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Simple Summary: Prostate Cancer is one of the main threats to men’s health. Its accurate diagnosis
is crucial to properly treat patients depending on the cancer’s level of aggressiveness. Tumor
risk-stratification is still a challenging task due to the difficulties met during the reading of multi-
parametric Magnetic Resonance Images. Artificial Intelligence models may help radiologists in
staging the aggressiveness of the equivocal lesions, reducing inter-observer variability and evaluation
time. However, these algorithms need many high-quality images to work efficiently, bringing up
overfitting and lack of standardization and reproducibility as emerging issues to be addressed. This
study attempts to illustrate the state of the art of current research of Artificial Intelligence methods to
stratify prostate cancer for its clinical significance suggesting how widespread use of public databases
could be a possible solution to these issues.

Abstract: Many efforts have been carried out for the standardization of multiparametric Magnetic Res-
onance (mp-MR) images evaluation to detect Prostate Cancer (PCa), and specifically to differentiate
levels of aggressiveness, a crucial aspect for clinical decision-making. Prostate Imaging—Reporting
and Data System (PI-RADS) has contributed noteworthily to this aim. Nevertheless, as pointed
out by the European Association of Urology (EAU 2020), the PI-RADS still has limitations mainly
due to the moderate inter-reader reproducibility of mp-MRI. In recent years, many aspects in the
diagnosis of cancer have taken advantage of the use of Artificial Intelligence (AI) such as detection,
segmentation of organs and/or lesions, and characterization. Here a focus on AI as a potentially
important tool for the aim of standardization and reproducibility in the characterization of PCa by
mp-MRI is reported. AI includes methods such as Machine Learning and Deep learning techniques
that have shown to be successful in classifying mp-MR images, with similar performances obtained
by radiologists. Nevertheless, they perform differently depending on the acquisition system and
protocol used. Besides, these methods need a large number of samples that cover most of the vari-
ability of the lesion aspect and zone to avoid overfitting. The use of publicly available datasets could
improve AI performance to achieve a higher level of generalizability, exploiting large numbers of
cases and a big range of variability in the images. Here we explore the promise and the advantages,
as well as emphasizing the pitfall and the warnings, outlined in some recent studies that attempted
to classify clinically significant PCa and indolent lesions using AI methods. Specifically, we focus on
the overfitting issue due to the scarcity of data and the lack of standardization and reproducibility in
every step of the mp-MR image acquisition and the classifier implementation. In the end, we point
out that a solution can be found in the use of publicly available datasets, whose usage has already
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been promoted by some important initiatives. Our future perspective is that AI models may become
reliable tools for clinicians in PCa diagnosis, reducing inter-observer variability and evaluation time.

Keywords: prostate cancer; AI; mp-MRI; PI-RADS; public databases

1. Introduction

Prostate Cancer (PCa) is one of the most common types of cancer among men, causing
thousands of deaths every year worldwide [1]. The more effective weapon against this
disease is the early detection of clinically significant tumor lesions. Confirming PCa
presence and staging requires the inspection of the gland tissue by pathologists. Indeed,
for many years, systematic sampling of the whole prostate because of rising PSA (Prostate
Specific Antigen) has represented the gold standard to diagnose PCa, due to a lack of
accurate imaging modality to detect PCa foci early. As a result, men without cancer often
undergo unnecessary systematic prostate biopsies with a potential risk of complications
(mainly infections), and clinically indolent cancers are often detected, but biologically
aggressive cancers are sometimes missed [2].

So far, the best alternative for PCa staging is multiparametric Magnetic Resonance
Imaging (mp-MRI), an ensemble of non-invasive imaging techniques, such as T2-weighted
(T2W), Diffusion-weighted (DWI), and Dynamic Contrast Enhancement (DCE) imaging [3].
Moreover, mp-MRI is an essential tool for a targeted prostate biopsy that significantly
increases the detection of clinically significant PCa in different settings [4], for surgical
planning of nerve sparing approach [5], and for risk assessment during active surveillance
protocol [6]. Recently, the technique of prostate biopsy called “fusion biopsy”, which
allows a co-registration between MRI and echographic images, has drastically improved
the detection rate of prostate biopsy thanks to the accuracy of mp-MRI [4].

