Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Modeling the Benefit of Proton Therapy for Hodgkin Lymphoma Irradiation
2.1. Reduction of Secondary Neoplasms
2.2. Reduction of Radiation-Induced Cardiotoxicity
2.3. Considerations on Other Organs-at-Risk
3. Current Evidence for Hodgkin Lymphoma Proton Therapy
3.1. Clinical Tolerance and Efficacy Data
Study | Size | Situation | Dose (Gy) | Follow-Up | Efficacy | Tolerance |
---|---|---|---|---|---|---|
Hoppe (2014) [35] | 15 pts. | First line | 15–25.5 (children) 30.6–39.6 (adults) | 37 months (26–55) | 3-year RFS: 93% 3-year EFS: 87% | No grade 3–4 toxicity (acute or late) |
Hoppe (2017) [36] | 138 pts. | First line | 21 (15–36) (children). 30.6 (20–45) (adults) | 32 months (5–92) | 3-year RFS: 92% (96% for adults; 87% for children). | No grade 3–4 toxicity (acute or late) |
Nanda (2017) [37] | 50 pts. (+9 NHL pts.) | First line and r/r disease | 30.6 (15–45) | 24.1 months (6–82) | NA | Acute grade 2 pulmonary toxicity: cough (3 pts) ± pneumonitis (1 pt) ± dyspnea (2 pts). No grade 3–4 toxicity (acute or late) |
Ntentas (2019) [38] | 21 pts. | First line | 30 | 24 months (13–38) | No recurrence. No disease progression | No grade 3–4 toxicity (acute or late) |
Tseng (2021) [39] | 56 pts. (+29 NHL pts.) | r/r disease | 36 (20–45) | 25.6 months (0.9–113.4) | 2-year PFS: 73%. 2-year OS: 91% | 12.8% of grade 2 pneumonitis. No grade 3–4 toxicity (acute or late) |
Bates (2019) [41] | 5 pts. | First line | 36 (30.6–39.6) | 60 months | NA | No grade 3 (acute or late). No late cardiac symptomatology. 5-year LVEF: 60% (52%–61%). |
O’steen (2019) [42] | 15 pts. | First line | 30.6 (21–39.6) | 12 months | NA | 1-year DLCO: 95.7%. 1-year Forced vital capacity: 98.2%. 1-year mean forced expiratory volume (1 s): 97%. |
3.2. Radiation Exposure to Organs-at-Risk
3.3. The Need for a Longer Follow-Up
4. Randomized Controlled Trials for Hodgkin Lymphoma Proton Therapy: Challenges and Pitfalls
4.1. Epidemiological Considerations
4.2. Defining Relevant Clinical Endpoints
4.3. The Ethical Aspects of RCTs for Proton Therapy
4.4. Does Evidenced-Based HL Proton Therapy Need Randomized Trials?
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CT | Compute tomography |
DIBH | Deep inspiration breath-hold |
EAR | Excess absolute risk |
FB | Free-breathing |
HL | Hodgkin lymphoma |
IMPT | Intensity modulated proton therapy |
IMRT | Intensity modulated radiation therapy |
INRT | Involved-node radiation therapy |
ISRT | Involved-site radiation therapy |
NTCP | Normal tissue complication probability |
OAR | Organ-at-risk |
RBE | Relative biological effectiveness |
RR | Relative risk |
RT | Radiation therapy |
VMAT | Volumetric modulated arc therapy |
References
- Townsend, W.; Linch, D. Hodgkin’s Lymphoma in Adults. Lancet 2012, 380, 836–847. [Google Scholar] [CrossRef] [Green Version]
- Cuccaro, A.; Bartolomei, F.; Cupelli, E.; Galli, E.; Giachelia, M.; Hohaus, S. Prognostic Factors in Hodgkin Lymphoma. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014053. [Google Scholar] [CrossRef]
- André, M.P.E.; Girinsky, T.; Federico, M.; Reman, O.; Fortpied, C.; Gotti, M.; Casasnovas, O.; Brice, P.; van der Maazen, R.; Re, A.; et al. Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J. Clin. Oncol. 2017, 35, 1786–1794. [Google Scholar] [CrossRef]
