HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Substances
2.2. HDAC mRNA Expression Analysis
2.3. Cytotoxicity of HDAC Inhibitors
2.4. HDAC 1/2 Activity
2.5. Western Blot
2.6. Immunohistochemistry of HDAC 1/2 in BTC Cell Blocks and FFPE Samples
2.7. Cytotoxicity of Combined Romidepsin and Cisplatin Treatment
2.8. Statistics
3. Results
3.1. HDACs Are Expressed in BTC Cells
3.2. BTC Cells Show Different Sensitivity towards HDAC Inhibitors
3.3. BTC Cells Show Heterogeneous HDAC 1/2 Activity
3.4. Romidepsin Causes Apoptosis and Secondary Necrosis in BTC Cells
3.5. Romidepsin Reduces HDAC Activity in BTC Cells
3.6. Romidepsin Augments the Toxicity of the Standard Chemotherapeutic Cisplatin in KKU-055 Cells
3.7. HDAC 1 and 2 (HDAC 1/2) Are Expressed in BTC Patient Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.W.; Furuse, J.; Jitlal, M.; Beare, S.; Mizuno, N.; Wasan, H.; Bridgewater, J.; Okusaka, T. Cisplatin and gemcitabine for advanced biliary tract cancer: A meta-analysis of two randomised trials. Ann. Oncol. 2014, 25, 391–398. [Google Scholar] [CrossRef]
- Barneda-Zahonero, B.; Parra, M. Histone deacetylases and cancer. Mol. Oncol. 2012, 6, 579–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef] [PubMed]
- Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 1999, 401, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Tang, S.; Li, X. Sirtuins in Metabolic and Epigenetic Regulation of Stem Cells. Trends Endocrinol. Metab. 2019, 30, 177–188. [Google Scholar] [CrossRef]
- Mariadason, J.M.; Corner, G.A.; Augenlicht, L.H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000, 60, 4561–4572. [Google Scholar]
- Zhao, Y.; Lu, S.; Wu, L.; Chai, G.; Wang, H.; Chen, Y.; Sun, J.; Yu, Y.; Zhou, W.; Zheng, Q.; et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1). Mol. Cell. Biol. 2006, 26, 2782–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, H.; Dessain, S.K.; Ng Eaton, E.; Imai, S.I.; Frye, R.A.; Pandita, T.K.; Guarente, L.; Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001, 107, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 2007, 1, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Petrich, A.; Nabhan, C. Use of class I histone deacetylase inhibitor romidepsin in combination regimens. Leuk. Lymphoma 2016, 57, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, N.; Sharma, A.R.; Baylin, S.B. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annu. Rev. Med. 2016, 67, 73–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertino, E.M.; Otterson, G.A. Romidepsin: A novel histone deacetylase inhibitor for cancer. Expert Opin. Investig. Drugs 2011, 20, 1151–1158. [Google Scholar] [CrossRef]
- Furumai, R.; Matsuyama, A.; Kobashi, N.; Lee, K.H.; Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.; Nishino, N.; Yoshida, M.; et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002, 62, 4916–4921. [Google Scholar] [PubMed]
- Clarke, K.; Young, C.; Liberante, F.; McMullin, M.F.; Thompson, A.; Mills, K. The histone deacetylase inhibitor Romidepsin induces as a cascade of differential gene expression and altered histone H3K9 marks in myeloid leukaemia cells. Oncotarget 2019, 10, 3462–3471. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Kim, Y.B.; Terano, H.; Yoshida, M.; Horinouchi, S. FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp. Cell Res. 1998, 241, 126–133. [Google Scholar] [CrossRef]