For determining whether a lesion can be labeled as clinically significant or clinically
non-significant, a guideline has been drawn up: The Prostate Imaging Reporting and Data
System (PI-RADS). PI-RADS version 2.1 [7] is a standard for reading mp-MR images to
risk-stratify PCa by assigning a score to the suspected lesions index that ranges from 1
to 5, from benign to malign PCa, depending on the lesion’s aspect and localization [8].
Despite the attempt to standardize image interpretation with the use of PI-RADS guidelines,
inter-observer variability due to the reader experience is still a current issue, especially
when the lesions show an intermediate level of aggressiveness, labeled with the equivocal
PI-RADS score of 3 [9]. In those cases, the aggressiveness of the lesion can be assessed only
by histopathology. To reduce the number of false-positive, and hence unnecessary, biopsies,
an improvement in reading MR images is desired. Thus, researchers are investigating
high-specificity and more standardized approaches to map the histopathology outcomes
through radiomics, an approach based on the analysis of quantitative features extracted
from images [10,11]. In what follows, we will discuss the recent achievement and what
could be improved in PCa characterization using Artificial Intelligence (AI) methods.

2. AI in PCa Characterization

AI has become a very widely used and trendy term that can be used to refer to
different approaches. Here we follow the common framework for which AI includes
methods such as Machine Learning and Deep Learning. AI tools can help PCa diagnosis
in many aspects, such as in prostate gland volume segmentation, lesion segmentation,
detection, and characterization [12,13], and it has also been developed for applications
in robotic surgery both for prostate cancer [14] and kidney cancer [15], digital pathology,
and genomics [16]. However, one of the most challenging tasks is to accurately stage
lesions aggressiveness, in particular classifying between not clinically significant tumors
and clinically significant PCa. The threshold between indolent and aggressive lesions
is usually set at a Gleason Score (GS) of 7 that can be obtained by the Gleason Grades
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(GG) 3 + 4 or 4 + 3. However, as we will see below, there is no broad consensus among
the studies.

In the literature, studies that classify different levels of aggressiveness implement
various AI techniques, both the traditional Machine Learning (ML) algorithm and the more
advanced methods of Deep Learning (DL), in particular based on Convolutional Neural
Networks (CNN), particularly tailored for the processing of imaging data. Discarding all
research that just included the classification between malign and benign lesions, we selected
a total of 18 studies [17–34], including one study from 2015 [22], three from 2017 [17,18,27],
two from 2018 [24,28], nine from 2019 [19,25,26,29–34], and three from 2020 [20,21,23].

We checked how the studies obtained their reference standard, that is the GS or
GG from the histological findings. Although prostatectomy is more precise as the whole
mount of the gland is inspected, it is used just in three studies [27,32,33] and partially in
one paper [21]. The rest of the studies adopted systematic transrectal ultrasound-guided,
MR-guided, or MRI/US- fusion biopsy for acquiring their gold standards.

To define the potential value of AI methods for PCa stratification, the key point
in research is to evaluate the performance of new methods for discrimination between
indolent and clinically significant cancers. The threshold has been set correspondingly
to an intermediate risk of cancer historically corresponding to GS = 2 + 4, 4 + 2, 3 + 4,
4 + 3. Nevertheless, the most recent histological evaluation of prostate specimen considers
a threshold of GS = 7 as reliable considering the finding corresponding to GS = 2 + 4 and
GS = 4 + 2 not reliable. This is the reason why most of the recent studies tried to separate
lesions with GS ≥ 7 and GS < 7. Only one [31] set the threshold at GS = 8. Conversely, Litjens
et al. in 2015 [22] shifted the threshold towards lower values of GS, namely, they separated
GS = 3 + 3 against the higher scores (including GS = 2 + 4). Similarly, also in [34], they
divided lesions with the same GS but different GGs, i.e., they considered GS = 3 + 4 within
the indolent group and GS = 4 + 3 within the aggressive group. Noticeably, only two studies
performed a variety of classification tasks [25,29]. Specifically, Jensen et al. [29] performed
binary classification separating lesions belonging to one GG versus the others, trying
different GGs combinations. The best performance (AUC 0.98, sensitivity 1, specificity
0.95) was obtained for GG 3 vs. the rest for lesions in the peripheral zone while the worst
results were reported for GG 1 + 2 vs. rest for lesions in the transition zone (AUC 0.83,
sensitivity 0.86, specificity 0.80). Differently, Cao et al. separated low- and high-grade
tumors trying different GS thresholds. Namely, they classified lesions with GS ≥ 7 vs.
GS < 7 and GS ≥ 4 + 3 vs. GS ≤ 3 + 4 achieving an AUC of 0.81 and 0.79, respectively,
showing a slight decrease when attempting to further stratify the lesions with intermediate
risk. Moreover, they tried to increase the thresholds at GS 8 and 9 but the performances
dropped to AUC 0.67 and 0.57, respectively. All the classification tasks are reported in
Table S1.