- Holtzman, A.L.; Stahl, J.M.; Zhu, S.; Morris, C.G.; Hoppe, B.S.; Kirwan, J.E.; Mendenhall, N.P. Does the Incidence of Treatment-Related Toxicity Plateau After Radiation Therapy: The Long-Term Impact of Integral Dose in Hodgkin’s Lymphoma Survivors. Adv. Radiat. Oncol. 2019, 4, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Wirth, A.; Mikhaeel, N.G.; Aleman, B.M.P.; Pinnix, C.C.; Constine, L.S.; Ricardi, U.; Illidge, T.M.; Eich, H.T.; Hoppe, B.S.; Dabaja, B.; et al. Involved Site Radiation Therapy in Adult Lymphomas: An Overview of International Lymphoma Radiation Oncology Group Guidelines. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 909–933. [Google Scholar] [CrossRef] [PubMed]
- Besson, N.; Pernin, V.; Zefkili, S.; Kirova, Y.M. Evolution of Radiation Techniques in the Treatment of Mediastinal Lymphoma: From 3D Conformal Radiotherapy (3DCRT) to Intensity-Modulated RT (IMRT) Using Helical Tomotherapy (HT): A Single-Centre Experience and Review of the Literature. Br. J. Radiol. 2016, 89, 20150409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, B.S.; Flampouri, S.; Su, Z.; Latif, N.; Dang, N.H.; Lynch, J.; Joyce, M.; Sandler, E.; Li, Z.; Mendenhall, N.P. Effective Dose Reduction to Cardiac Structures Using Protons Compared with 3DCRT and IMRT in Mediastinal Hodgkin Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 449–455. [Google Scholar] [CrossRef]
- Hall, E.J.; Wuu, C.-S. Radiation-Induced Second Cancers: The Impact of 3D-CRT and IMRT. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 83–88. [Google Scholar] [CrossRef]
- Filippi, A.R.; Vanoni, V.; Meduri, B.; Cozzi, L.; Scorsetti, M.; Ricardi, U.; Lohr, F. Intensity Modulated Radiation Therapy and Second Cancer Risk in Adults. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Schaapveld, M.; Aleman, B.M.P.; van Eggermond, A.M.; Janus, C.P.M.; Krol, A.D.G.; van der Maazen, R.W.M.; Roesink, J.; Raemaekers, J.M.M.; de Boer, J.P.; Zijlstra, J.M.; et al. Second Cancer Risk Up to 40 Years after Treatment for Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 373, 2499–2511. [Google Scholar] [CrossRef] [PubMed]
- Facoetti, A.; Barcellini, A.; Valvo, F.; Pullia, M. The Role of Particle Therapy in the Risk of Radio-Induced Second Tumors: A Review of the Literature. Anticancer Res. 2019, 39, 4613–4617. [Google Scholar] [CrossRef] [PubMed]
- Schneider, U.; Sumila, M.; Robotka, J. Site-Specific Dose-Response Relationships for Cancer Induction from the Combined Japanese A-Bomb and Hodgkin Cohorts for Doses Relevant to Radiotherapy. Theor. Biol. Med. Model. 2011, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Sachs, R.K.; Brenner, D.J. Solid Tumor Risks after High Doses of Ionizing Radiation. Proc. Natl. Acad. Sci. USA 2005, 102, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cella, L.; Conson, M.; Pressello, M.C.; Molinelli, S.; Schneider, U.; Donato, V.; Orecchia, R.; Salvatore, M.; Pacelli, R. Hodgkin’s Lymphoma Emerging Radiation Treatment Techniques: Trade-Offs between Late Radio-Induced Toxicities and Secondary Malignant Neoplasms. Radiat. Oncol. 2013, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Voong, K.R.; McSpadden, K.; Pinnix, C.C.; Shihadeh, F.; Reed, V.; Salehpour, M.R.; Arzu, I.; Wang, H.; Hodgson, D.; Garcia, J.; et al. Dosimetric Advantages of a “Butterfly” Technique for Intensity-Modulated Radiation Therapy for Young Female Patients with Mediastinal Hodgkin’s Lymphoma. Radiat. Oncol. 