- Morine, Y.; Shimada, M.; Iwahashi, S.; Utsunomiya, T.; Imura, S.; Ikemoto, T.; Mori, H.; Hanaoka, J.; Miyake, H. Role of histone deacetylase expression in intrahepatic cholangiocarcinoma. Surgery 2012, 151, 412–419. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, M.; Dorfman, R.G.; Li, Y.; Zhao, Z.; Pan, Y.; Zhou, Q.; Huang, S.; Zhao, S.; Yao, Y.; et al. Histone deacetylase 3 overexpression in human cholangiocarcinoma and promotion of cell growth via apoptosis inhibition. Cell Death Dis. 2017, 8, e2856. [Google Scholar] [CrossRef]
- Du, X.; Zhao, H.; Zang, L.; Song, N.; Yang, T.; Dong, R.; Yin, J.; Wang, C.; Lu, J. Overexpression of histone deacetylase 2 predicts unfavorable prognosis in human gallbladder carcinoma. Pathol. Oncol. Res. 2013, 19, 397–403. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, Y.; Dorfman, R.G.; Zou, T.; Pan, Y.; Li, Y.; Wang, Y.; Zhou, Q.; Zhou, L.; Kong, B.; et al. Down-regulation of HDAC3 inhibits growth of cholangiocarcinoma by inducing apoptosis. Oncotarget 2017, 8, 99402–99413. [Google Scholar] [CrossRef] [Green Version]
- Baradari, V.; Hopfner, M.; Huether, A.; Schuppan, D.; Scherubl, H. Histone deacetylase inhibitor MS-275 alone or combined with bortezomib or sorafenib exhibits strong antiproliferative action in human cholangiocarcinoma cells. World J. Gastroenterol. 2007, 13, 4458–4466. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, F.; Pan, L.; Yang, Z.; Shu, Y.; Lv, W.; Dong, P.; Gong, W. BRD4 inhibitor and histone deacetylase inhibitor synergistically inhibit the proliferation of gallbladder cancer in vitro and in vivo. Cancer Sci. 2019, 110, 2493–2506. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.N.; Wang, X.; Zou, S.Q. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines. World J. Gastroenterol. 2008, 14, 2578–2581. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kobayashi, S.; Yamada, D.; Nagano, H.; Tomokuni, A.; Tomimaru, Y.; Noda, T.; Gotoh, K.; Asaoka, T.; Wada, H.; et al. A Histone Deacetylase Inhibitor Suppresses Epithelial-Mesenchymal Transition and Attenuates Chemoresistance in Biliary Tract Cancer. PLoS ONE 2016, 11, e0145985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgar, M.A.; Senawong, G.; Sripa, B.; Senawong, T. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines. Int. J. Oncol. 2016, 48, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Lee, E.J.; Ji, M.; Park, S.M. HDAC inhibitors, trichostatin A and valproic acid, increase Ecadherin and vimentin expression but inhibit migration and invasion of cholangiocarcinoma cells. Oncol. Rep. 2018, 40, 346–354. [Google Scholar] [CrossRef]
- Zach, S.; Grün, J.; Bauer, A.T.; Pilarsky, C.; Grützmann, R.; Weng, H.; Dooley, S.; Wilhelm, T.J.; Gaiser, T.; Rückert, F. CCC-5, a new primary cholangiocellular cell line. Int. J. Clin. Exp. Pathol. 2017, 10, 2451–2460. [Google Scholar]
- Scherdin, G.; Garbrecht, M.; Klouche, M. In vitro interaction of á-difluoromethylornithine (DFMO) and human recombinant interferon-a (rIFN-a) on human cancer cell lines. Immunobiology 1987, 175, 1–143. [Google Scholar]
- Saijyo, S.; Kudo, T.; Suzuki, M.; Katayose, Y.; Shinoda, M.; Muto, T.; Fukuhara, K.; Suzuki, T.; Matsuno, S. Establishment of a new extrahepatic bile duct carcinoma cell line, TFK-1. Tohoku J. Exp. Med. 1995, 177, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Miyagiwa, M.; Ichida, T.; Tokiwa, T.; Sato, J.; Sasaki, H. A new human cholangiocellular carcinoma cell line (HuCC-T1) producing carbohydrate antigen 19/9 in serum-free medium. In Vitro Cell Dev. Biol. 1989, 25, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Homma, S.; Hasumura, S.; Nagamori, S.; Kameda, H. [Establishment and characterization of a human gall bladder carcinoma cell line NOZ]. Hum. Cell 1988, 1, 95–97. [Google Scholar] [PubMed]
