Hitting the Bull’s-Eye: Mesothelin’s Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mesothelin
3. Mesothelin as a Biomarker
3.1. Diagnosis
3.2. Screening
3.3. Prognosis
3.4. Response to Treatment
4. Mesothelin-Targeted Therapies
4.1. Chimeric Monoclonal Antibodies
4.2. Antibody–Drug Conjugates
4.3. Immunotoxins
4.4. MSLN-Directed Vaccination
4.5. Mesothelin-Targeted Cellular Therapy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odgerel, C.-O.; Takahashi, K.; Sorahan, T.; Driscoll, T.; Fitzmaurice, C.; Yoko-o, M.; Sawanyawisuth, K.; Furuya, S.; Tanaka, F.; Horie, S.; et al. Estimation of the global burden of mesothelioma deaths from incomplete national mortality data. Occup. Environ. Med. 2017, 74, 851–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherpereel, A.; Opitz, I.; Berghmans, T.; Psallidas, I.; Glatzer, M.; Rigau, D.; Astoul, P.; Bölükbas, S.; Boyd, J.; Coolen, J.; et al. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur. Respir. J. 2020, 55, 1900953. [Google Scholar] [CrossRef]
- van Zandwijk, N.; Reid, G.; Frank, A.L. Asbestos-related cancers: The ’Hidden Killer’ remains a global threat. Expert Rev. Anticancer. Ther. 2020, 20, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Henderson, D.W.; Reid, G.; Kao, S.C.; van Zandwijk, N.; Klebe, S. Challenges and controversies in the diagnosis of malignant mesothelioma: Part 2. Malignant mesothelioma subtypes, pleural synovial sarcoma, molecular and prognostic aspects of mesothelioma, BAP1, aquaporin-1 and microRNA. J. Clin. Pathol. 2013, 66, 854–861. [Google Scholar] [CrossRef]
- Henderson, D.W.; Reid, G.; Kao, S.C.; van Zandwijk, N.; Klebe, S. Challenges and controversies in the diagnosis of mesothelioma: Part 1. Cytology-only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers. J. Clin. Pathol. 2013, 66, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Klebe, S.; Henderson, D.W. Early Stages of Mesothelioma, Screening and Biomarkers; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2011; Volume 189, pp. 169–193. [Google Scholar]
- Blomberg, C.; Nilsson, J.; Holgersson, G.; Edlund, P.; Bergqvist, M.; Adwall, L.; Ekman, S.; Brattström, D.; Bergström, S. Randomized Trials of Systemic Medically-treated Malignant Mesothelioma: A Systematic Review. Anticancer. Res. 2015, 35, 2493–2501. [Google Scholar] [PubMed]
- Kotova, S.; Wong, R.M.; Cameron, R.B. New and emerging therapeutic options for malignant pleural mesothelioma: Review of early clinical trials. Cancer Manag. Res. 2015, 7, 51–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III Study of Pemetrexed in Combination with Cisplatin Versus Cisplatin Alone in Patients with Malignant Pleural Mesothelioma. J. Clin. Oncol. 2003, 21, 2636–2644. [Google Scholar] [CrossRef] [PubMed]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Van Zandwijk, N.; Reid, G.; Baas, P. Editorial: Emerging Therapies for Malignant Mesothelioma. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef]
- Chang, K.; Pastan, I.; Willingham, M.C. Isolation and characterization of a monoclonal antibody, K1, reactive with ovarian cancers and normal mesothelium. Int. J. Cancer 1992, 50, 373–381. [Google Scholar] [CrossRef]
- Bera, T.K.; Pastan, I. Mesothelin Is Not Required for Normal Mouse Development or Reproduction. Mol. Cell. Biol. 2000, 20, 2902–2906. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Qian, M.; Ho, M. The Role of Mesothelin in Tumor Progression and Targeted Therapy. Anti-Cancer Agents Med. Chem. 2013, 13, 276–280. [Google Scholar] [CrossRef]
- Weidemann, S.; Gagelmann, P.; Gorbokon, N.; Lennartz, M.; Menz, A.; Luebke, A.; Kluth, M.; Hube-Magg, C.; Blessin, N.; Fraune, C.; et al. Mesothelin Expression in Human Tumors: A Tissue Microarray Study on 12,679 Tumors. Biomedicines 2021, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-F.; Huang, C.-Y.; Chang, M.-C.; Hu, Y.-H.; Chiang, Y.-C.; Chen, Y.-L.; Hsieh, C.-Y.; Chen, C.-A. High mesothelin correlates with chemoresistance and poor survival in epithelial ovarian carcinoma. Br. J. Cancer 2009, 100, 1144–1153. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Tsunoda, T.; Riku, M.; Ito, H.; Inoko, A.; Murakami, H.; Ebi, M.; Ogasawara, N.; Pastan, I.; Kasugai, K.; et al. Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol. Lett. 2020, 19, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Xian, R.R.; Ziober, A.; Conejo-Garcia, J.; Perales-Puchalt, A.; June, C.H.; Zhang, P.J.; Tchou, J. Mesothelin expression is associated with poor outcomes in breast cancer. Breast Cancer Res. Treat. 2014, 147, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, J.M.; Tang, L.H.; Klimstra, D.S.; Brennan, M.F.; Brody, J.R.; Rocha, F.G.; Jia, X.; Qin, L.-X.; D’Angelica, M.I.; DeMatteo, R.P.; et al. A Novel Survival-Based Tissue Microarray of Pancreatic Cancer Validates MUC1 and Mesothelin as Biomarkers. PLoS ONE 2012, 7, e40157. [Google Scholar] [CrossRef]
- Feng, F.; Zhang, H.; Zhang, Y.; Wang, H. Level of mesothelin expression can indicate the prognosis of malignant pleural mesothelioma. Transl. Cancer Res. 2020, 9, 7479–7485. [Google Scholar] [CrossRef]
- Vizcaya, D.; Farahmand, B.; Walter, A.O.; Kneip, C.; Jöhrens, K.; Tukiainen, M.; Schmitz, A.A. Prognosis of patients with malignant mesothelioma by expression of programmed cell death 1 ligand 1 and mesothelin in a contemporary cohort in Finland. Cancer Treat. Res. Commun. 2020, 25, 100260. [Google Scholar] [CrossRef]
- Inaguma, S.; Wang, Z.; Lasota, J.; Onda, M.; Czapiewski, P.; Langfort, R.; Rys, J.; Szpor, J.; Waloszczyk, P.; Okoń, K.; et al. Comprehensive immunohistochemical study of mesothelin (MSLN) using different monoclonal antibodies 5B2 and MN-1 in 1562 tumors with evaluation of its prognostic value in malignant pleural mesothelioma. Oncotarget 2017, 8, 26744–26754. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, O.; Gong, L.; Zhang, J.; Hansen, J.K.; Hassan, R.; Lee, B.; Ho, M. A Binding Domain on Mesothelin for CA125/MUC16. J. Biol. Chem. 2009, 284, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Gubbels, J.A.; Belisle, J.; Onda, M.; Rancourt, C.; Migneault, M.; Ho, M.; Bera, T.K.; Connor, J.; Sathyanarayana, B.K.; Lee, B.; et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer 2006, 5, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rump, A.; Morikawa, Y.; Tanaka, M.; Minami, S.; Umesaki, N.; Takeuchi, M.; Miyajima, A. Binding of Ovarian Cancer Antigen CA125/MUC16 to Mesothelin Mediates Cell Adhesion. J. Biol. Chem. 2004, 279, 9190–9198. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Wang, L.; Riedel, H.; Wang, K.; Yang, Y.; Dinu, C.Z.; Rojanasakul, Y. Mesothelin promotes epithelial-to-mesenchymal transition and tumorigenicity of human lung cancer and mesothelioma cells. Mol. Cancer 2017, 16, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servais, E.L.; Colovos, C.; Rodriguez, L.; Bograd, A.J.; Nitadori, J.