2014, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- König, L.; Haering, P.; Lang, C.; Splinter, M.; von Nettelbladt, B.; Weykamp, F.; Hoegen, P.; Lischalk, J.W.; Herfarth, K.; Debus, J.; et al. Secondary Malignancy Risk Following Proton vs. X-ray Treatment of Mediastinal Malignant Lymphoma: A Comparative Modeling Study of Thoracic Organ-Specific Cancer Risk. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Scorsetti, M.; Cozzi, L.; Navarria, P.; Fogliata, A.; Rossi, A.; Franceschini, D.; De Rose, F.; Franzese, C.; Carlo-Stella, C.; Santoro, A. Intensity Modulated Proton Therapy Compared to Volumetric Modulated Arc Therapy in the Irradiation of Young Female Patients with Hodgkin’s Lymphoma. Assessment of Risk of Toxicity and Secondary Cancer Induction. Radiat. Oncol. 2020, 15, 12. [Google Scholar] [CrossRef]
- Timlin, C.; Loken, J.; Kruse, J.; Miller, R.; Schneider, U. Comparing Second Cancer Risk for Multiple Radiotherapy Modalities in Survivors of Hodgkin Lymphoma. Br. J. Radiol. 2021, 94, 20200354. [Google Scholar] [CrossRef]
- Filippi, A.R.; Meregalli, S.; DI Russo, A.; Levis, M.; Ciammella, P.; Buglione, M.; Guerini, A.E.; De Marco, G.; De Sanctis, V.; Vagge, S.; et al. Fondazione Italiana Linfomi (FIL) Expert Consensus on the Use of Intensity-Modulated and Image-Guided Radiotherapy for Hodgkin’s Lymphoma Involving the Mediastinum. Radiat. Oncol. 2020, 15, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, A.R.; Ragona, R.; Piva, C.; Scafa, D.; Fiandra, C.; Fusella, M.; Giglioli, F.R.; Lohr, F.; Ricardi, U. Optimized Volumetric Modulated Arc Therapy versus 3D-CRT for Early Stage Mediastinal Hodgkin Lymphoma without Axillary Involvement: A Comparison of Second Cancers and Heart Disease Risk. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 161–168. [Google Scholar] [CrossRef]
- van Nimwegen, F.A.; Schaapveld, M.; Janus, C.P.M.; Krol, A.D.G.; Petersen, E.J.; Raemaekers, J.M.M.; Kok, W.E.M.; Aleman, B.M.P.; van Leeuwen, F.E. Cardiovascular Disease after Hodgkin Lymphoma Treatment: 40-Year Disease Risk. JAMA Intern. Med. 2015, 175, 1007–1017. [Google Scholar] [CrossRef]
- Gagliardi, G.; Constine, L.S.; Moiseenko, V.; Correa, C.; Pierce, L.J.; Allen, A.M.; Marks, L.B. Radiation Dose-Volume Effects in the Heart. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S77–S85. [Google Scholar] [CrossRef]
- Cella, L.; Liuzzi, R.; Conson, M.; D’Avino, V.; Salvatore, M.; Pacelli, R. Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.S.; Bates, J.E.; Mendenhall, N.P.; Morris, C.G.; Louis, D.; Ho, M.W.; Hoppe, R.T.; Shaikh, M.; Li, Z.; Flampouri, S. The Meaningless Meaning of Mean Heart Dose in Mediastinal Lymphoma in the Modern Radiation Therapy Era. Pract. Radiat. Oncol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Taparra, K.; Lester, S.C.; Harmsen, W.S.; Petersen, M.; Funk, R.K.; Blanchard, M.J.; Young, P.; Herrmann, J.; Hunzeker, A.; Schultz, H.; et al. Reducing Heart Dose with Protons and Cardiac Substructure Sparing for Mediastinal Lymphoma Treatment. Int. J. Part. Ther. 2020, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Toltz, A.; Shin, N.; Mitrou, E.; Laude, C.; Freeman, C.R.; Seuntjens, J.; Parker, W.; Roberge, D. Late Radiation Toxicity in Hodgkin Lymphoma Patients: Proton Therapy’s Potential. J. Appl. Clin. Med. Phys. 2015, 16, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rechner, L.A.; Maraldo, M.V.; Vogelius, I.R.; Zhu, X.R.; Dabaja, B.S.; Brodin, N.P.; Petersen, P.M.; Specht, L.; Aznar, M.C. Life Years Lost Attributable to Late Effects after Radiotherapy for Early Stage Hodgkin Lymphoma: The Impact of Proton Therapy and/or Deep Inspiration Breath Hold. Radiother. Oncol. 