Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Side-Illuminated Dark-Field Imaging
3.2. Plasmonic Bioimaging of Cytology Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization-Cancer. Available online: www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 March 2021).
- Shyyan, R.; Masood, S.; Badwe, R.A.; Errico, K.M.; Liberman, L.; Ozmen, V.; Stalsberg, H.; Vargas, H.; Vass, L.; Global Summit Diagnosis and Pathology Panel; et al. Breast cancer in limited-resource countries: Diagnosis and pathology. Breast J. 2006, 12, S27–S37. [Google Scholar] [CrossRef] [PubMed]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [Green Version]
- Veta, M.; Pluim, J.P.W.; Van Diest, P.J.; Viergever, M.A. Breast cancer histopathology image analysis: A review. IEEE. Trans. Biomed. Eng. 2014, 61, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Blom, S.; Paavolainen, L.; Bychkov, D.; Turkki, R.; Mäki-Teeri, P.; Hemmes, A.; Välimäki, K.; Lundin, J.; Kallioniemi, O.; Pellinen, T. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci. Rep. 2017, 7, 15580. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, M.; Haag, C.; Weis, C.-A.; Steinbuss, G.; Warth, A.; Zgorzelski, C.; Muley, T.; Winter, H.; Eichhorn, M.E.; Eichhorn, F.; et al. Deep learning for the classification of small-cell and non-small-cell lung cancer. Cancers 2020, 12, 1604. [Google Scholar] [CrossRef]
- Grosset, A.-A.; Loayza-Vega, K.; Adam-Granger, É.; Birlea, M.; Gilks, B.; Nguyen, B.; Soucy, G.; Tran-Thanh, D.; Albadine, R.; Trudel, D. Hematoxylin and eosin counterstaining protocol for immunohistochemistry interpretation and diagnosis. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.; Moffat, D.; Latham, B.; Badrick, T. Review of diagnostic error in anatomical pathology and the role and value of second opinions in error prevention. J. Clin. Pathol. 2018, 71, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Roh, J.; Park, C.-S. Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. J. Pathol. Transl. Med. 2016, 50, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Darviot, C.; Zapata-Farfan, J.; Patskovsky, S.; Trudel, D.; Meunier, M. Designable nanoplasmonic biomarkers for direct microscopy cytopathology diagnostics. J. Biophotonics 2019, 12, e201900166. [Google Scholar] [CrossRef]
- Sukswai, N.; Khoury, J.D. Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Curr. Hematol. Malig. Rep. 2019, 14, 368–375. [Google Scholar] [CrossRef]
- Conchello, J.-A.; Lichtman, J.W. Optical sectioning microscopy. Nat. Methods 2005, 2, 920–931. [Google Scholar] [CrossRef]
- Prost, S.; Kishen, R.E.B.; Kluth, D.C.; Bellamy, C.O.C. Choice of illumination system & fluorophore for multiplex immunofluorescence on ffpe tissue sections. PLoS ONE 2016, 11, e0162419. [Google Scholar]
- Zhou, L.; Yan, J.; Tong, L.; Han, X.; Wu, X.; Guo, P. Quantum dot-based immunohistochemistry for pathological applications. Cancer Transl. Med. 2016, 2, 21. [Google Scholar]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Rioux, D.; Meunier, M. Seeded growth synthesis of composition and size-controlled gold–silver alloy nanoparticles. J. Phys. Chem. C 2015, 119, 13160–13168. [Google Scholar] [CrossRef]
- Dey, P.; Baumann, V.; Rodríguez-Fernández, J. Gold nanorod assemblies: The roles of hot-spot positioning and anisotropy in plasmon coupling and SERS. Nanomaterials 2020, 10, 942. [Google Scholar] [CrossRef]
- Pourreza, N.; Ghomi, M. A network composed of gold nanoparticles and a poly (vinyl alcohol) hydrogel for colorimetric determination of ceftriaxone. Microchim. Acta 2020, 187, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pourreza, N.; Ghomi, M. Hydrogel based aptasensor for thrombin sensing by Resonance Rayleigh Scattering. Anal. Chim. Acta 2019, 1079, 180–191. [Google Scholar] [CrossRef]
- Patskovsky, S.; Bergeron, E.; Meunier, M. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells. J. Biophotonics 2015, 8, 162–167. [Google Scholar] [CrossRef]
- Bergeron, É.; Patskovsky, S.; Rioux, D.; Meunier, M. 3D multiplexed immunoplasmonics microscopy. Nanoscale 2016, 8, 13263–13272. [Google Scholar] [CrossRef]
- Nsamela Matombi, A.; Hasanzadeh Kafshgari, M.; Wang, L.; Patskovsky, S.; Trudel, D.; Meunier, M. Sensitive and rapid cancer diagnosis with immunoplasmonic assay based on plasmonic nanoparticles: Toward fine-needle aspiration cytology. ACS Appl. Nano Mater. 2020, 3, 4171–4177. [Google Scholar] [CrossRef]
- Patskovsky, S.; Bergeron, E.; Rioux, D.; Meunier, M. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy. J. Biophotonics 2015, 8, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Rioux, D.; Meunier, M. Alloy Nanoparticles, Process for Their Preparation and Use Thereof. U.S. Patent No. 10,239,122, 26 March 2019. [Google Scholar]
- Qi, M.; Darviot, C.; Patskovsky, S.; Meunier, M. Cost-effective side-illumination darkfield nanoplasmonic marker microscopy. Analyst 2019, 144, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
Color | Geometry | Composition | Size (nm) | Plasmon Peak (nm) |
---|---|---|---|---|
Blue | Sphere | Gold/Silver Alloy 10/90% vol. | 43 | 457 |
Green | Gold/Silver Alloy 50/50% vol. | 74 | 529 | |
Yellow | Gold | 100 | 607 | |
Red | Rod | Gold | 25 × 71 | 669 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcoux-Valiquette, P.; Darviot, C.; Wang, L.; Grosset, A.-A.; Hasanzadeh Kafshgari, M.; Birela, M.; Patskovsky, S.; Trudel, D.; Meunier, M. Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples. Cancers 2021, 13, 3509. https://doi.org/10.3390/cancers13143509
Marcoux-Valiquette P, Darviot C, Wang L, Grosset A-A, Hasanzadeh Kafshgari M, Birela M, Patskovsky S, Trudel D, Meunier M. Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples. Cancers. 2021; 13(14):3509. https://doi.org/10.3390/cancers13143509
Chicago/Turabian StyleMarcoux-Valiquette, Paule, Cécile Darviot, Lu Wang, Andrée-Anne Grosset, Morteza Hasanzadeh Kafshgari, Mirela Birela, Sergiy Patskovsky, Dominique Trudel, and Michel Meunier. 2021. "Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples" Cancers 13, no. 14: 3509. https://doi.org/10.3390/cancers13143509
APA StyleMarcoux-Valiquette, P., Darviot, C., Wang, L., Grosset, A. -A., Hasanzadeh Kafshgari, M., Birela, M., Patskovsky, S., Trudel, D., & Meunier, M. (2021). Multiplexed Plasmonic Nano-Labeling for Bioimaging of Cytological Stained Samples. Cancers, 13(14), 3509. https://doi.org/10.3390/cancers13143509