- Yamada, N.; Chung, Y.; Ohtani, H.; Ikeda, T.; Onoda, N.; Sawada, T.; Nishiguchi, Y.; Hasuma, T.; Sowa, M. Establishment and characterization of a new human gallbladder carcinoma cell line (OCUG-1) producing TA-4. Int. J. Oncol. 1997, 10, 1251–1255. [Google Scholar] [CrossRef] [PubMed]
- Homma, S.; Nagamori, S.; Fujise, K.; Yamazaki, K.; Hasumura, S.; Sujino, H.; Matsuura, T.; Shimizu, K.; Kameda, H.; Takaki, K. Human bile duct carcinoma cell line producing abundant mucin in vitro. Gastroenterol. Jpn. 1987, 22, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M.; Kobayashi, N.; Westerman, K.A.; Sakaguchi, M.; Allain, J.E.; Totsugawa, T.; Okitsu, T.; Fukazawa, T.; Weber, A.; Stolz, D.B.; et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation 2004, 77, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiesslich, T.; Neureiter, D.; Alinger, B.; Jansky, G.L.; Berlanda, J.; Mkrtchyan, V.; Ocker, M.; Plaetzer, K.; Berr, F. Uptake and phototoxicity of meso-tetrahydroxyphenyl chlorine are highly variable in human biliary tract cancer cell lines and correlate with markers of differentiation and proliferation. Photochem. Photobiol. Sci. 2010, 9, 734–743. [Google Scholar] [CrossRef]
- Detre, S.; Saclani Jotti, G.; Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: Validation for oestrogen receptor in breast carcinomas. J. Clin. Pathol. 1995, 48, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Plumb, J.A.; Finn, P.W.; Williams, R.J.; Bandara, M.J.; Romero, M.R.; Watkins, C.J.; La Thangue, N.B.; Brown, R. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol. Cancer Ther. 2003, 2, 721–728. [Google Scholar]
- Richon, V.M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R.A.; Marks, P.A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA 1998, 95, 3003–3007. [Google Scholar] [CrossRef] [Green Version]
- Fournel, M.; Bonfils, C.; Hou, Y.; Yan, P.T.; Trachy-Bourget, M.C.; Kalita, A.; Liu, J.; Lu, A.H.; Zhou, N.Z.; Robert, M.F.; et al. MGCD0103, a novel isotype-selective histone deacetylase inhibitor, has broad spectrum antitumor activity in vitro and in vivo. Mol. Cancer Ther. 2008, 7, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Marek, L.; Hamacher, A.; Hansen, F.K.; Kuna, K.; Gohlke, H.; Kassack, M.U.; Kurz, T. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J. Med. Chem. 2013, 56, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Butler, K.V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.; Kozikowski, A.P. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am. Chem. Soc. 2010, 132, 10842–10846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchenko, V.L.; Litman, T.; Chakraborty, A.R.; Heffner, A.; Devor, C.; Wilkerson, J.; Stein, W.; Robey, R.W.; Bangiolo, L.; Levens, D.; et al. Histone deacetylase inhibitor-mediated cell death is distinct from its global effect on chromatin. Mol. Oncol. 2014, 8, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sriraksa, R.; Limpaiboon, T. Histone deacetylases and their inhibitors as potential therapeutic drugs for cholangiocarcinoma—cell line findings. Asian Pac. J. Cancer Prev. 2013, 14, 2503–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourassa, M.W.; Ratan, R.R. The interplay between microRNAs and histone deacetylases in neurological diseases. Neurochem. Int. 2014, 77, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Varghese, D.S.; Gillam, M.C.; Peyton, M.; Modi, B.; Schiltz, R.L.; Girard, L.; Martinez, E.D. Differential response of cancer cells to HDAC inhibitors trichostatin A and depsipeptide. Br. J. Cancer 2012, 106, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahashi, S.; Ishibashi, H.; Utsunomiya, T.; Morine, Y.; Ochir, T.L.; Hanaoka, J.; Mori, H.; Ikemoto, T.; Imura, S.; Shimada, M. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines. J. Med. Investig. 2011, 58, 106–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klieser, E.; Urbas, R.; Stattner, S.; Primavesi, F.; Jager, T.; Dinnewitzer, A.; Mayr, C.; Kiesslich, T.; Holzmann, K.; Di Fazio, P.; et al. Comprehensive immunohistochemical analysis of histone deacetylases in pancreatic neuroendocrine tumors: HDAC5 as a predictor of poor clinical outcome. Hum. Pathol. 2017, 65, 41–52. [Google Scholar] [CrossRef]
