Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. RNA Isolation
2.2. Quantitative microRNA Profiling
2.3. Statistical Analysis
2.4. MiRNA Accession Numbers
3. Results
3.1. Differences in Patient Characteristics between Men in the Placebo and Atorvastatin Arms of the Study
3.2. MicroRNAs Associated Significantly with Patient Characteristics and PCa Risk Factors
3.3. MiRNAs Associations by Study Arm
3.4. In Silico Pathway Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. Annu. Rev. Pathol. 2014, 9, 287–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, L.; Ceder, Y.; Chinnaiyan, A.M.; Jenster, G.W.; Sørensen, K.D.; Tomlins, S.; Visakorpi, T.; Calin, G.A. The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur. Urol. 2016, 70, 312–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 2014, 6, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Massillo, C.; Dalton, G.N.; Farre, P.L.; De Luca, P.; De Siervi, A. Implications of microRNA dysregulation in the development of prostate cancer. Reproduction 2017, 154, R81–R97. [Google Scholar] [CrossRef] [Green Version]
- Luu, H.N.; Lin, H.-Y.; Sørensen, K.D.; Ogunwobi, O.; Kumar, N.; Chornokur, G.; Phelan, C.; Jones, D.; Kidd, L.; Batra, J.; et al. miRNAs associated with prostate cancer risk and progression. BMC Urol. 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Perdana, N.R.; Mochtar, C.A.; Umbas, R.; Hamid, A.R.A. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review. Acta Med. Indones. 2016, 48, 228–238. [Google Scholar]
- Wigle, D.T.; Turner, M.C.; Gomes, J.; Parent, M.-E. Role of hormonal and other factors in human prostate cancer. J. Toxicol. Environ. Health B Crit. Rev. 2008, 11, 242–259. [Google Scholar] [CrossRef] [Green Version]
- Murtola, T.J.; Kasurinen, T.V.J.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A. Serum cholesterol and prostate cancer risk in the Finnish randomized study of screening for prostate cancer. Prostate Cancer Prostatic Dis. 2019, 22, 66–76. [Google Scholar] [CrossRef]
- Crawley, D.; Chamberlain, F.; Garmo, H.; Rudman, S.; Zethelius, B.; Holmberg, L.; Adolfsson, J.; Stattin, P.; Carroll, P.; Van Hemelrijck, M. A systematic review of the literature exploring the interplay between prostate cancer and type two diabetes mellitus. Ecancermedicalscience 2018, 12, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liss, M.A.; Thompson, I.M. Prostate cancer prevention with 5-alpha reductase inhibitors: Concepts and controversies. Curr. Opin. Urol. 2018, 28, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Alfaqih, M.A.; Allott, E.H.; Hamilton, R.J.; Freeman, M.R.; Freedland, S.J. The current evidence on statin use and prostate cancer prevention: Are we there yet? Nat. Rev. Urol. 2017, 14, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, L.M.; Joshu, C.E.; Barber, J.R.; Prizment, A.E.; Vitolins, M.Z.; Jones, M.R.; Folsom, A.R.; Han, M.; Platz, E.A. Aspirin and Non-Aspirin NSAID Use and Prostate Cancer Incidence, Mortality, and Case-Fatality in the Atherosclerosis Risk in Communities Study. Cancer Epidemiol. Biomark. Prev. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.M.; Warner, B.W.; Wilson, J.M.; Becker, A.; Rowland, R.G.; Conner, W.; Lane, M.; Kimbler, K.; Durbin, E.B.; Baron, A.T.; et al. Effect of alpha1-adrenoceptor antagonist exposure on prostate cancer incidence: An observational cohort study. J. Urol. 2007, 178, 2176–2180. [Google Scholar] [CrossRef] [Green Version]
