statistics as described in Rappoport et al. [12,34].
We then permuted the cluster labels 30,000 times to compute permuted p-values. The
number of permutations used was different from the one used in the original benchmark;
however, we verified that our setting would not significantly affect the score (less than
0.01% variation). A final score, addressed as the classification score, was extracted using
the following formula:

classi f ication score : − log10

(
number o f times cluster′s p− value < permutated p− values

number o f permutations

)
(3)
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Our results were compared to the classification scores obtained by the other algorithms
reported by Rappoport [12,34]. To further evaluate the performance, we extracted the
median, the median absolute deviation and the z-score of the median of the results.

4.4. Biological Validation

To explore the biology underlying our clustering, we studied the signatures of the two
clusters with the highest survival difference in three cancer types and extracted a biomarker
of relevant features. To do so, first, we normalized the signatures’ ranks to account for the
difference in length between the most and least expressed (normalized(x) = (x−min(x))

max(x−min(x)) ).
We then reversed the obtained 0–1 score by subtracting 1 and divided the values for the
number of subjects in the cancer dataset, to account for their frequency. We then fused the
most and least expressed signatures after normalization, sorted all the features by their
rank-sum and extracted the highest hundred. We then filtered the features, selecting only
those that would be significantly different between the two clusters according to Wilcoxon
test (R basic function). We adjusted the extracted p-value using the Bonferroni correction
and selected only the significant results.

To investigate the enrichment of association with diseases in our biomarker, we used
OpenTargets [69]. The biomarker used for this analysis was extracted using all the subjects
of one cancer and the normalized rank-sum described above without Wilcoxon filtering.
The top 50/100/200 genes were then used for the analysis.

5. Conclusions

In this paper, we presented MOUSSE, a novel normalization-free pipeline for unsuper-
vised multi-omics integration based on subject-specific signatures. We tested the reliability
of our method by analyzing multiple cancer datasets and comparing our performances
with 10 other integration algorithms. Survival analysis of the clustering showed the abil-
ity of MOUSSE to maintain good performance across a wide range of cancer types and
its achievement of the best median score. Furthermore, we extracted and analyzed the
biomarkers from the three cancer types for which MOUSSE provided the best classification
performance based on survival analysis. The high presence of features involved in cancer
development and prognosis, as seen in the literature, supports the value of the pipeline as
a tool to also investigate the regulative processes that are behind the development of the
identified cancer phenotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13143423/s1, Figure S1: Log-rank curve of the four clusters identified by MOUSSE
in AML. Figure S2: Log-rank curve of the three clusters identified by MOUSSE in BIC. Figure S3:
Log-rank curve of the three clusters identified by MOUSSE in COAD. Figure S4: Log-rank curve
of the two clusters identified by MOUSSE in GBM. Figure S5: Log-rank curve of the three clusters
identified by MOUSSE in KIRC. Figure S6: Log-rank curve of the four clusters identified by MOUSSE
in LIHC. Figure S7: Log-rank curve of the two clusters identified by MOUSSE in LUSC. Figure S8:
Log-rank curve of the two clusters identified by MOUSSE in OV. Figure S9: Log-rank curve of the two
clusters identified by MOUSSE in SARC. Figure S10: Log-rank curve of the three clusters identified
by MOUSSE in SKCM. Figure S11: Plot showing the relative performance (rank) of each tool for each
one of the ten cancer datasets. The MOUSSE performance has been highlighted by increasing the
thickness of the corresponding line. Table S1: The table includes the references of all the influencing
genes extracted in the biological validation. Table S2: The table includes the references of all the
relevant miRNAs extracted in the biological validation. Table S3: Signature lengths automatically
selected for each cancer in our analysis. Table S4: Kullback–Leibler Divergence between different
lengths of the most expressed methylation features (n1) of SKCM. Material S2: Full list of all the
significant features extracted for each cancer with Bonferroni corrected p-values and the subject
cluster-IDs. Material S3: OpenTargets results with different biomarker lengths.

https://www.mdpi.com/article/10.3390/cancers13143423/s1
https://www.mdpi.com/article/10.3390/cancers13143423/s1
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