- Mayr, C.; Helm, K.; Jakab, M.; Ritter, M.; Shrestha, R.; Makaju, R.; Wagner, A.; Pichler, M.; Beyreis, M.; Staettner, S.; et al. The histone methyltransferase G9a: A new therapeutic target in biliary tract cancer. Hum. Pathol. 2018, 72, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C.; Wagner, A.; Loeffelberger, M.; Bruckner, D.; Jakab, M.; Berr, F.; Di Fazio, P.; Ocker, M.; Neureiter, D.; Pichler, M.; et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget 2016, 7, 745–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, C.; Wagner, A.; Stoecklinger, A.; Jakab, M.; Illig, R.; Berr, F.; Pichler, M.; Di Fazio, P.; Ocker, M.; Neureiter, D.; et al. 3-Deazaneplanocin A May Directly Target Putative Cancer Stem Cells in Biliary Tract Cancer. Anticancer Res. 2015, 35, 4697–4705. [Google Scholar] [PubMed]
- Mayr, C.; Neureiter, D.; Wagner, A.; Pichler, M.; Kiesslich, T. The role of polycomb repressive complexes in biliary tract cancer. Expert Opin. Ther. Targets 2015, 19, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Sauvageau, M.; Sauvageau, G. Polycomb group proteins: Multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 2010, 7, 299–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Vlag, J.; Otte, A.P. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat. Genet. 1999, 23, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Kuzmichev, A.; Nishioka, K.; Erdjument-Bromage, H.; Tempst, P.; Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002, 16, 2893–2905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, J.; Sasaki, M.; Sato, Y.; Itatsu, K.; Harada, K.; Zen, Y.; Ikeda, H.; Nimura, Y.; Nagino, M.; Nakanuma, Y. Histone deacetylase inhibitor (SAHA) and repression of EZH2 synergistically inhibit proliferation of gallbladder carcinoma. Cancer Sci. 2010, 101, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Sawada, J.; Sui, G.; Affar el, B.; Whetstine, J.R.; Lan, F.; Ogawa, H.; Luke, M.P.; Nakatani, Y.; Shi, Y. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 2003, 422, 735–738. [Google Scholar] [CrossRef] [PubMed]
Antibody 1 | Cat.-No. | Clone | Dilution/Incubation |
---|---|---|---|
HDAC 1 | ab19845 | polyclonal | 1:2000/32′ |
HDAC 2 | ab16032 | polyclonal | 1:250/32′ |
HDAC 3 | ab32369 | monoclonal (Y415) | 1:100/32′ |
HDAC 4 | ab12172 | polyclonal | 1:100/32′ |
HDAC 5 | ab55403 | polyclonal | 1:500/32′ |
HDAC 6 | ab1440 | polyclonal | 1:500/32′ |
HDAC 7 | ab53101 | polyclonal | 1:100/32′ |
HDAC 8 | ab195057 | polyclonal (Phospho S39) | 1:100/32′ |
HDAC 9 | ab59718 | polyclonal | 1:500/32′ |
HDAC 10 | ab53096 | polyclonal | 1:200/32′ |
HDAC 11 | ab135492 | polyclonal | 1:50/32′ |
Inhibito | HDAC Targets | No. Trials 1 | Ref. |
---|---|---|---|
Belinostat | pan-inhibitor | 50 | [40] |
Vorinostat | pan inhibitor | 275 | [41] |
Mocetinostat | class I (HDACs 1, 2, 3); class IV (HDAC 11) | 23 | [42] |
Romidepsin | class I (HDACs 1, 2) | 105 | [17] |
LMK-235 | class IIa (HDAC 4, 5) | - | [43] |
Tubastatin A | class IIa (HDAC 6) | - | [44] |
Clinico-Pathological Variables | Total | HDAC 1 IHC Score | HDAC 2 IHC Score | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | Mean | Stdev | 95% CI | ANOVA | Mean | Stdev | 95% CI | ANOVA | ||