- Yamada, D.; Nishimatsu, H.; Kumano, S.; Hirano, Y.; Suzuki, M.; Fujimura, T.; Fukuhara, H.; Enomoto, Y.; Kume, H.; Homma, Y. Reduction of prostate cancer incidence by naftopidil, an alpha1 -adrenoceptor antagonist and transforming growth factor-beta signaling inhibitor. Int. J. Urol. 2013, 20, 1220–1227. [Google Scholar] [CrossRef]
- Hankinson, S.J.; Fam, M.; Patel, N.N. A review for clinicians: Prostate cancer and the antineoplastic properties of metformin. Urol. Oncol. 2017, 35, 21–29. [Google Scholar] [CrossRef]
- Haring, A.; Murtola, T.J.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A. Antidiabetic drug use and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Scand. J. Urol. 2017, 51, 5–12. [Google Scholar] [CrossRef]
- Sliwinska, A.; Kasinska, M.A.; Drzewoski, J. MicroRNAs and metabolic disorders—Where are we heading? Arch. Med. Sci. 2017, 13, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Raitoharju, E.; Seppälä, I.; Oksala, N.; Lyytikäinen, L.-P.; Raitakari, O.; Viikari, J.; Ala-Korpela, M.; Soininen, P.; Kangas, A.; Waldenberger, M.; et al. Blood microRNA profile associates with the levels of serum lipids and metabolites associated with glucose metabolism and insulin resistance and pinpoints pathways underlying metabolic syndrome: The cardiovascular risk in Young Finns Study. Mol. Cell. Endocrinol. 2014, 391, 41–49. [Google Scholar] [CrossRef]
- Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernandez-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 2017, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Daniels, G.; Lee, P.; Monaco, M.E. Lipid metabolism in prostate cancer. Am. J. Clin. Exp. Urol. 2014, 2, 111–120. [Google Scholar] [PubMed]
- Raitoharju, E.; Oksala, N.; Lehtimaki, T. MicroRNAs in the atherosclerotic plaque. Clin. Chem. 2013, 59, 1708–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larne, O.; Hagman, Z.; Lilja, H.; Bjartell, A.; Edsjo, A.; Ceder, Y. miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis. Carcinogenesis 2015, 36, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Layer, R.; Mueller, A.C.; Cichewicz, M.A.; Negishi, M.; Paschal, B.M.; Dutta, A. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 2014, 33, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Murtola, T.J.; Syvälä, H.; Tolonen, T.; Helminen, M.; Riikonen, J.; Koskimäki, J.; Pakarainen, T.; Kaipia, A.; Isotalo, T.; Kujala, P.; et al. Atorvastatin Versus Placebo for Prostate Cancer Before Radical Prostatectomy-A Randomized, Double-blind, Placebo-controlled Clinical Trial. Eur. Urol. 2018, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.I.; Allsbrook, W.C.J.; Amin, M.B.; Egevad, L.L. The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2005, 29, 1228–1242. [Google Scholar] [CrossRef] [Green Version]
- Nickel, J.C.; True, L.D.; Krieger, J.N.; Berger, R.E.; Boag, A.H.; Young, I.D. Consensus development of a histopathological classification system for chronic prostatic inflammation. BJU Int. 2001, 87, 797–805. [Google Scholar] [CrossRef]