The goodness of the AI models can be evaluated not only by the overall performance
but also by comparing it with the PI-RADS score. However, not all the considered studies
reported the respective PI-RADS results. Moreover, one study [22] used only PI-RADS
version 1, two studies [18,26] used both version 1 and 2, and just one [23] adopted the
latest version 2.1. In Figure 1, the triangle-shaped dots show the performance achieved
by radiologists, which are directly linked by a line with the AI performance, indicated
by round-shaped dots. The size of the markers relates to the different datasets used to
define the performance of methods: The biggest refers to the training set (the set of samples
used to find the parameters of the model, which in our context, includes the sub-set for
validation) and the smallest refers to the test set (the set of samples used to provide an
unbiased evaluation of the final model on unseen data). When using the AUC metric,
almost all the AI models achieved a higher performance with respect to the PI-RADS
evaluation. The best improvement was obtained by Woznicki et al. [23] where the AUC
from 0.69 is raised to 0.84 when applying the model to a test set. In addition, Chen et al. [19]
showed an impressive increase from 0.76 to 0.93, using a test set as well. In [17,32], the AI
approach did not get much better than PI-RADS, while [18] was the only study where PI-
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RADS achieved a slightly higher level of performance: An AUC of 0.83 against the 0.80 of
the CNN. Extracting the AUC metric only for those studies that considered prostatectomy
as the reference standard, AI approaches obtained very good performances: in [24,25,32,33],
AUC ranged from 0.81 to 0.95. The requirement of prostatectomy as a gold standard will
sensibly reduce the number of data to work with AI, but these few results show that the
proper gold standard used as reference can help the performance of AI models given the
high AUC obtained.
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When considering the sensitivity, only Liu et al. [17] AI showed a much better outcome
(0.77 vs. 0.89), while the others obtained comparable results [23,25], or even worse, like
in [26,32] with a sensitivity of 0.67 vs. 0.59 and 0.86 vs. 0.63, respectively. Sensitivity allows
one to extrapolate the percentage of missed lesions (that corresponds to the percentage
of the false negative cases). Only a few studies comment on this score giving possible
explanations for false negative such as the presence of small and subcapsular lesions [35].
As far as the specificity is concerned, the results are much less controversial, with similar
results obtained in [26] and better AI performances achieved in [14,19,28], where the
specificities on the test set of PI-RADS and AI are 0.81 vs. 0.89, 0.48 vs. 0.8, and 0.28 vs.
0.57, respectively.

Usually, AI models achieved higher or comparable results with respect to the radiolo-
gists’ outcomes. However, sometimes PI-RADS seems to be more performant, a sign that
AI methods still have some limitations. In Zhong et al. [32], the authors reported many
possible reasons for explaining the weakness of their model. Interestingly, they stressed
the importance of implementing 3D AI models for exploiting the full potential of mp-MRI.
In the considered studies, only [17,23,32] adopted a 3D CNN.
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Noteworthy, some studies also included PI-RADS scores as part of the AI implementa-
tion, for example using the scores as one of the features in ML algorithms [21] or combining
AI and PI-RADS outcomes to better discriminate clinically and not clinically significant
PCa [22]. In the first case, using some hand-crafted radiomic features together with PI-
RADS scores could improve the predictive performance when properly combined. In the
second case, the authors showed that combining the CAD (Computer-Aided Diagnosis)
results with PI-RADS scores improved power prediction with respect to the PI-RADS alone,
specifically from 0.78 to 0.87.

As far as the type of AI model implemented in the studies is concerned, 8 out of
18 studies [19,21–23,28,29,31,33] used a ML approach while the remaining 10, [17,18,20,24–
27,30,32,34] implemented a CNN for the classification tasks.