2017, 125, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Fox, A.M.; Dosoretz, A.P.; Mauch, P.M.; Chen, Y.-H.; Fisher, D.C.; LaCasce, A.S.; Freedman, A.S.; Silver, B.; Ng, A.K. Predictive Factors for Radiation Pneumonitis in Hodgkin Lymphoma Patients Receiving Combined-Modality Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 277–283. [Google Scholar] [CrossRef]
- Moiseenko, V.; Craig, T.; Bezjak, A.; Van Dyk, J. Dose-Volume Analysis of Lung Complications in the Radiation Treatment of Malignant Thymoma: A Retrospective Review. Radiother. Oncol. 2003, 67, 265–274. [Google Scholar] [CrossRef]
- Seppenwoolde, Y.; Lebesque, J.V.; de Jaeger, K.; Belderbos, J.S.A.; Boersma, L.J.; Schilstra, C.; Henning, G.T.; Hayman, J.A.; Martel, M.K.; Ten Haken, R.K. Comparing Different NTCP Models That Predict the Incidence of Radiation Pneumonitis. Normal Tissue Complication Probability. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 724–735. [Google Scholar] [CrossRef]
- Chapet, O.; Kong, F.-M.; Lee, J.S.; Hayman, J.A.; Ten Haken, R.K. Normal Tissue Complication Probability Modeling for Acute Esophagitis in Patients Treated with Conformal Radiation Therapy for Non-Small Cell Lung Cancer. Radiother. Oncol. 2005, 77, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, M.; Sun, J.; Jiang, S.; Wang, L.; Wang, X.; Sahoo, N.; Gunn, G.B.; Frank, S.J.; Nguyen, Q.-N.; et al. Lyman-Kutcher-Burman Normal Tissue Complication Probability Modeling for Radiation-Induced Esophagitis in Non-Small Cell Lung Cancer Patients Receiving Proton Radiotherapy. Radiother. Oncol. 2020, 146, 200–204. [Google Scholar] [CrossRef]
- Palma, G.; Monti, S.; Conson, M.; Xu, T.; Hahn, S.; Durante, M.; Mohan, R.; Liao, Z.; Cella, L. NTCP Models for Severe Radiation Induced Dermatitis After IMRT or Proton Therapy for Thoracic Cancer Patients. Front. Oncol. 2020, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Fellin, F.; Iacco, M.; D’Avino, V.; Tommasino, F.; Farace, P.; Palma, G.; Conson, M.; Giacomelli, I.; Zucchetti, C.; Falcinelli, L.; et al. Potential Skin Morbidity Reduction with Intensity-Modulated Proton Therapy for Breast Cancer with Nodal Involvement. Acta Oncol. 2019, 58, 934–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, B.S.; Flampouri, S.; Zaiden, R.; Slayton, W.; Sandler, E.; Ozdemir, S.; Dang, N.H.; Lynch, J.W.; Li, Z.; Morris, C.G.; et al. Involved-Node Proton Therapy in Combined Modality Therapy for Hodgkin Lymphoma: Results of a Phase 2 Study. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1053–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoppe, B.S.; Hill-Kayser, C.E.; Tseng, Y.D.; Flampouri, S.; Elmongy, H.M.; Cahlon, O.; Mendenhall, N.P.; Maity, A.; McGee, L.A.; Plastaras, J.P. Consolidative Proton Therapy after Chemotherapy for Patients with Hodgkin Lymphoma. Ann. Oncol. 2017, 28, 2179–2184. [Google Scholar] [CrossRef]
- Nanda, R.; Flampouri, S.; Mendenhall, N.P.; Indelicato, D.J.; Jones, L.M.; Seeram, V.K.; Hoppe, B.S. Pulmonary Toxicity Following Proton Therapy for Thoracic Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 494–497. [Google Scholar] [CrossRef]