- Mestdagh, P.; Van Vlierberghe, P.; De Weer, A.; Muth, D.; Westermann, F.; Speleman, F.; Vandesompele, J. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 2009, 10, R64. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Jang, I.; Jun, Y.; Yoon, S.; Ko, M.; Kwon, Y.; Choi, I.; Chang, H.; Ryu, D.; Lee, B.; et al. MiRGator v3.0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013, 41, D252-7. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Odero-Marah, V.; Hawsawi, O.; Henderson, V.; Sweeney, J. Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer. Adv. Exp. Med. Biol. 2018, 1095, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol. Med. 2017, 14, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delongchamps, N.B.; Peyromaure, M.; Dinh-Xuan, A.T. Role of vascular endothelial growth factor in prostate cancer. Urology 2006, 68, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Formosa, A.; Markert, E.K.; Lena, A.M.; Italiano, D.; Agro, E.F.; Levine, A.J.; Bernardini, S.; Garabadgiu, A.V.; Melino, G.; Candi, E. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 2014, 33, 5173–5182. [Google Scholar] [CrossRef]
- Jamnagerwalla, J.; Howard, L.E.; Allott, E.H.; Vidal, A.C.; Moreira, D.M.; Castro-Santamaria, R.; Andriole, G.L.; Freeman, M.R.; Freedland, S.J. Serum cholesterol and risk of high-grade prostate cancer: Results from the REDUCE study. Prostate Cancer Prostatic Dis. 2018, 21, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Khosropanah, I.; Falahatkar, S.; Farhat, B.; Bateni, Z.H.; Enshaei, A.; Allahkhah, A.A.; Khosropanah, D. Assessment of atorvastatin effectiveness on serum PSA level in hypercholesterolemic males. Acta Med. Iran. 2011, 49, 789–794. [Google Scholar]
- Hagman, Z.; Larne, O.; Edsjö, A.; Bjartell, A.; Ehrnström, R.A.; Ulmert, D.; Lilja, H.; Ceder, Y. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int. J. Cancer 2010, 127, 2768–2776. [Google Scholar] [CrossRef]
- Hagman, Z.; Haflidadottir, B.S.; Ansari, M.; Persson, M.; Bjartell, A.; Edsjö, A.; Ceder, Y. The tumour suppressor miR-34c targets MET in prostate cancer cells. Br. J. Cancer 2013, 109, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Erdmann, K.; Kaulke, K.; Rieger, C.; Salomo, K.; Wirth, M.P.; Fuessel, S. MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J. Cancer Res. Clin. Oncol. 2016, 142, 2249–2261. [Google Scholar] [CrossRef]
- Krycer, J.R.; Brown, A.J. Cholesterol accumulation in prostate cancer: A classic observation from a modern perspective. Biochim. Biophys. Acta 2013, 1835, 219–229. [Google Scholar] [CrossRef]
- Lophatananon, A.; BioResource, A.; Stewart-Brown, S.; Kote-Jarai, Z.; Al Olama, A.A.; Garcia, S.B.; E Neal, D.; Hamdy, F.C.; Donovan, J.L.; Giles, G.G.; et al. Height, selected genetic markers and prostate cancer risk: Results from the PRACTICAL consortium. Br. J. Cancer 2017, 117, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Xiaoli, Z.; Yawei, W.; Lianna, L.; Haifeng, L.; Hui, Z. Screening of Target Genes and Regulatory Function of miRNAs as Prognostic Indicators for Prostate Cancer. Med. Sci. Monit. 2015, 21, 3748–3759. [Google Scholar] [CrossRef] [Green Version]
- Mogilyansky, E.; Rigoutsos, I. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013, 20, 1603–1614. [Google Scholar] [CrossRef]