Age (years) | <60 | 14 | 17.9 | 94.7 | 84.1 | 46.1–143.3 | 0.878 | 142.0 | 116.6 | 74.7–209.3 | 0.722 |
≥60 | 64 | 82.1 | 90.9 | 82.6 | 70.3–111.6 | 132.0 | 89.9 | 109.5–154.4 | |||
Gender | female | 36 | 46.2 | 95.1 | 75.6 | 69.5–120.7 | 0.733 | 127.9 | 91.5 | 97.0–158.9 | 0.617 |
male | 42 | 53.8 | 88.6 | 88.5 | 61,1–116.2 | 138.8 | 97.8 | 108.3–169.3 | |||
Tumor localization | intrahepatic | 39 | 50.0 | 83.9 | 81.9 | 57.4–110.5 | <0.001 ** | 139.0 | 103.6 | 105.4–172.7 | 0.095 |
perihilar | 22 | 28.2 | 52.1 | 62.9 | 24.1–80.0 | 95.7 | 73.9 | 62.9–128.5 | |||
extrahepatic | 7 | 9.0 | 125.2 | 81.7 | 49.6–200.8 | 170.2 | 97.9 | 79.6–260.8 | |||
gall bladder | 10 | 12.8 | 185.1 | 36.9 | 158.7–211.5 | 171.5 | 74.9 | 117.8–225.1 | |||
Growth pattern | Mass-forming | 34 | 43.6 | 83.6 | 83.5 | 54.4–112.7 | 0.427 | 152.5 | 100.7 | 117.3–187.6 | 0.286 |
periductal | 41 | 52.6 | 94.2 | 82.6 | 68.1–120.3 | 120.9 | 90.0 | 92.5–149.3 | |||
intraductal | 3 | 3.8 | 147.2 | 59.0 | 0.4–293.9 | 97.7 | 94.5 | n.a.–231.6 | |||
T status (2017) | T1/T2 | 63 (25/38) | 80.8 (32.1/48.7) | 90.6 | 83.2 | 69.6–111.5 | 0.823 | 130.1 | 93.6 | 106.5–153.6 | 0.482 |
T3/T4 | 15 (12/3) | 19.2 (15.4/3.8) | 96.0 | 81.5 | 50.8–141.1 | 149.3 | 100.1 | 93.9–204.7 | |||
N status (2017) | N0 | 44 | 56.4 | 99.7 | 89.2 | 72.6–126.8 | 0.584 | 145.5 | 93.1 | 117.2–173.8 | 0.409 |
N1 | 26 | 33.3 | 84.0 | 76.0 | 53.3–114.7 | 123.2 | 99.7 | 82.9–163.5 | |||
N2 | 8 | 10.3 | 72.0 | 63.4 | 19.0–125.1 | 103.7 | 84.2 | 33.3–174.1 | |||
M status (2017) | M0 | 68 | 87.2 | 95.2 | 81.8 | 75.4–115–0 | 0.324 | 135.0 | 94.2 | 112.2–157.8 | 0.764 |
M1 | 10 | 12.8 | 67.5 | 86.1 | 5.8–129.1 | 125.3 | 101.1 | 52.9–197.7 | |||
UICC (2017) | I | 19 | 24.4 | 111.5 | 91.1 | 67.5–155.4 | 0.284 | 153.9 | 90.1 | 110.5–197.4 | 0.306 |
II | 21 | 26.9 | 106.7 | 85.9 | 67.6–145–8 | 153.4 | 97.1 | 109.2–197.6 | |||
III | 24 | 30.8 | 77.5 | 69.5 | 48.1–106.8 | 111.8 | 92.8 | 72.6–151.0 | |||
IV | 14 | 17.9 | 66.4 | 82.2 | 18.9–113.9 | 114.5 | 97.0 | 58.5–170.5 | |||
Tumor grading | G1/G2 | 49 (4/45) | 62.8 (5.1/57.7) | 68.7 | 74.0 | 47.5–90.0 | 0.001 ** | 119.2 | 87.8 | 93.9–144.4 | 0.076 |
G3/G4 | 29 (28/1) | 37.2 ((35.9/1.3) | 130.3 | 82.4 | 98.9–161.7 | 158.5 | 101.6 | 119.8–197.1 | |||
Survival | No = dead | 38 | 48.7 | 106.6 | 77.0 | 81.3–131.9 | 0.119 | 125.0 | 78.7 | 99.1–150.9 | 0.426 |
Yes = alive | 40 | 51.3 | 77.4 | 85.7 | 50.0–104–8 | 142.1 | 107.7 | 107.7–176.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayr, C.; Kiesslich, T.; Erber, S.; Bekric, D.; Dobias, H.; Beyreis, M.; Ritter, M.; Jäger, T.; Neumayer, B.; Winkelmann, P.; et al. HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer. Cancers 2021, 13, 3862. https://doi.org/10.3390/cancers13153862
Mayr C, Kiesslich T, Erber S, Bekric D, Dobias H, Beyreis M, Ritter M, Jäger T, Neumayer B, Winkelmann P, et al. HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer. Cancers. 2021; 13(15):3862. https://doi.org/10.3390/cancers13153862
Chicago/Turabian StyleMayr, Christian, Tobias Kiesslich, Sara Erber, Dino Bekric, Heidemarie Dobias, Marlena Beyreis, Markus Ritter, Tarkan Jäger, Bettina Neumayer, Paul Winkelmann, and et al. 2021. "HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer" Cancers 13, no. 15: 3862. https://doi.org/10.3390/cancers13153862
APA StyleMayr, C., Kiesslich, T., Erber, S., Bekric, D., Dobias, H., Beyreis, M., Ritter, M., Jäger, T., Neumayer, B., Winkelmann, P., Klieser, E., & Neureiter, D. (2021). HDAC Screening Identifies the HDAC Class I Inhibitor Romidepsin as a Promising Epigenetic Drug for Biliary Tract Cancer. Cancers, 13(15), 3862. https://doi.org/10.3390/cancers13153862