-I.; Sima, C.; Rusch, V.; Sadelain, M.; Adusumilli, P.S. Mesothelin Overexpression Promotes Mesothelioma Cell Invasion and MMP-9 Secretion in an Orthotopic Mouse Model and in Epithelioid Pleural Mesothelioma Patients. Clin. Cancer Res. 2012, 18, 2478–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melaiu, O.; Stebbing, J.; Lombardo, Y.; Bracci, E.; Uehara, N.; Bonotti, A.; Cristaudo, A.; Foddis, R.; Mutti, L.; Barale, R.; et al. MSLN Gene Silencing Has an Anti-Malignant Effect on Cell Lines Overexpressing Mesothelin Deriving from Malignant Pleural Mesothelioma. PLoS ONE 2014, 9, e85935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Remaley, A.T.; Sampson, M.L.; Zhang, J.; Cox, D.D.; Pingpank, J.; Alexander, R.; Willingham, M.; Pastan, I.; Onda, M. Detection and Quantitation of Serum Mesothelin, a Tumor Marker for Patients with Mesothelioma and Ovarian Cancer. Clin. Cancer Res. 2006, 12, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollevoet, K.; Reitsma, J.B.; Creaney, J.; Grigoriu, B.D.; Robinson, B.W.; Scherpereel, A.; Cristaudo, A.; Pass, H.; Nackaerts, K.; Portal, J.A.R.; et al. Serum Mesothelin for Diagnosing Malignant Pleural Mesothelioma: An Individual Patient Data Meta-Analysis. J. Clin. Oncol. 2012, 30, 1541–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creaney, J.; Robinson, B.W. Detection of Malignant Mesothelioma in Asbestos-Exposed Individuals: The Potential Role of Soluble Mesothelin-Related Protein. Hematol. Clin. N. Am. 2005, 19, 1025–1040. [Google Scholar] [CrossRef]
- Pass, H.I.; Alimi, M.; Carbone, M.; Yang, H.; Goparaju, C.M. Mesothelioma Biomarkers: A Review Highlighting Contributions from the Early Detection Research Network. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2524–2540. [Google Scholar] [CrossRef] [PubMed]
- Gillezeau, C.N.; Van Gerwen, M.; Ramos, J.; Liu, B.; Flores, R.; Taioli, E. Biomarkers for malignant pleural mesothelioma: A meta-analysis. Carcinogenesis 2019, 40, 1320–1331. [Google Scholar] [CrossRef]
- Cristaudo, A.; Bonotti, A.; Guglielmi, G.; Fallahi, P.; Foddis, R. Serum mesothelin and other biomarkers: What have we learned in the last decade? J. Thorac. Dis. 2018, 10, S353–S359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, F.; Baratti, D.; Martinetti, A.; Morelli, D.; Sottotetti, E.; Bonini, C.; Guaglio, M.; Kusamura, S.; Deraco, M. Mesothelin and osteopontin as circulating markers of diffuse malignant peritoneal mesothelioma: A preliminary study. Eur. J. Surg. Oncol. EJSO 2018, 44, 792–798. [Google Scholar] [CrossRef]
- Ahmadzada, T.; Kao, S.; Reid, G.; Clarke, S.; Grau, G.E.; Hosseini-Beheshti, E. Extracellular vesicles as biomarkers in malignant pleural mesothelioma: A review. Crit. Rev. Oncol. 2020, 150, 102949. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Carugno, M.; Mensi, C.; Pesatori, A.C. Circulating Epigenetic Biomarkers in Malignant Pleural Mesothelioma: State of the Art and critical Evaluation. Front. Oncol. 2020, 10, 445. [Google Scholar] [CrossRef] [Green Version]
- Kirschner, M.B.; Cheng, Y.Y.; Badrian, B.; Kao, S.C.; Creaney, J.; Edelman, J.J.B.; Armstrong, N.J.; Vallely, M.P.; Musk, A.W.; Robinson, B.W.; et al. Increased Circulating miR-625-3p: A Potential Biomarker for Patients With Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2012, 7, 1184–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, M.B.; Cheng, Y.Y.; Armstrong, N.J.; Lin, R.C.; Kao, S.C.; Linton, A.; Klebe, S.; McCaughan, B.C.; van Zandwijk, N.; Reid, G. MiR-Score: A novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma. Mol. Oncol. 2015, 9, 715–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacerenza, S.; Ciregia, F.; Giusti, L.; Bonotti, A.; Greco, V.; Giannaccini, G.; D’Antongiovanni, V.; Fallahi, P.; Pieroni, L.; Cristaudo, A.; et al. Putative Biomarkers for Malignant Pleural Mesothelioma Suggested by Proteomic Analysis of Cell Secretome. Cancer Genom. Proteom. 2020, 17, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Ledda, C.; Senia, P.; Rapisarda, V. Biomarkers for Early Diagnosis and Prognosis of Malignant Pleural Mesothelioma: The Quest Goes on. Cancers 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Gaudino, G.; Pass, H.; Carbone, M.; Yang, H. Diagnostic and prognostic biomarkers for malignant mesothelioma: An update. Transl. Lung Cancer Res. 2017, 6, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Imbernon, E.; Rolland, P.; Ilg, A.G.S.; Savès, M.; De Quillacq, A.; Frenay, C.; Chamming’S, S.; Arveux, P.; Boutin, C.; et al. The French National Mesothelioma Surveillance Program. Occup. Environ. Med. 2006, 63, 390–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Carbone, M.; Zhang, X.; Su, D.; Sun, W.; Lou, J.; Gao, Z.; Shao, D.; Chen, J.; Zhang, G.; et al. Improving the Accuracy of Mesothelioma Diagnosis in China. J. Thorac. Oncol. 2017, 12, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Betta, P.-G.; Magnani, C.; Bensi, T.; Trincheri, N.F.; Orecchia, S. Immunohistochemistry and Molecular Diagnostics of Pleural Malignant Mesothelioma. Arch. Pathol. Lab. Med. 2012, 136, 253–261. [Google Scholar] [CrossRef]
- Porcel, J.M. Biomarkers in the diagnosis of pleural diseases: A 2018 update. Ther. Adv. Respir. Dis. 2018, 12. [Google Scholar] [CrossRef]
- Ordóñez, N.G. Value of Mesothelin Immunostaining in the Diagnosis of Mesothelioma. Mod. Pathol. 2003, 16, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Davies, H.E.; Sadler, R.S.; Bielsa, S.; Maskell, N.A.; Rahman, N.M.; Davies, R.J.O.; Ferry, B.L.; Lee, Y.C.G. Clinical Impact and Reliability of Pleural Fluid Mesothelin in Undiagnosed Pleural Effusions. Am. J. Respir. Crit. Care Med. 2009, 180, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Pantazopoulos, I.; Boura, P.; Xanthos, T.; Syrigos, K. Effectiveness of mesothelin family proteins and osteopontin for malignant mesothelioma. Eur. Respir. J. 2012, 41, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Kajino, K.; Momose, S.; Wali, N.; Hlaing, M.T.; Han, B.; Yue, L.; Abe, M.; Fujii, T.; Ikeda, K.; et al. Possible reversibility between epithelioid and sarcomatoid types of mesothelioma is independent of ERC/mesothelin expression. Respir. Res. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Creaney, J.; Olsen, N.J.; Brims, F.; Dick, I.M.; Musk, A.W.; de Klerk, N.; Skates, S.J.; Robinson, B.W. Serum Mesothelin for Early Detection of Asbestos-Induced Cancer Malignant Mesothelioma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2238–2246. [Google Scholar] [CrossRef] [Green Version]