Although more samples were used for training the CNNs than the ML algorithms
(i.e., 367 against 86 on average), the two approaches did not show significant differences,
as the overall AUC achieved was 0.86 ± 0.07 and 0.88 ± 0.07, respectively. A more marked
difference between ML and DL techniques is presented by Cuocolo et al. [36], where the
ML classifiers performed slightly better, with a pooled AUC of 0.90 ± 0.02, while the DL
methods just achieved an average AUC of 0.78 ± 0.04.

Therefore, the available results show that the use of AI approaches still presents
some weaknesses. The major problems can be resumed in two main points: Overfitting
due to the adoption of small datasets and the lack of standardization/reproducibility of
acquired imaging data. These issues are mainly due to the data generation procedure. In
general, to obtain high-quality mp-MR images for AI models, the following general steps
are followed: (1) MR multi-sequence acquisition; (2) application of suitable preprocessing
steps to reduce noise and variability; (3) lesions segmentation and level of aggressiveness
identification. This procedure is cost- and time-consuming, explaining the reduced number
of images usually available. Besides, each step can be affected by great variability and may
be case-dependent, leading to a low level of standardization among the studies.

2.1. Overfitting

It is well known that AI methods, and in particular DL algorithms, require many
data to efficiently train the net and properly generalize to test data. As shown above,
it is hard to gather a well-sized dataset to avoid overfitting. For example, in the cited
papers, the mean number of patients is 155 (min: 40 [31], max: 417 [25]). However, to fully
grasp the issue of the lack of samples, one should consider the number of lesions used
for training the AI models. In most of the papers, not only the dominant lesions but all
the lesions within the prostate were considered except for a few experiments [21,23,31].
Nevertheless, this difference seems not to affect the performance of the methods. However,
to fully grasp the issue of the lack of samples one should consider the number of lesions
used for training the AI models. The average number of lesions used in the training set is
242 (min: 40 [31], max: 728 [25]) and in the test set is 99 (min: 18 [23], max: 208 [18]. These
lesions are not always divided equally among the classes; in fact, only in [21,26,31,32,35,37]
do the classes contain a similar number of samples. For dealing with unbalanced classes,
few studies [18–20,28,30,32] used different techniques, such as SMOTE (synthetic minority
oversampling technique) or a simple re-sampling by using data augmentation.

Considering the overall distribution of the lesion localization in all 18 studies, most
of the lesions are found in the Peripheral Zone (PZ) (58.35%), then in the Transition Zone
(TZ) (24.96%), and the Anterior Fibromuscolar Stroma (AFS) (12.58%). A small component
is also found in the central zone (CZ) and in the seminal vesicle (VS), which together
count for less than 5% of the total. From a clinical point of view, it is also important
to understand the place of the lesion within the prostate gland, because depending on
the zone, it can be harder to identify and characterize its aggressiveness, especially for
non-experienced readers. The only study that performed different classifications based on
the lesion localization is [30], which investigated classifications separating the lesions from
PZ and TZ/AFS and achieved an average AUC of 0.92 ± 0.05 and 0.88 ± 0.04, respectively.
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Although lesions belonging to TZ are usually more complicated to identify and characterize,
even for AI models, these results are promising.

Interestingly, a decreasing trend of the performance against the number of samples
(lesions) used for testing the AI model was noticed as shown in Figure 1. When using AUC
and sensitivity, the respective coefficient of correlation is −0.14 and −0.78, respectively,
confirming the negative trend. This is a sign of overfitting because if one trains the
algorithm with few samples that do not cover all the variability of the lesion types, grades,
and locations, when using a relatively big test set, it can happen that the classifier is not
able to recognize the new cases. Weirdly, in the case of specificity and sensitivity also for
the training set, there is a negative correlation between samples and performance, but this
could depend on many other factors, such as the model implemented or the quality of the
data. In addition, most of the studies did not adopt an independent test set, adopting a
cross-validation approach using all the data available.

There are mainly two strategies to solve overfitting if more data cannot be gathered:
Data Augmentation (DA) and Transfer Learning (TL) [37,38]. DA multiplies the images
at hand using a series of operations, such as rotation, translation, cropping, blurring,
shearing, scaling, etc., to increase the variability within the training dataset and thus the
generalization ability of the AI model. As reported in Table S1 in Supplementary Materials,
most of the studies adopted DA for dealing with the small sample size, excepted the
few in which it is not explicitly reported [21,23,24,29,31,33,38]. On the other hand, when
adopting TL, the AI model is partially pre-trained using a larger dataset, even of different
image types. Subsequently, when the neural network is trained with the mp-MR images,
some of the weights are fixed, allowing only the outer layers to be updated during the
learning process. Well-known datasets created for visual object recognition are ImageNets,
used in [30,34], and CIFAR-10, used in [32], which include thousands of annotated images
divided into different categories.