- Ottman, R.; Levy, J.; Grizzle, W.E.; Chakrabarti, R. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2016, 7, 73739–73753. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, M.; Bajo-Santos, C.; Hessvik, N.P.; Lorenz, S.; Fromm, B.; Berge, V.; Sandvig, K.; Linē, A.; Llorente, A. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol. Cancer 2017, 16, 156. [Google Scholar] [CrossRef]
- Penzkofer, D.; Bonauer, A.; Fischer, A.; Tups, A.; Brandes, R.; Zeiher, A.M.; Dimmeler, S. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development. PLoS ONE 2014, 9, e101153. [Google Scholar] [CrossRef] [PubMed]
- Marzano, F.; Faienza, M.F.; Caratozzolo, M.F.; Brunetti, G.; Chiara, M.; Horner, D.S.; Annese, A.; D’Erchia, A.M.; Consiglio, A.; Pesole, G.; et al. Pilot study on circulating miRNA signature in children with obesity born small for gestational age and appropriate for gestational age. Pediatr. Obes. 2018, 13, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.; Reith, C.; Emberson, J.; Armitage, J.; Baigent, C.; Blackwell, L.; Blumenthal, R.; Danesh, J.; Smith, G.D.; DeMets, D.; et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016, 388, 2532–2561. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, C.; Zhang, S.; Sun, S.; Li, R.; Zou, M.; Cheng, G. Safety Profile of Atorvastatin 80 mg: A Meta-Analysis of 17 Randomized Controlled Trials in 21,910 Participants. Drug Saf. 2016, 39, 409–419. [Google Scholar] [CrossRef] [PubMed]
Variables (Units) | Total | Atorvastatin | Placebo | p-Values for Difference |
---|---|---|---|---|
Number of subjects (n) | 63 (100%) | 32 (51%) | 31 (49%) | - |
Age (years) | 65.3 (5.7) | 65.6 (5.6) | 65.0 (5.8) | 0.709 |
Height (cm) | 179.8 (5.2) | 179.3 (5.5) | 180.4 (4.8) | 0.397 |
Weight (kg) | 86.7 (14.5) | 86.9 (14.9) | 86.6 (14.4) | 0.869 |
Body mass index (kg/m2) | 26.8 (4.0) | 27.0 (4.1) | 26.6 (4.0) | 0.690 |
Smokers (n) | 8 (100%) | 5 (63%) | 3 (37%) | 0.372 |
High grade cancer (n) | 31 (100%) | 16 (52%) | 15 (48%) | 0.549 |
Low grade cancer (n) | 32 (100%) | 16 (50%) | 16 (50%) | 0.549 |
Inflammation score | 9.4 (2.9) | 9.2 (2.9) | 9.6 (3.0) | 0.668 |
Ki-67 (%) | 2.9 (2.1) | 3.0 (2.0) | 2.8 (2.2) | 0.692 |
Cholesterol 1 (mmol/L) | 5.3 (0.9) | 5.3 (0.8) | 5.4 (1.0) | 0.851 |
Cholesterol 2 (mmol/L) | 4.2 (1.3) | 3.2 (0.8) | 5.3 (0.8) | 4.934 × 10−9 |
ΔCholesterol (mmol/L) | −1.1 (1.2) | −2.1 (0.8) | −0.1 (0.6) | 1.6142 × 10−9 |
HDL-C 1 (mmol/L) | 1.5 (0.4) | 1.5 (0.4) | 1.6 (0.4) | 0.423 |
HDL-C 2 (mmol/L) | 1.4 (0.4) | 1.4 (0.3) | 1.5 (0.5) | 0.275 |
ΔHDL-C (mmol/L) | −0.07 (0.2) | −0.1 (0.2) | −0.001 (0.2) | 0.014 |
LDL-C 1 (mmol/L) | 3.6 (0.9) | 3.5 (0.7) | 3.6 (1.0) | 0.971 |
LDL-C 2 (mmol/L) | 2.6 (1.2) | 1.6 (0.7) | 3.5 (0.7) | 9.2012 × 10−10 |
ΔLDL-C (mmol/L) | −1.0 (1.1) | −1.9 (7.5) | −0.04 (0.5) | 1.2379 × 10−9 |
Triglycerides1 (mmol/L) | 1.2 (0.6) | 1.2 (0.7) | 1.2 (0.5) | 0.333 |
Triglycerides2 (mmol/L) | 1.0 (0.6) | 1.0 (0.7) | 1.1 (0.4) | 0.005 |
ΔTriglycerides (mmol/L) | −0.2 (0.4) | −0.3 (0.4) | −0.1 (0.4) | 0.007 |
PSA 1 (µg/L) | 8.6 (4.5) | 9.1 (4.6) | 8.0 (4.4) | 0.383 |
PSA 2 (µg/L) | 8.2 (4.4) | 8.7 (4.3) | 7.7 (4.6) | 0.315 |
ΔPSA (µg/l) | −0.4 (1.5) | −0.4 (1.1) | −0.3 (0.7) | 0.395 |
Testosterone1 (nmol/L) | 16.4 (5.3) | 15.7 (4.3) | 17.0 (6.0) | 0.901 |
Testosterone2 (nmol/L) | 16.4 (5.3) | 15.2 (3.4) | 17.3 (6.3) | 0.643 |