- Felten, M.K.; Khatab, P.K.; Knoll, L.; Schettgen, T.; Müller-Berndorff, H.; Kraus, T. Changes of mesothelin and osteopontin levels over time in formerly asbestos-exposed power industry workers. Int. Arch. Occup. Environ. Health 2013, 87, 195–204. [Google Scholar] [CrossRef]
- Filiberti, R.; Marroni, P.; Spigno, F.; Merlo, D.F.; Mortara, V.; Caruso, P.; Cioè, A.; Michelazzi, L.; Bruzzone, A.; Bobbio, B.; et al. Is Soluble Mesothelin-Related Protein an Upfront Predictive Marker of Pleural Mesothelioma A Prospective Study on Italian Workers Exposed to Asbestos. Oncology 2014, 86, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Gube, M.; Taeger, D.; Weber, D.G.; Pesch, B.; Brand, P.; Johnen, G.; Müller-Lux, A.; Gross, I.M.; Wiethege, T.; Weber, A.; et al. Performance of biomarkers SMRP, CA125, and CYFRA 21-1 as potential tumor markers for malignant mesothelioma and lung cancer in a cohort of workers formerly exposed to asbestos. Arch. Toxicol. 2010, 85, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Hirohashi, T.; Igarashi, K.; Abe, M.; Maeda, M.; Hino, O. Retrospective analysis of large-scale research screening of construction workers for the early diagnosis of mesothelioma. Mol. Clin. Oncol. 2014, 2, 26–30. [Google Scholar] [CrossRef]
- Hollevoet, K.; Nackaerts, K.; Gosselin, R.; De Wever, W.; Bosquée, L.; De Vuyst, P.; Germonpré, P.; Kellen, E.; Legrand, C.; Kishi, Y.; et al. Soluble Mesothelin, Megakaryocyte Potentiating Factor, and Osteopontin as Markers of Patient Response and Outcome in Mesothelioma. J. Thorac. Oncol. 2011, 6, 1930–1937. [Google Scholar] [CrossRef]
- Park, E.-K.; Sandrini, A.; Yates, D.H.; Creaney, J.; Robinson, B.W.; Thomas, P.S.; Johnson, A.R. Soluble Mesothelin-related Protein in an Asbestos-exposed Population. Am. J. Respir. Crit. Care Med. 2008, 178, 832–837. [Google Scholar] [CrossRef]
- Boudville, N.; Paul, R.; Robinson, B.W.; Creaney, J. Mesothelin and kidney function—Analysis of relationship and implications for mesothelioma screening. Lung Cancer 2011, 73, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, R.; Pucci, P.; De Santi, C.; Dell’Anno, I.; Miglietta, S.; Corrado, A.; Nicolí, V.; Marolda, D.; Cipollini, M.; Pellegrino, E.; et al. Variation rs2235503 C > A within the Promoter of MSLN Affects Transcriptional Rate of Mesothelin and Plasmatic Levels of the Soluble Mesothelin-Related Peptide. Front. Genet. 2020, 11, 975. [Google Scholar] [CrossRef]
- Tian, L.; Zeng, R.; Wang, X.; Shen, C.; Lai, Y.; Wang, M.; Che, G. Prognostic significance of soluble mesothelin in malignant pleural mesothelioma: A meta-analysis. Oncotarget 2017, 8, 46425–46435. [Google Scholar] [CrossRef]
- Creaney, J.; Dick, I.M.; Meniawy, T.; Leong, S.L.; Leon, J.S.; Demelker, Y.; Segal, A.; Musk, A.W.; Lee, Y.C.G.; Skates, S.J.; et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax 2014, 69, 895–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goricar, K.; Kovac, V.; Dodic-Fikfak, M.; Dolzan, V.; Franko, A. Evaluation of soluble mesothelin-related peptides and MSLN genetic variability in asbestos-related diseases. Radiol. Oncol. 2020, 54, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollevoet, K.; Nackaerts, K.; Thas, O.; Thimpont, J.; Germonpré, P.; De Vuyst, P.; Bosquée, L.; Legrand, C.; Kellen, E.; Kishi, Y.; et al. The Effect of Clinical Covariates on the Diagnostic and Prognostic Value of Soluble Mesothelin and Megakaryocyte Potentiating Factor. Chest 2012, 141, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Fontana, V.; Pistillo, M.P.; Vigani, A.; Canessa, P.A.; Berisso, G.; Giannoni, U.; Ferro, P.; Franceschini, M.C.; Carosio, R.; Tonarelli, M.; et al. Determination of Mesothelin Levels in Pleural Effusion Does Not Help Predict Survival of Patients With Malignant Pleural Mesothelioma. Anticancer. Res. 2019, 39, 5219–5223. [Google Scholar] [CrossRef] [PubMed]
- Forest, F.; Patoir, A.; Col, P.D.; Sulaiman, A.; Camy, F.; Laville, D.; Bayle-Bleuez, S.; Fournel, P.; Habougit, C. Nuclear grading, BAP1, mesothelin and PD-L1 expression in malignant pleural mesothelioma: Prognostic implications. Pathology 2018, 50, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.I.; Roshkovan, L.; Berger, I.; Friedberg, J.S.; Alley, E.W.; Simone, C.B.; Haas, A.R.; Cengel, K.A.; Sterman, D.H.; Albelda, S.M. Serum soluble mesothelin-related protein (SMRP) and fibulin-3 levels correlate with baseline malignant pleural mesothelioma (MPM) tumor volumes but are not useful as biomarkers of response in an immunotherapy trial. Lung Cancer 2021, 154, 5–12. [Google Scholar] [CrossRef]
- Bonotti, A.; Simonini, S.; Pantani, E.; Giusti, L.; Donadio, E.; Mazzoni, M.R.; Chella, A.; Marconi, L.; Ambrosino, N.; Lucchi, M.; et al. Serum Mesothelin, Osteopontin and Vimentin: Useful Markers for Clinical Monitoring of Malignant Pleural Mesothelioma. Int. J. Biol. Markers 2017, 32, 126–131. [Google Scholar] [CrossRef]
- Grigoriu, B.D.; Chahine, B.; Vachani, A.; Gey, T.; Conti, M.; Sterman, D.; Marchandise, G.; Porte, H.; Albelda, S.M.; Scherpereel, A. Kinetics of Soluble Mesothelin in Patients with Malignant Pleural Mesothelioma during Treatment. Am. J. Respir. Crit. Care Med. 2009, 179, 950–954. [Google Scholar] [CrossRef]
- Creaney, J.; Francis, R.; Dick, I.M.; Musk, A.W.; Robinson, B.W.S.; Byrne, M.J.; Nowak, A. Serum Soluble Mesothelin Concentrations in Malignant Pleural Mesothelioma: Relationship to Tumor Volume, Clinical Stage and Changes in Tumor Burden. Clin. Cancer Res. 2011, 17, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- De Fonseka, D.; Arnold, D.T.; Stadon, L.; Morley, A.; Keenan, E.; Darby, M.; Armstrong, L.; Virgo, P.; Maskell, N.A. A prospective study to investigate the role of serial serum mesothelin in monitoring mesothelioma. BMC Cancer 2018, 18, 1–7. [Google Scholar] [CrossRef]
- Wheatley-Price, P.; Yang, B.; Patsios, D.; Patel, D.; Ma, C.; Xu, W.; Leighl, N.; Feld, R.; Cho, B.J.; O’Sullivan, B.; et al. Soluble Mesothelin-Related Peptide and Osteopontin as Markers of Response in Malignant Mesothelioma. J. Clin. Oncol. 2010, 28, 3316–3322. [Google Scholar] [CrossRef]
- Borcoman, E.; Nandikolla, A.; Long, G.; Goel, S.; Le Tourneau, C. Patterns of Response and Progression to Immunotherapy. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 169–178. [Google Scholar] [CrossRef]
- Cristaudo, A.; Foddis, R.; Vivaldi, A.; Guglielmi, G.; Dipalma, N.; Filiberti, R.; Neri, M.; Ceppi, M.; Paganuzzi, M.; Ivaldi, G.P.; et al. Clinical Significance of Serum Mesothelin in Patients with Mesothelioma and Lung Cancer. Clin. Cancer Res. 2007, 13, 5076–5081. [Google Scholar] [CrossRef] [Green Version]