- Ntentas, G.; Dedeckova, K.; Andrlik, M.; Aznar, M.C.; George, B.; Kubeš, J.; Darby, S.C.; Cutter, D.J. Clinical Intensity Modulated Proton Therapy for Hodgkin Lymphoma: Which Patients Benefit the Most? Pract. Radiat. Oncol. 2019, 9, 179–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.D.; Hoppe, B.S.; Dedeckova, K.; Patel, C.G.; Hill-Kayser, C.E.; Miller, D.M.; Maity, A.; Mendenhall, N.P.; Mailhot Vega, R.B.; Yock, T.I.; et al. Risk of Pneumonitis and Outcomes After Mediastinal Proton Therapy for Relapsed/Refractory Lymphoma: A PTCOG and PCG Collaboration. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 220–230. [Google Scholar] [CrossRef]
- Pinnix, C.C.; Smith, G.L.; Milgrom, S.; Osborne, E.M.; Reddy, J.P.; Akhtari, M.; Reed, V.; Arzu, I.; Allen, P.K.; Wogan, C.F.; et al. Predictors of Radiation Pneumonitis in Patients Receiving Intensity Modulated Radiation Therapy for Hodgkin and Non-Hodgkin Lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.E.; Klassen, C.; Ozdemir, S.; Flampouri, S.; Percy, R.; Mendenhall, N.P.; Hoppe, B.S. Cardiac MRI for Detecting Early Cardiac Toxicity after Proton Therapy for Hodgkin Lymphoma. Int. J. Part. Ther. 2019, 5, 41–44. [Google Scholar] [CrossRef] [Green Version]
- O’steen, L.; Bellardini, J.; Cury, J.; Jones, L.; Seeram, V.K.; Mendenhall, N.P.; Hoppe, B.S. Pulmonary Function after Proton Therapy for Hodgkin Lymphoma. Int. J. Part. Ther. 2019, 5, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.D.; Cutter, D.J.; Plastaras, J.P.; Parikh, R.R.; Cahlon, O.; Chuong, M.D.; Dedeckova, K.; Khan, M.K.; Lin, S.-Y.; McGee, L.A.; et al. Evidence-Based Review on the Use of Proton Therapy in Lymphoma From the Particle Therapy Cooperative Group (PTCOG) Lymphoma Subcommittee. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 825–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabaja, B.S.; Hoppe, B.S.; Plastaras, J.P.; Newhauser, W.; Rosolova, K.; Flampouri, S.; Mohan, R.; Mikhaeel, N.G.; Kirova, Y.; Specht, L.; et al. Proton Therapy for Adults with Mediastinal Lymphomas: The International Lymphoma Radiation Oncology Group Guidelines. Blood 2018, 132, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Schuemann, J.; Giantsoudi, D.; Grassberger, C.; Moteabbed, M.; Min, C.H.; Paganetti, H. Assessing the Clinical Impact of Approximations in Analytical Dose Calculations for Proton Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 1157–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitti, E.T.; Parsons, J.L. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers 2019, 11, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paganetti, H.; Giantsoudi, D. Relative Biological Effectiveness Uncertainties and Implications for Beam Arrangements and Dose Constraints in Proton Therapy. Semin. Radiat. Oncol. 2018, 28, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ilicic, K.; Combs, S.E.; Schmid, T.E. New Insights in the Relative Radiobiological Effectiveness of Proton Irradiation. Radiat. Oncol. 2018, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Bekelman, J.E.; Lu, H.; Pugh, S.; Baker, K.; Berg, C.D.; de Gonzalez, A.B.; Braunstein, L.Z.; Bosch, W.; Chauhan, C.; Ellenberg, S.; et al. Pragmatic Randomised Clinical Trial of Proton versus Photon Therapy for Patients with Non-Metastatic Breast Cancer: The Radiotherapy Comparative Effectiveness (RadComp) Consortium Trial Protocol. BMJ Open 2019, 9, e025556. [Google Scholar] [CrossRef]
- Cancer Research UK. Hodgkin Lymphoma. Available online: https://www.cancerresearchuk.org/about-cancer/hodgkin-lymphoma (accessed on 18 June 2021).