ΔTestosterone (nmol/L) | 0.2 (4.7) | −1.3 (4.3) | 1.1 (4.9) | 0.618 |
CK 1 (IU/l) | 127.8 (69.2) | 123.3 (76.2) | 132.8 (61.6) | 0.348 |
CK 2 (IU/l) | 156.2 (111.8) | 167.8 (102.0) | 144.6 (121.5) | 0.126 |
ΔCK (IU/l) | 32.0 (95.7) | 42.2 (64.4) | 21.1 (121.0) | 0.031 |
MicroRNA Expressed in Prostate Arm/Correlating Variable | Correlation Coefficient | Nominal p-Value | Bonferroni-Corrected p-Value | n |
---|---|---|---|---|
Entire population | ||||
miR-92a-1-5p Height (cm) | 0.54 | 2.4 × 10−5 | 0.011 | 54 |
miR-140-5p Creatine kinase (second measurement) | 0.51 | 4.4 × 10−5 | 0.020 | 58 |
miR-485-3p HDL-C (first measurement) | 0.52 | 8.4 × 10−5 | 0.038 | 51 |
Atorvastatin arm | ||||
miR-34c-5p Change in PSA | −0.68 | 4.9 × 10−5 | 0.022 | 29 |
miR-138-5p Change in total cholesterol | 0.67 | 6.6 × 10−5 | 0.030 | 29 |
Placebo arm | ||||
miR-627 PSA (second measurement) | 0.74 | 5.7 × 10−5 | 0.026 | 23 |
miR-576-3p HDL-C (second measurement) | 0.68 | 6.2 × 10−5 | 0.028 | 28 |
miR-550a-3p HDL-C (second measurement) | 0.89 | 9.2 × 10−5 | 0.042 | 12 |
miR-92a-1-5p Height (cm) | 0.69 | 9.4 × 10−5 | 0.043 | 26 |
MicroRNA Correlating Variable | B | Standard Error for B | Beta | t-Score | p-Value | 95% CI |
---|---|---|---|---|---|---|
Entire population | ||||||
MiR-92a-1-5p Height (cm) | 0.043 | 0.010 | 0.490 | 4.321 | 8.00 × 10−5 | 0.023–0.062 |
MiR-140-5p Creatine kinase (second measurement) | 0.001 | 3.30 × 10−4 | 0.351 | 2.870 | 0.006 | 2.84 × 10−4–0.002 |
MiR-485-3p HDL-C (first measurement) | 0.834 | 0.241 | 0.484 | 3.461 | 0.001 | 0.348–1.319 |
Atorvastatin arm | ||||||
MiR-34c-5p Change in PSA | −0.359 | 0.154 | −0.446 | −2.334 | 0.029 | −0.678–0.041 |
MiR-138-5p Change in total cholesterol | 1.568 | 0.501 | 0.593 | 3.131 | 0.005 | 0.532–2.604 |
Placebo arm | ||||||
miR-627 PSA (second measurement) | 0.182 | 0.040 | 0.770 | 4.598 | 2.56 × 10−4 | 0.098–0.265 |
miR-576-3p HDL-C (second measurement) | 0.443 | 0.221 | 0.357 | 1.999 | 0.058 | −0.017–0.902 |
MiR-550a-3p HDL-C (second measurement) | 0.555 | 0.084 | 0.483 | 6.579 | 0.001 | 0.348–0.761 |
MiR-92a-1-5p Height | 0.049 | 0.011 | 0.596 | 4.310 | 0.000 | 0.025–0.073 |
Pathways for Significant miRNAs | Target Genes Enriched in Pathway | p-Value | Total Genes in Pathway | % of Total Genes in Pathway |
---|---|---|---|---|
miR-92a-1-5p | ||||
No significant results | ||||
miR-140-5p | ||||
p53 signaling pathway | 14 | 0.008 | 67 | 20.9 |
Glycosphingolipid biosynthesis-ganglio series | 6 | 0.009 | 15 | 40.0 |
Insulin resistance | 19 | 0.010 | 108 | 17.6 |
Adipocytokine signaling pathway | 14 | 0.011 | 70 | 20.0 |
Hippo signaling pathway | 24 | 0.011 | 151 | 15.9 |
Tuberculosis | 27 | 0.012 | 177 | 15.3 |
Pathways in cancer | 50 | 0.017 | 393 | 12.7 |
Insulin secretion | 15 | 0.023 | 85 | 17.6 |
PI3K-Akt signaling pathway | 44 | 0.025 | 345 | 12.8 |
Dopaminergic synapse | 20 | 0.026 | 128 | 15.6 |
miR-485-3p | ||||
MAPK signaling pathway | 22 | 0.006 | 255 | 17.6 |
VEGF signaling pathway | 8 | 0.020 | 61 | 8.6 |
Renin secretion | 8 | 0.026 | 64 | 13.1 |
Proteoglycans in cancer | 16 | 0.039 | 200 | 12.5 |
Non-small cell lung cancer | 7 | 0.041 | 56 | 8.0 |
Wnt signaling pathway | 12 | 0.050 | 138 | 12.5 |
miR-34c-5p | ||||