- Grigoriu, B.-D.; Scherpereel, A.; Devos, P.; Chahine, B.; Letourneux, M.; LeBailly, P.; Grégoire, M.; Porte, H.; Copin, M.-C.; Lassalle, P. Utility of Osteopontin and Serum Mesothelin in Malignant Pleural Mesothelioma Diagnosis and Prognosis Assessment. Clin. Cancer Res. 2007, 13, 2928–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creaney, J.; Sneddon, S.; Dick, I.M.; Dare, H.; Boudville, N.; Musk, A.W.; Skates, S.J.; Robinson, B.W. Comparison of the diagnostic accuracy of the MSLN gene products, mesothelin and megakaryocyte potentiating factor, as biomarkers for mesothelioma in pleural effusions and serum. Dis. Markers 2013, 35, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahori, K.; Osaki, T.; Serada, S.; Fujimoto, M.; Suzuki, H.; Kishi, Y.; Yokoyama, A.; Hamada, H.; Fujii, Y.; Yamaguchi, K.; et al. Megakaryocyte potentiating factor as a tumor marker of malignant pleural mesothelioma: Evaluation in comparison with mesothelin. Lung Cancer 2008, 62, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Ramírez, C.; Casjens, S.; Juárez-Pérez, C.A.; Raiko, I.; Del Razo, L.M.; Taeger, D.; Calderón-Aranda, E.S.; Rihs, H.-P.; Acosta-Saavedra, L.C.; Weber, D.G.; et al. Mesothelin, Calretinin, and Megakaryocyte Potentiating Factor as Biomarkers of Malignant Pleural Mesothelioma. Lung 2019, 197, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ryan, B.M.; Thomas, A.; Morrow, B.; Zhang, J.; Kang, Z.; Zingone, A.; Onda, M.; Hassan, R.; Pastan, I.; et al. Elevated Serum Megakaryocyte Potentiating Factor as a Predictor of Poor Survival in Patients with Mesothelioma and Primary Lung Cancer. J. Appl. Lab. Med. 2018, 3, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Imashimizu, K.; Shiomi, K.; Maeda, M.; Aoki, N.; Igarashi, K.; Suzuki, F.; Koizumi, M.; Suzuki, K.; Hino, O. Feasibility of large-scale screening using N-ERC/mesothelin levels in the blood for the early diagnosis of malignant mesothelioma. Exp. Ther. Med. 2011, 2, 409–411. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Yu, Y.; Thomas, A.; Zhang, J.; Onda, M.; Meltzer, P.; Hassan, R.; Pastan, I. Megakaryocyte Potentiating Factor as a Predictive Biomarker for Therapies Against Malignant Mesothelioma. JCO Precis. Oncol. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Pastan, I.; Hassan, R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014, 74, 2907–2912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Bera, T.; Pastan, I. Mesothelin: A new target for immunotherapy. Clin. Cancer Res. 2004, 10, 3937. [Google Scholar] [CrossRef] [Green Version]
- Kachala, S.S.; Bograd, A.J.; Villena-Vargas, J.; Suzuki, K.; Servais, E.L.; Kadota, K.; Chou, J.; Sima, C.S.; Vertes, E.; Rusch, V.; et al. Mesothelin Overexpression Is a Marker of Tumor Aggressiveness and Is Associated with Reduced Recurrence-Free and Overall Survival in Early-Stage Lung Adenocarcinoma. Clin. Cancer Res. 2014, 20, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Morello, A.; Sadelain, M.; Adusumilli, P.S. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov. 2016, 6, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Jöhrens, K.; Lazzerini, L.; Barinoff, J.; Sehouli, J.; Cichon, G. Mesothelin as a target for cervical cancer therapy. Arch. Gynecol. Obstet. 2019, 299, 211–216. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Phung, Y.; Gao, W.; Kawa, S.; Hassan, R.; Pastan, I.; Ho, M. New High Affinity Monoclonal Antibodies Recognize Non-Overlapping Epitopes on Mesothelin For Monitoring And Treating Mesothelioma. Sci. Rep. 2015, 5, 9928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, M.; Feng, M.; Fisher, R.J.; Rader, C.; Pastan, I. A novel high-affinity human monoclonal antibody to mesothelin. Int. J. Cancer 2011, 128, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.; Thomas, A.; Alewine, C.; Le, D.T.; Jaffee, E.; Pastan, I. Mesothelin Immunotherapy for Cancer: Ready for Prime Time? J. Clin. Oncol. 2016, 34, 4171–4179. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Ho, M. Mesothelin targeted cancer immunotherapy. Eur. J. Cancer 2008, 44, 46–53. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, M.; Stashwick, C.; Haas, A.R.; Tanyi, J.L. Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy. Immunotherapy 2016, 8, 449–460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Jiang, D.; Yang, H.; He, Z.; Liu, X.; Qin, W.; Li, L.; Wang, C.; Li, Y.; Li, H.; et al. Modified CAR T cells targeting membrane-proximal epitope of mesothelin enhances the antitumor function against large solid tumor. Cell Death Dis. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, R.J.; Sharon, E.; Pastan, I.; Hassan, R. Mesothelin-Targeted Agents in Clinical Trials and in Preclinical Development. Mol. Cancer Ther. 2012, 11, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Ebel, W.; Routhier, E.L.; Patel, R.; Kline, J.B.; Zhang, J.; Chao, Q.; Jacob, S.; Turchin, H.; Gibbs, L.; et al. Preclinical evaluation of MORAb-009, a chimeric antibody targeting tumor-associated mesothelin. Cancer Immun. 2007, 7, 20. [Google Scholar] [PubMed]
- Fujii, Y.; Kamachi, H.; Matsuzawa, F.; Mizukami, T.; Kobayashi, N.; Fukai, M.; Taketomi, A. Early administration of amatuximab, a chimeric high-affinity anti-mesothelin monoclonal antibody, suppresses liver metastasis of mesothelin-expressing pancreatic cancer cells and enhances gemcitabine sensitivity in a xenograft mouse model. Investig. New Drugs 2021, 1–11. [Google Scholar] [CrossRef]
- Matsuzawa, F.; Kamachi, H.; Mizukami, T.; Einama, T.; Kawamata, F.; Fujii, Y.; Fukai, M.; Kobayashi, N.; Hatanaka, Y.; Taketomi, A. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Lindenberg, L.; Thomas, A.; Adler, S.; Mena, E.; Kurdziel, K.; Maltzman, J.; Wallin, B.; Hoffman, K.; Pastan, I.; Paik, C.H.; et al. Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using Single Photon Emission Computed Tomography-Computed Tomography (SPECT-CT) imaging. Oncotarget 2015, 6, 4496–4504. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Cohen, S.J.; Phillips, M.; Pastan, I.; Sharon, E.; Kelly, R.J.; Schweizer, C.; Weil, S.; Laheru, D. Phase I Clinical Trial of the Chimeric Anti-Mesothelin Monoclonal Antibody MORAb-009 in Patients with Mesothelin-Expressing Cancers. Clin. Cancer Res. 2010, 16, 6132–6138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Kindler, H.L.; Jahan, T.; Bazhenova, L.; Reck, M.; Thomas, A.; Pastan, I.; Parno, J.; O’Shannessy, D.J.; Fatato, P.; et al. Phase II Clinical Trial of Amatuximab, a Chimeric Antimesothelin Antibody with Pemetrexed and Cisplatin in Advanced Unresectable Pleural Mesothelioma. Clin. Cancer Res. 2014, 20, 5927–5936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Hussein, Z.; Hassan, R.; Wustner, J.; Maltzman, J.D.; Wallin, B.A. Population pharmacokinetics and exposure–response relationship of amatuximab, an anti-mesothelin monoclonal antibody, in patients with malignant pleural mesothelioma and its application in dose selection. Cancer Chemother. Pharmacol. 2016, 77, 733–743. [Google Scholar] [CrossRef]