- Filly, R.; Bland, N.; Castellino, R.A. Radiographic Distribution of Intrathoracic Disease in Previously Untreated Patients with Hodgkin’s Disease and Non-Hodgkin’s Lymphoma. Radiology 1976, 120, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Hahn, E.; Jiang, H.; Ng, A.; Bashir, S.; Ahmed, S.; Tsang, R.; Sun, A.; Gospodarowicz, M.; Hodgson, D. Late Cardiac Toxicity After Mediastinal Radiation Therapy for Hodgkin Lymphoma: Contributions of Coronary Artery and Whole Heart Dose-Volume Variables to Risk Prediction. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1116–1123. [Google Scholar] [CrossRef]
- van Leeuwen, F.E.; Ng, A.K. Long-Term Risk of Second Malignancy and Cardiovascular Disease after Hodgkin Lymphoma Treatment. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Levis, M.; Filippi, A.R.; Fiandra, C.; De Luca, V.; Bartoncini, S.; Vella, D.; Ragona, R.; Ricardi, U. Inclusion of Heart Substructures in the Optimization Process of Volumetric Modulated Arc Therapy Techniques May Reduce the Risk of Heart Disease in Hodgkin’s Lymphoma Patients. Radiother. Oncol. 2019, 138, 52–58. [Google Scholar] [CrossRef]
- Little, M.P.; Wakeford, R.; Tawn, E.J.; Bouffler, S.D.; Berrington de Gonzalez, A. Risks Associated with Low Doses and Low Dose Rates of Ionizing Radiation: Why Linearity May Be (Almost) the Best We Can Do. Radiology 2009, 251, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alongi, F.; Giaj-Levra, N.; Fiorentino, A.; Mazzola, R.; Fersino, S.; Ricchetti, F.; Ruggieri, R. Low-Dose Bath with Volumetric Modulated Arc Therapy in Breast Cancer: “Much Ado about Nothing?”. Tumori 2016, 102, 335–336. [Google Scholar] [CrossRef]
- Glatstein, E.; Glick, J.; Kaiser, L.; Hahn, S.M. Should Randomized Clinical Trials Be Required for Proton Radiotherapy? An Alternative View. J. Clin. Oncol. 2008, 26, 2438–2439. [Google Scholar] [CrossRef]
- Goitein, M.; Cox, J.D. Should Randomized Clinical Trials Be Required for Proton Radiotherapy? J. Clin. Oncol. 2008, 26, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.C.; Mitra, N.; Harton, J.G.; Xiao, Y.; Wojcieszynski, A.P.; Gabriel, P.E.; Zhong, H.; Geng, H.; Doucette, A.; Wei, J.; et al. Comparative Effectiveness of Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer. JAMA Oncol. 2020, 6, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Bekelman, J.E.; Denicoff, A.; Buchsbaum, J. Randomized Trials of Proton Therapy: Why They Are at Risk, Proposed Solutions, and Implications for Evaluating Advanced Technologies to Diagnose and Treat Cancer. J. Clin. Oncol. 2018, 36, 2461–2464. [Google Scholar] [CrossRef]
- Schippers, J.M.; Lomax, A.; Garonna, A.; Parodi, K. Can Technological Improvements Reduce the Cost of Proton Radiation Therapy? Semin. Radiat. Oncol. 2018, 28, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Barton, S. Which Clinical Studies Provide the Best Evidence? The Best RCT Still Trumps the Best Observational Study. BMJ 2000, 321, 255–256. [Google Scholar] [CrossRef]
- Loap, P.; Goudjil, F.; Dendale, R.; Kirova, Y. Clinical and Technical Considerations for Mediastinal Hodgkin Lymphoma Protontherapy Based on a Single-Center Early Experience. Cancer Radiother. 2021, S1278–S3218. [Google Scholar] [CrossRef]