Thyroid hormone signaling pathway | 28 | 3.00 × 10−4 | 114 | 24.6 |
Rap1 signaling pathway | 40 | 0.003 | 210 | 19.0 |
Chronic myeloid leukemia | 18 | 0.004 | 72 | 25.0 |
Calcium signaling pathway | 34 | 0.007 | 179 | 19.0 |
Gap junction | 20 | 0.007 | 88 | 22.8 |
Prostate cancer | 20 | 0.007 | 88 | 22.8 |
Adrenergic signaling in cardiomyocytes | 29 | 0.007 | 146 | 19.9 |
cGMP-PKG signaling pathway | 32 | 0.007 | 166 | 19.2 |
Axon guidance | 26 | 0.007 | 127 | 20.5 |
Endocytosis | 45 | 0.008 | 258 | 17.4 |
miR-138-5p | ||||
Insulin secretion | 26 | 5.56 × 10−7 | 85 | 30.6 |
cAMP signaling pathway | 38 | 1.59 × 10−4 | 198 | 19.1 |
Wnt signaling pathway | 29 | 2.43 × 10−4 | 138 | 21.0 |
Thyroid hormone signaling pathway | 25 | 3.75 × 10−4 | 114 | 21.9 |
Acute myeloid leukemia | 15 | 0.001 | 56 | 26.8 |
Pathways in cancer | 60 | 0.001 | 393 | 15.3 |
Adrenergic signaling in cardiomyocytes | 27 | 0.003 | 146 | 18.5 |
Endocrine and other factor-regulated calcium reabsorption | 12 | 0.004 | 45 | 26.7 |
Salivary secretion | 18 | 0.005 | 86 | 20.9 |
Axon guidance | 23 | 0.008 | 127 | 18.1 |
miR-627 | ||||
Regulation of autophagy | 9 | 1.13 × 10−5 | 39 | 23.1 |
PI3K-Akt signaling pathway | 25 | 4.42 × 10−5 | 345 | 7.2 |
RIG-I-like receptor signaling pathway | 10 | 1.56 × 10−4 | 70 | 14.3 |
Herpes simplex infection | 16 | 2.25 × 10−4 | 183 | 8.7 |
Cytokine-cytokine receptor interaction | 18 | 3.00 × 10−4 | 230 | 7.8 |
Cytosolic DNA-sensing pathway | 9 | 4.41 × 10−4 | 64 | 14.1 |
Autoimmune thyroid disease | 8 | 6.39 × 10−4 | 52 | 15.4 |
Natural killer cell mediated cytotoxicity | 11 | 0.003 | 122 | 9.0 |
Hepatitis B | 12 | 0.003 | 145 | 8.3 |
Toll-like receptor signaling pathway | 10 | 0.003 | 106 | 9.4 |
miR-576-3p | ||||
Thyroid hormone signaling pathway | 13 | 6.02 × 10−4 | 114 | 11.4 |
Wnt signaling pathway | 14 | 0.001 | 138 | 10.1 |
Signaling pathways regulating pluripotency of stem cells | 12 | 0.010 | 140 | 8.6 |
AMPK signaling pathway | 11 | 0.010 | 122 | 9.0 |
Thyroid hormone synthesis | 8 | 0.011 | 70 | 11.4 |
TNF signaling pathway | 10 | 0.012 | 106 | 9.4 |
Neurotrophin signaling pathway | 10 | 0.024 | 120 | 8.3 |
Sphingolipid signaling pathway | 10 | 0.024 | 120 | 8.3 |
Peroxisome | 8 | 0.026 | 83 | 9.6 |
Adrenergic signaling in cardiomyocytes | 11 | 0.032 | 146 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enwald, M.; Lehtimäki, T.; Mishra, P.P.; Mononen, N.; Murtola, T.J.; Raitoharju, E. Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors. Cancers 2021, 13, 3537. https://doi.org/10.3390/cancers13143537
Enwald M, Lehtimäki T, Mishra PP, Mononen N, Murtola TJ, Raitoharju E. Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors. Cancers. 2021; 13(14):3537. https://doi.org/10.3390/cancers13143537
Chicago/Turabian StyleEnwald, Max, Terho Lehtimäki, Pashupati P. Mishra, Nina Mononen, Teemu J. Murtola, and Emma Raitoharju. 2021. "Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors" Cancers 13, no. 14: 3537. https://doi.org/10.3390/cancers13143537
APA StyleEnwald, M., Lehtimäki, T., Mishra, P. P., Mononen, N., Murtola, T. J., & Raitoharju, E. (2021). Human Prostate Tissue MicroRNAs and Their Predicted Target Pathways Linked to Prostate Cancer Risk Factors. Cancers, 13(14), 3537. https://doi.org/10.3390/cancers13143537