- Hassan, R.; Schweizer, C.; Lu, K.F.; Schuler, B.; Remaley, A.T.; Weil, S.C.; Pastan, I. Inhibition of mesothelin–CA-125 interaction in patients with mesothelioma by the anti-mesothelin monoclonal antibody MORAb-009: Implications for cancer therapy. Lung Cancer 2010, 68, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, N.C.; Schweizer, C.; Somers, E.B.; Wang, W.; Fernando, S.; Ross, E.N.; Grasso, L.; Hassan, R.; Kline, J.B. CA125 suppresses amatuximab immune-effector function and elevated serum levels are associated with reduced clinical response in first line mesothelioma patients. Cancer Biol. Ther. 2018, 19, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; et al. Anetumab Ravtansine: A Novel Mesothelin-Targeting Antibody–Drug Conjugate Cures Tumors with Heterogeneous Target Expression Favored by Bystander Effect. Mol. Cancer Ther. 2014, 13, 1537–1548. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.-Y.; Subramanyam, B.; Sarapa, N.; Golfier, S.; Dinter, H. Novel Antibody Therapeutics Targeting Mesothelin In Solid Tumors. Clin. Cancer Drugs 2016, 3, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Blumenschein, G.R.; Hassan, R.; Moore, K.N.; Santin, A.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Rajagopalan, P.; Walter, A.; Sarapa, N.; et al. Phase I study of anti-mesothelin antibody drug conjugate anetumab ravtansine (AR). J. Clin. Oncol. 2016, 34, 2509. [Google Scholar] [CrossRef]
- Hassan, R.; Blumenschein, G.R., Jr.; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; et al. First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody–Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors. J. Clin. Oncol. 2020, 38, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Lazzerini, L.; Jöhrens, K.; Sehouli, J.; Cichon, G. Favorable therapeutic response after anti-Mesothelin antibody–drug conjugate treatment requires high expression of Mesothelin in tumor cells. Arch. Gynecol. Obstet. 2020, 302, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Kindler, H.L.; Novello, S.; Fennell, D.; Blumenschein, G.; Bearz, A.; Ceresoli, G.; Aerts, J.; Spicer, J.; Taylor, P.; Greystoke, A.; et al. OA 02.01 Randomized Phase II Study of Anetumab Ravtansine or Vinorelbine in Patients with Metastatic Pleural Mesothelioma. J. Thorac. Oncol. 2017, 12, S1746. [Google Scholar] [CrossRef]
- Hassan, R.; Wang, D.; Wrangle, J.; Thomas, A.; Byars, A.; Asschert, L.; Atienza, R.; Rajagopalan, P.; Walter, A.; Zhang, J.; et al. Phase Ib study of anetumab ravtansine in combination with pemetrexed and cisplatin in patients with mesothelin-expressing epithelial mesothelioma or nonsquamous non-small cell lung cancer. Mol. Cancer. Ther. 2018, 17 (Suppl. S1), A095. [Google Scholar] [CrossRef]
- Clarke, J.; Chu, S.-C.; Siu, L.L.; Machiels, J.-P.; Markman, B.; Heinhuis, K.; Millward, M.; Lolkema, M.; Patel, S.P.; De Souza, P.; et al. BMS-986148, an anti-mesothelin antibody-drug conjugate (ADC), alone or in combination with nivolumab demonstrates clinical activity in patients with select advanced solid tumors. Immune Modul. 2019, 18, B057. [Google Scholar] [CrossRef]
- Hagemann, U.B.; Ellingsen, C.; Schuhmacher, J.; Kristian, A.; Mobergslien, A.; Cruciani, V.; Wickstroem, K.; Schatz, C.A.; Kneip, C.; Golfier, S.; et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers. Clin. Cancer Res. 2019, 25, 4723–4734. [Google Scholar] [CrossRef] [Green Version]
- Macura, S.L.; Steinbacher, J.L.; MacPherson, M.B.; Lathrop, M.J.; Sayan, M.; Hillegass, J.M.; Beuschel, S.L.; Perkins, T.N.; Spiess, P.C.; Van Der Vliet, A.; et al. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts. BMC Cancer 2013, 13, 400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaleh, M.; Howard, C.B.; Sedliarou, I.; Jones, M.L.; Gudhka, R.; Vanegas, N.; Weiss, J.; Suurbach, J.H.; de Bakker, C.; Milne, M.R.; et al. Targeting mesothelin receptors with drug-loaded bacterial nanocells suppresses human mesothelioma tumour growth in mouse xenograft models. PLoS ONE 2017, 12, e0186137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017, 18, 1386–1396. [Google Scholar] [CrossRef]
- Hassan, R.; Viner, J.L.; Wang, Q.-C.; Margulies, I.; Kreitman, R.J.; Pastan, I. Anti-Tumor Activity of K1-LysPE38QQR, an Immunotoxin Targeting Mesothelin, a Cell-Surface Antigen Overexpressed in Ovarian Cancer and Malignant Mesothelioma. J. Immunother. 2000, 23, 473–479. [Google Scholar] [CrossRef]
- Hassan, R.; Broaddus, V.C.; Wilson, S.; Liewehr, D.J.; Zhang, J. Anti–Mesothelin Immunotoxin SS1P in Combination with Gemcitabine Results in Increased Activity against Mesothelin-Expressing Tumor Xenografts. Clin. Cancer Res. 2007, 13, 7166–7171. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Miller, A.; Sharon, E.; Thomas, A.; Reynolds, J.C.; Ling, A.; Kreitman, R.J.; Miettinen, M.M.; Steinberg, S.M.; Fowler, D.H.; et al. Major Cancer Regressions in Mesothelioma After Treatment with an Anti-Mesothelin Immunotoxin and Immune Suppression. Sci. Transl. Med. 2013, 5, 208ra147. [Google Scholar] [CrossRef]
- Hassan, R.; Bullock, S.; Premkumar, A.; Kreitman, R.J.; Kindler, H.; Willingham, M.C.; Pastan, I. Phase I Study of SS1P, a Recombinant Anti-Mesothelin Immunotoxin Given as a Bolus I.V. Infusion to Patients with Mesothelin-Expressing Mesothelioma, Ovarian, and Pancreatic Cancers. Clin. Cancer Res. 2007, 13, 5144–5149. [Google Scholar] [CrossRef] [Green Version]
- Kreitman, R.J.; Hassan, R.; Fitzgerald, D.J.; Pastan, I. Phase I Trial of Continuous Infusion Anti-Mesothelin Recombinant Immunotoxin SS1P. Clin. Cancer Res. 2009, 15, 5274–5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazor, R.; Pastan, I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front. Immunol. 2020, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Khanna, S.; Jiang, Q.; Alewine, C.; Miettinen, M.; Pastan, I.; Hassan, R. Efficacy of Anti-mesothelin Immunotoxin RG7787 plus Nab-Paclitaxel against Mesothelioma Patient-Derived Xenografts and Mesothelin as a Biomarker of Tumor Response. Clin. Cancer Res. 2016, 23, 1564–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alewine, C.; Ahmad, M.; Peer, C.J.; Hu, Z.I.; Lee, M.-J.; Yuno, A.; Kindrick, J.D.; Thomas, A.; Steinberg, S.M.; Trepel, J.B.; et al. Phase I/II Study of the Mesothelin-targeted Immunotoxin LMB-100 with Nab-Paclitaxel for Patients with Advanced Pancreatic Adenocarcinoma. Clin. Cancer Res. 2019, 26, 828–836. [Google Scholar] [CrossRef]