- Engert, A.; Haverkamp, H.; Kobe, C.; Markova, J.; Renner, C.; Ho, A.; Zijlstra, J.; Král, Z.; Fuchs, M.; Hallek, M.; et al. Reduced-Intensity Chemotherapy and PET-Guided Radiotherapy in Patients with Advanced Stage Hodgkin’s Lymphoma (HD15 Trial): A Randomised, Open-Label, Phase 3 Non-Inferiority Trial. Lancet 2012, 379, 1791–1799. [Google Scholar] [CrossRef]
- Kumar, A.; Casulo, C.; Advani, R.H.; Budde, E.; Barr, P.M.; Batlevi, C.L.; Caron, P.; Constine, L.S.; Dandapani, S.V.; Drill, E.; et al. Brentuximab Vedotin Combined with Chemotherapy in Patients With Newly Diagnosed Early-Stage, Unfavorable-Risk Hodgkin Lymphoma. J. Clin. Oncol. 2021, 39. [Google Scholar] [CrossRef] [PubMed]
- Gallamini, A.; Rossi, A.; Patti, C.; Picardi, M.; Romano, A.; Cantonetti, M.; Oppi, S.; Viviani, S.; Bolis, S.; Trentin, L.; et al. Consolidation Radiotherapy Could Be Safely Omitted in Advanced Hodgkin Lymphoma with Large Nodal Mass in Complete Metabolic Response After ABVD: Final Analysis of the Randomized GITIL/FIL HD0607 Trial. J. Clin. Oncol. 2020, 38, 3905–3913. [Google Scholar] [CrossRef]
- Kirova, Y.M.; Chargari, C. Applications of New Irradiation Modalities in Patients with Lymphoma: Promises and Uncertainties. World J. Radiol. 2011, 3, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Fiandra, C.; Filippi, A.R.; Catuzzo, P.; Botticella, A.; Ciammella, P.; Franco, P.; Borca, V.C.; Ragona, R.; Tofani, S.; Ricardi, U. Different IMRT Solutions vs. 3D-Conformal Radiotherapy in Early Stage Hodgkin’s Lymphoma: Dosimetric Comparison and Clinical Considerations. Radiat. Oncol. 2012, 7, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Size | Average Mean Dose (Gy) | |||||||
---|---|---|---|---|---|---|---|---|---|
Heart | LAD | LV | RV | Lung | Breast | Thyroid | Esophagus | ||
Hoppe (2014) [35] | 15 pts. | 16.5 | 11.6 | 6.3 | 19.3 | 20.3 | |||
Bates (2019) [41] | 5 pts. | 10.6 | 16.4 | 6.5 | 11.7 | ||||
Ntentas (2019) [38] | 21 pts. | 2.0 | 5.3 | 1.6 | 24.1 | 14.2 | |||
Nanda (2017) [37] | 50 pts. (+9 NHL pts.) | 7.2 | |||||||
O’steen (2019) [42] | 15 pts. | 8.0 | |||||||
Tseng (2021) [39] | 56 pts. (+29 NHL pts.) | 7.7 | 7.3 | ||||||
Pooled results | 9.1 | 2.9 | 7.3 | 3.6 | 22.1 | 16.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loap, P.; Mirandola, A.; De Marzi, L.; Dendale, R.; Iannalfi, A.; Vitolo, V.; Barcellini, A.; Filippi, A.R.; Jereczek-Fossa, B.A.; Kirova, Y.; et al. Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence. Cancers 2021, 13, 3746. https://doi.org/10.3390/cancers13153746
Loap P, Mirandola A, De Marzi L, Dendale R, Iannalfi A, Vitolo V, Barcellini A, Filippi AR, Jereczek-Fossa BA, Kirova Y, et al. Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence. Cancers. 2021; 13(15):3746. https://doi.org/10.3390/cancers13153746
Chicago/Turabian StyleLoap, Pierre, Alfredo Mirandola, Ludovic De Marzi, Remi Dendale, Alberto Iannalfi, Viviana Vitolo, Amelia Barcellini, Andrea Riccardo Filippi, Barbara Alicja Jereczek-Fossa, Youlia Kirova, and et al. 2021. "Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence" Cancers 13, no. 15: 3746. https://doi.org/10.3390/cancers13153746
APA StyleLoap, P., Mirandola, A., De Marzi, L., Dendale, R., Iannalfi, A., Vitolo, V., Barcellini, A., Filippi, A. R., Jereczek-Fossa, B. A., Kirova, Y., & Orlandi, E. (2021). Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to Evidence. Cancers, 13(15), 3746. https://doi.org/10.3390/cancers13153746