- Hagerty, B.L.; Pegna, G.J.; Xu, J.; Tai, C.-H.; Alewine, C. Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020, 10, 973. [Google Scholar] [CrossRef]
- Brockstedt, D.G.; Giedlin, M.A.; Leong, M.L.; Bahjat, K.S.; Gao, Y.; Luckett, W.; Liu, W.; Cook, D.N.; Portnoy, D.A.; Dubensky, T.W. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl. Acad. Sci. USA 2004, 101, 13832–13837. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Brockstedt, D.G.; Nir-Paz, R.; Hampl, J.; Mathur, S.; Nemunaitis, J.; Sterman, D.H.; Hassan, R.; Lutz, E.; Moyer, B.; et al. A Live-Attenuated Listeria Vaccine (ANZ-100) and a Live-Attenuated Listeria Vaccine Expressing Mesothelin (CRS-207) for Advanced Cancers: Phase I Studies of Safety and Immune Induction. Clin. Cancer Res. 2012, 18, 858–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, R.; Alley, E.; Kindler, H.; Antonia, S.; Jahan, T.; Honarmand, S.; Nair, N.; Whiting, C.C.; Enstrom, A.; Lemmens, E.; et al. Clinical Response of Live-Attenuated, Listeria monocytogenes Expressing Mesothelin (CRS-207) with Chemotherapy in Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2019, 25, 5787–5798. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Chang, M.-C.; Lin, H.-W.; Sun, N.-Y.; Chen, C.-A.; Sun, W.-Z.; Cheng, W.-F. Immuno-modulators enhance antigen-specific immunity and anti-tumor effects of mesothelin-specific chimeric DNA vaccine through promoting DC maturation. Cancer Lett. 2018, 425, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Kashiwagi, S.; Reeves, P.; Nézivar, J.; Yang, Y.; Arrifin, N.H.; Nguyen, M.; Jean-Mary, G.; Tong, X.; Uppal, P.; et al. A novel mycobacterial Hsp70-containing fusion protein targeting mesothelin augments antitumor immunity and prolongs survival in murine models of ovarian cancer and mesothelioma. J. Hematol. Oncol. 2014, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castelletti, L.; Yeo, D.; van Zandwijk, N.; Rasko, J.E.J. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark. Res. 2021, 9, 1–13. [Google Scholar] [CrossRef]
- Sadelain, M. CAR therapy: The CD19 paradigm. J. Clin. Investig. 2015, 125, 3392–3400. [Google Scholar] [CrossRef] [Green Version]
- Van der Stegen, S.J.C.; Hamieh, M.; Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat. Rev. Drug Discov. 2015, 14, 499–509. [Google Scholar] [CrossRef]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef]
- Lanitis, E.; Poussin, M.; Hagemann, I.; Coukos, G.; Sandaltzopoulos, R.; Scholler, N.; Powell, D.J. Redirected Antitumor Activity of Primary Human Lymphocytes Transduced With a Fully Human Anti-mesothelin Chimeric Receptor. Mol. Ther. 2012, 20, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Adusumilli, P.S.; Cherkassky, L.; Villena-Vargas, J.; Colovos, C.; Servais, E.; Plotkin, J.; Jones, D.R.; Sadelain, M. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 2014, 6, 261ra151. [Google Scholar] [CrossRef] [Green Version]
- Carpenito, C.; Milone, M.C.; Hassan, R.; Simonet, J.C.; Lakhal, M.; Suhoski, M.M.; Varela-Rohena, A.; Haines, K.M.; Heitjan, D.F.; Albelda, S.M.; et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA 2009, 106, 3360–3365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Moon, E.; Carpenito, C.; Paulos, C.M.; Liu, X.; Brennan, A.L.; Chew, A.; Carroll, R.G.; Scholler, J.; Levine, B.L.; et al. Multiple Injections of Electroporated Autologous T Cells Expressing a Chimeric Antigen Receptor Mediate Regression of Human Disseminated Tumor. Cancer Res. 2010, 70, 9053–9061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.R.; Tanyi, J.L.; O’Hara, M.H.; Gladney, W.L.; Lacey, S.F.; Torigian, D.A.; Soulen, M.C.; Tian, L.; McGarvey, M.; Nelson, A.M.; et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol. Ther. 2019, 27, 1919–1929. [Google Scholar] [CrossRef]
- Moon, E.K.; Carpenito, C.; Sun, J.; Wang, L.-C.S.; Kapoor, V.; Predina, J.; Powell, D.J.; Riley, J.; June, C.H.; Albelda, S.M. Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor. Clin. Cancer Res. 2011, 17, 4719–4730. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zeng, Y.; Reeves, P.M.; Ran, C.; Liu, Q.; Qu, X.; Liang, Y.; Liu, Z.; Yuan, J.; Leblanc, P.R.; et al. AMD3100 Augments the Efficacy of Mesothelin-Targeted, Immune-Activating VIC-008 in Mesothelioma by Modulating Intratumoral Immunosuppression. Cancer Immunol. Res. 2018, 6, 539–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adusumilli, P.S.; Zauderer, M.G.; Rusch, V.W.; O’Cearbhaill, R.; Zhu, A.; Ngai, D.; McGee, E.; Chintala, N.; Messinger, J.; Cheema, W.; et al. Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: Safety and preliminary efficacy in combination with anti-PD-1 agent. J. Clin. Oncol. 2019, 37, 2511. [Google Scholar] [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Riviere, I.; Solomon, S.B.; Rusch, V.W.; Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 2021. [Google Scholar] [CrossRef]
- Hong, D.S.; Johnson, M.; Tanyi, J.L.; MacMullen, L.; Tighe, R.; Jalbert, L.; Muzithras, V.P.; Zikaras, K.; Cardama, A.Q.; Hassan, R. Preliminary safety and efficacy of gavocabtagene autoleucel (gavo-cel, TC-210), a T cell receptor fusion construct (TRuC™), in patients with treatment refractory mesothelin overexpressing solid tumors. Cancer Res. 2021, 81 (Suppl. S13), CT105. [Google Scholar] [CrossRef]
- Kiesgen, S.; Linot, C.; Quach, H.T.; Saini, J.; Bellis, R.; Banerjee, S.; Hou, Z.; Chintala, N.K.; Sadelain, M.; Adusumilli, P.S. Abstract LB-378: Regional delivery of clinical-grade mesothelin-targeted CAR T cells with cell-intrinsic PD-1 checkpoint blockade: Translation to a phase I trial. Bioinform. Converg. Sci. Syst. Biol. 2020, 80, LB-378. [Google Scholar] [CrossRef]
- Donaghey, J.; Kieffer-Kwon, P.; Patterson, T.; Chan, T.; Horton, H.; Tighe, R.; Gutierrez, D.A.; Getts, D.; Hofmeister, R. Abstract 2190: Engineering off-the-shelf T cell receptor fusion construct (TRuC) T cells. Immunology 2020, 80, 2190. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Karlen, J.; Brito, A.; Jheng, T.; Foubert, P.; Krishnamurthy, J.; Bulliard, Y.; Aftab, B. 98 ATA3271: An armored, next-generation off-the-shelf, allogeneic, mesothelin-CAR T cell therapy for solid tumors. J. Immunother. Cancer 2020, 8, A109. [Google Scholar] [CrossRef]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.; et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Liu, M.; Wang, L.; Liang, B.; Feng, Y.; Chen, X.; Shi, Y.; Zhang, J.; Ye, X.; Tian, Y.; et al. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem. Biophys. Res. Commun. 2020, 524, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hermanson, D.L.; Moriarity, B.S.; Kaufman, D.S. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity. Cell Stem Cell 2018, 23, 181–192.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinicaltrials.gov Identifier | Phase | Intervention | Cancer Type | Sponsors and Locations | Status | Outcomes |
---|---|---|---|---|---|---|
Chimeric monoclonal antibodies | ||||||
Amatuximab (MORAB-009) | ||||||
NCT01018784 | I | MORAb-009 | MPM, colorectal, pancreatic, and head and neck cancers | Eisai Co., Ltd., Japan | Completed (February 2013) | Efficacy: 3/17 SD (for 47–217 days). Safety: Treatment well-tolerated up to 200 mg/m2. |
NCT01521325 | I | Indium-111-labelled MORAb-009 | MPM, pancreatic, ovarian, and NSCLC | Morphotek and National Cancer Institute, USA | Completed (March 2013) | Safety: well-tolerated with favorable dosimetry profile. Radio-labelled MORAb-009 demonstrated higher uptake in MM than pancreatic cancer and bound to both primary and metastatic sites. |
NCT01413451 | I | Indium-111-labelled MORAb-009 | MPM, ovarian, and NSCLC | National Institutes of Health Clinical Center, USA | Terminated (November 2013) | Safety: well-tolerated with favorable dosimetry profile. |
NCT00738582 | II | MORAb-009 with pemetrexed and cisplatin | Unresectable MPM | Morphotek in Canada, Germany, Netherlands, Spain, USA | Completed (January 2014) | OR: 33/83 PR, 42/83 SD. PFS: 6.1 months, OS: 14.8 months. Safety: meutropenia (15/83) and anemia (9/83) were the most common grade 3 and 4 AE. Treatment generally well-tolerated. |
NCT02357147 | II | MORAb-009 with pemetrexed and cisplatin | Unresectable MPM | Morphotek in Australia, France, Germany, Italy, UK, USA | Terminated (November 2018) | Safety: treatment was generally well-tolerated. |
Antibody–drug conjugates | ||||||
Anetumab ravtansine (BAY94-9343) | ||||||
NCT02610140 | II | Anetumab ravtansine or vinorelbine | Advanced/metastatic MPM | Bayer, collaborating with ImmunoGen and MorphoSys in Australia, Belgium, Canada, Finland, France, Italy, South Korea, Netherlands, Poland, Russian Federation, Spain, Turkey, UK | Completed (May 2017) | Similar PFS of 4.3–4.5 months and OS of 9.5 months for anetumab ravtansine compared to 11.6 months for vinorelbine, 8.4 vs. 6.1% OR, and 34 vs. 35% serious adverse events. |
NCT02485119 | I | Anetumab ravtansine | Advanced malignancies including MPM | Bayer in Japan | Completed (July 2017) | Safety: treatment was generally well-tolerated. |
NCT02696642 | I | Anetumab ravtansine | Predominantly epithelial (>50% of tumor composition) pleural/peritoneal MM and other MSLN+ solid tumors w/wo renal or hepatic impairments | Bayer in France, Republic of Moldova | Completed (July 2019) | Results not published. |
NCT01439152 | I | Anetumab ravtansine | Epithelial peritoneal MM, advanced MPM, and platinum-resistant ovarian cancer | Bayer in USA | Completed (July 2019) | Efficacy: 1/138 CR, 11/138 PR, 66/138 SD, median PFS = 2.8 months. Safety: no drug-related deaths. All drug-related AE (≥5% of all participants) were reversible. |
NCT02639091 | Ib | Anetumab ravtansine with pemetrexed and cisplatin | Epithelial pleural/peritoneal MM, NSCLC | Bayer in USA and Italy | Completed (October 2019) | OR: 8/16 PR, set MTD to 6.5 mg/kg. |
NCT03126630 | I/II | Pembrolizumab w/wo anetumab ravtansine | MPM | National Cancer Institute, USA and Canada | Recruiting | |
NCT03926143 | II | Anetumab-ravtansine (continued treatment) | Solid tumors previously treated with anetumab-ravtansine | Bayer in USA, France, Italy, Poland. | Recruiting | |
BMS-986148 | ||||||
NCT02884726 | I | BMS-986148 | MPM and other advanced solid tumors | Bristol-Myers Squibb in Japan | Completed (September 2017) | Results not published. |
NCT02341625 | I/IIa | BMS-986148 w/wo nivolumab | Advanced MPM, ovarian, pancreatic, gastric, and NSCLC | Bristol-Myers Squibb in Australia, Belgium, Canada, Italy, Netherlands, UK, USA | Active, not recruiting | Preliminary results (April 2019) showed the best OR of 31%. Durable responses in MPM patients ~9 months. 44% of participants (n = 126) developed grade 3/4 treatment-related AE. 1 death due to treatment-related pneumonitis reported. |
BAY2287411 | ||||||
NCT03507452 | I | BAY2287411 (thorium-227-labelled antibody-chelator conjugate) | Advanced recurrent epithelioid MM, ovarian cancer, and PDAC | Bayer in USA, UK, Sweden, Netherlands, Finland | Recruiting | |
Immunotoxins | ||||||
SS1P | ||||||
NCT00066651 | I | Immunotoxin SS1P bolus infusion | MPM, cervical, fallopian tube, head and neck, lung, ovarian, pancreatic, and primary peritoneal cavity cancers | Warren Grant Magnuson Clinical Center—NCI Clinical Studies Support, Comprehensive Cancer Center at Wake Forest University, USA | Completed | Safety: grade 3 pleuritis at highest DLT. No grade 4 toxicities; well-tolerated. Efficacy: 4/33 minor responses, 19/33 SD, 19/33 PD. |
NCT00006981 | I | Immunotoxin SS1P continuous infusion | MPM, cervical, fallopian tube, head and neck, lung, ovarian, PDAC, and primary peritoneal cavity cancers | Warren Grant Magnuson Clinical Center—NCI Clinical Studies Support, USA | Completed | Efficacy: 1/24 PR (ovarian), 12/24 SD, 11/24 PD. Safety: grade 4 acidosis. Participants with existing pulmonary hypertension and diastolic dysfunctions developed large pleural effusions and respiratory failure upon treatment. Generally well-tolerated. Overall, continuous infusion was not better than bolus dosing. |
NCT01445392 | I | Immunotoxin SS1P (single or multicycle) with pemetrexed and cisplatin | MPM | National Institutes of Health Clinical Center, USA | Terminated (October 2016) | Efficacy: 12 PR, 3 SD, and 5 PD out of 20 evaluable participants. 10 PR, 1 SD, 2 PD out of 13 patients who received MTD. Safety: no treatment-related grade 4 AE and 1 death due to neutropenic sepsis during treatment, likely due to underlying chronic kidney disease. |
NCT01362790 | I/II | Immunotoxin SS1P with pentostatin and cyclosporamide | MPM, lung, and PDAC | National Institutes of Health Clinical Center, USA | Completed (August 2017) | OS from 4.2 to 29.3 months, PFS from 3.9 to 11.8 months depending on different dose regimens, 2/55 PR and 24/55 SD. Safety: no grade 4 AE attributed to SSP1. Pentostatin or cyclophosphamide caused grade 4 lymphopenia. |
LMB-100 | ||||||
NCT03436732 | I | Immunotoxin LMB-100 with SEL-110 (biodegradable nanoparticle containing rapamycin for preventing anti-drug-antibodies formation) | MPM | National Institutes of Health Clinical Center, USA | Terminated (April 2019) | Terminated before primary outcomes due to 1 case of pneumonitis associated with drugs in the 100 mcg/kg LMB-100 and SEL-110 arm. |
NCT03644550 | II | Immunotoxin LMB-100 followed by pembrolizumab | MPM | National Institutes of Health Clinical Center, USA | Completed (November 2020) | Preliminary results (April 2018) showed an efficacy of 1 CR, 3 PR, 1 SD, and 2 PD (n = 7). With checkpoint inhibitor: median OS was 11.9 months. |
NCT02798536 | I | Immunotoxin LMB-100 w/wo nab-paclitaxel (Abraxane) | MPM | National Institutes of Health Clinical Center, USA | Completed (January 2021) | Positive results for safety. |
NCT04840615 | I | Intratumoral injection of Immunotoxin LMB-100 with ipilimumab | MPM | National Institutes of Health Clinical Center, USA | Recruiting | |
NCT04034238 | I | Immunotoxin LMB-100 combined with tofacitinib | Epithelioid MPM, extrahepatic cholangiocarcinoma, and PDAC | National Institutes of Health Clinical Center, USA | Recruiting | |
NCT02810418 | I/II | LMB-100 (via short or continuous infusion) w/wo nab-paclitaxel | Previously treated mesothelin-expressing solid tumors including MPM | National Institutes of Health Clinical Center, USA | Active, not recruiting | Preliminary results (May 2020): no objective responses (n = 15). Long infusion of LMB-100 was well-tolerated but led to higher immunogenicity (i.e., higher titers of anti-drug antibodies). Updated preliminary results (February 2021) showed the best OR for short infusion as: 1/14 PR. PFS not presented due to patients receiving other treatments afterwards. 4 cases of grade 4 LMB-100-associated AE (n = 40). |
Cancer vaccines | ||||||
CRS-207 | ||||||
NCT00585845 | I | CRS-207 | Epithelial MPM, ovarian, pancreatic, and NSCLC cancers which failed standard treatments | Anza Therapeutics, Inc. in USA and Israel | Terminated (February 2009) | Efficacy: 6/17 survived for ≥15 months (1 mesothelioma participant). Safety: well-tolerated. MTD set to 1 × 109 cfu. No grade 5 AE observed, only transient grade 4 lymphopenia. Above MTD (1 × 1010 cfu): 1 case of grade 2 CRS. |
NCT03175172 | II | CRS-207 with pembrolizumab | MPM epithelial/biphasic | Aduro Biotech, Inc., collaborating with Merck Sharp and Dohme Corp., USA | Terminated (January 2018) | OR: 1/9 SD, PFS: 3.4–8.9 weeks, and 4/10 AE (grade not reported). Terminated due to low enrolment and lack of clinical activity. |
NCT02575807 | I/II | CRS-207 w/wo epacadostat (an IDO1 inhibitor) and/or pembrolizumab | Platinum-resistant peritoneal, ovarian, and fallopian cancers | Aduro Biotech Inc., collaborating with Incyte Corporation in USA and Canada | Completed (May 2018) | OR: 6/32 SD, OS: 4.71–88.71 weeks. Safety: 23/28 with grade 3 or higher AE. Terminated due to low enrolment and lack of clinical response. |
NCT01675765 | Ib | CRS-207 w/wo cyclophosphamide followed by standard-of-care chemotherapy (pemetrexed and cisplatin) | MPM | Aduro Biotech, Inc. in USA | Completed (September 2018) | Treatment without cyclophosphamide had slightly better responses (2.8 vs. 0% CR, 53 vs. 52% PR, 39 vs. 38% SD, and 36 vs. 21 total participants), less AE (39 vs. 50%) but higher all-cause mortality (8 vs. 0%). |
CAR T cell therapies | ||||||
NCT01355965 | I | mRNA anti-MSLN CAR-T cells | MPM and PDAC | University of Pennsylvania, USA | Completed (October 2015) | Positive results (primary endpoint: safety). Best OR: 2/18 patient showed transient response. |
NCT02159716 | I | Anti-MSLN CAR-T cells (CART-meso) | MPM, PDAC, and ovarian | University of Pennsylvania, USA | Completed (November 2015) | Positive results (primary endpoint: safety). Low persistence and low tumor infiltration were observed. Best OR: 6/15 patients with SD. |
NCT01583686 | I/II | Anti-MSLN CAR-transduced peripheral blood lymphocytes with fludarabine, cyclophosphamide, and IL-2 | MSLN-expressing tumors | National Institutes of Health Clinical Center, USA | Terminated due to slow/insufficient accrual (December 2018) | Positive results for safety but low efficacy. Best OR: 1/15 with SD. 14/15 with PD. |
NCT03054298 | I | Anti-MSLN CAR-T cells (huCART-meso) with cyclophosphamide | MSLN-expressing tumors including MPM | University of Pennsylvania, USA | Recruiting | |
NCT03608618 | I | mRNA anti-MSLN CAR PBMC (MCY-M11) with cyclophosphamide | Peritoneal MM, fallopian tube and ovary adenocarcinoma, and primary peritoneal carcinoma | MaxCyte, Inc., USA | Active, not recruiting | Preliminary results (ASCO 2020): positive results on safety. 4/11 patients with SD. |
NCT02414269 | I/II | Anti-MSLN CAR-T cells with suicide switch (iCasp9M28z) and cyclophosphamide or pembrolizumab | MPM | Memorial Sloan Kettering Cancer Center, USA | Recruiting | Positive results on safety: no DLT, no grade 5 AE and manageable Grade 4 AE. Median OS was 17.7 months and 1-year OS was 74%. In cohort treated with pembrolizumab median OS was 23.9 months and 1-year OS was 83%. Best OR was 2/16 patients with PR, 9/16 with SD and 5/16 with PD based on mRECIST criteria. |
NCT04577326 | I | Anti-MSLN CAR T cells with intrinsic anti-PD1 inhibition (M28z1XXPD1DNR and ATA2271) and cyclophosphamide | MPM | Memorial Sloan Kettering Cancer Center in collaboration with Atara Biotherapeutics, USA | Recruiting | |
NCT03907852 | I/II | Anti-MSLN TCR fusion Construct (TRuC) T cells (gavo-cel and TC-210) with cyclophosphamide, pembrolizumab, and fludarabine | MSLN-expressing tumors | TCR2 Therapeutics, USA and Canada | Recruiting | Preliminary results (AACR 2021): single gavo-cel infusion was generally safe and resulted in tumor regression in all 8 patients treated (disease control rate: 100%) and objective responses in 3 (2 with MPM and 1 with ovarian cancer). Addition of lymphodepletion resulted in higher gavo-cel peak expansion, associated with greater tumor regression and objective responses. |
NCT04489862 | I | Anti-MSLN CAR-T cells expressing PD-1 nanobodies | MPM and NSCLC | Wuhan Union Hospital, China | Recruiting | |
NCT03638206 | I/II | Anti-MSLN CAR-T cells with cyclophosphamide and fludarabine | MPM | Shenzhen BinDeBio Ltd., China | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, D.; Castelletti, L.; van Zandwijk, N.; Rasko, J.E.J. Hitting the Bull’s-Eye: Mesothelin’s Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers 2021, 13, 3932. https://doi.org/10.3390/cancers13163932
Yeo D, Castelletti L, van Zandwijk N, Rasko JEJ. Hitting the Bull’s-Eye: Mesothelin’s Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers. 2021; 13(16):3932. https://doi.org/10.3390/cancers13163932
Chicago/Turabian StyleYeo, Dannel, Laura Castelletti, Nico van Zandwijk, and John E. J. Rasko. 2021. "Hitting the Bull’s-Eye: Mesothelin’s Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma" Cancers 13, no. 16: 3932. https://doi.org/10.3390/cancers13163932
APA StyleYeo, D., Castelletti, L., van Zandwijk, N., & Rasko, J. E. J. (2021). Hitting the Bull’s-Eye: Mesothelin’s Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma. Cancers, 13(16), 3932. https://doi.org/10.3390/cancers13163932