2.2. Standardization and Reproducibility

We have already stressed the complex procedures behind mp-MR image acquisition.
Here we are going to focus on the protocol variability among the different studies. Firstly,
it is important to show the data source heterogeneity, which is from how many centers the
images have been acquired. Most of the studies obtained the mp-MR sequences from a
single institution, only one [28] came from two institutions, and two studies [24,34] used
their own institution dataset together with publicly available images (Prostate-X [37]).
Therefore, so far, the adoption of multi-center data is quite limited. Even within the same
institution, different hardware setups for the MR acquisition can be used. For instance,
most of the studies used more than one scanner, except in [19,21,26,31,33]. The magnetic
field strength of the scanner was always 3T, except in [31] where it was 1.5T or in [28]
where both scanners at 3T and 1.5T were used.

As far as coils are concerned, there is also variability in the choice of the endorectal
coil (ERC), which was only adopted in part of the acquisitions in [25,29,32]. Some studies
have reported a higher quality of MR image acquired with ERC [39]. However, the overall
staging accuracy is usually not significantly different [39–41] even though in [41] it has
shown a greater performance in revealing cancer at an intermediate level of aggressiveness
(GS = 3 + 4). Nonetheless, in the considered studies, the overall performance when using
an ERC was comparable to the cases with another type of coils, with an AUC of 0.78 ± 0.05
and 0.83 ± 0.06, respectively. Although the ERC increases the signal-to-noise ratio, artifacts
due to its geometry and susceptibility variations could interfere with this benefit.

When dealing with multi-sequence, multi-center, multi-scanner, or multi-coil data,
it is fundamental to apply some preprocessing steps, such as the normalization of the
intensities for reducing variability and registration of the images acquired with different
MR sequences into the same space. Only a few studies did not use [21] or did not report
any preprocessing steps [19,23,31,37]. Table 1 summarizes the information reported above
about the datasets and the MR image acquisitions and processing.
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Table 1. Table reporting general information on datasets (and their format), MR sequences, scanners, coils, and the image
preprocessing (normalization or registration) methods.

Paper Dataset MR Sequence Hardware Setup Image Processing

Liu, S. 2017 [17] ProstateX
(DICOM) T2W, DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without ERC Registration

Mehrtash, A. 2017 [18] ProstateX
(DICOM) DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without ERC Normalization

Seah, J. 2017 [27] ProstateX
(DICOM) T2W, DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without ERC Normalization

Parra, A. 2018 [28] 2 institutions
(DICOM) DWI, DCE

(I) Siemens and General Electric at
3T with external pelvic coil; (II)

Siemens, Philips, General Electric at
3T and 1.5T with ERC

Registration,
Normalization

Jensen, C. 2019 [29] ProstateX
(DICOM) T2W, DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without an ERC Normalization

Chen, Q. 2019 [30] ProstateX
(DICOM) T2W, DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without an ERC Normalization

Liu, B. 2019 [31] 1 institution DCE General Electric (Signa Excite II) at
1.5T N/A

Zhong, X. 2019 [32] 1 institution T2W, DWI, DCE

Siemens (Trio, Verio, Prisma or
Skyra) at 3T with pelvic

phased-array coil with or without
ERC

Normalization

Toivonen, J. 2019 [33] 1 institution T2W, DWI Philips (Ingenuity) at 3 T with 32
channel cardiac coils Normalization

Yuan, Y. 2019 [35]
(I)1 institution
(II) ProstateX

(DICOM)
T2W, DWI (I) N/A; (II) Siemens (Magnetom

Trio and Skyra) at 3T without ERC Normalization

Chen, T. 2019 [19] 1 institution T2W, DWI Philips (Intera Achieva) at 3T with
32-channel body phased-array coil N/A

Aldoj, N. 2020 [20] ProstateX
(DICOM) T2W, DWI, DCE Siemens (Magnetom Trio and Skyra)

at 3T without ERC
Registration

Normalization

Bernatz, S. 2020 [21] 1 institution
(DICOM) T2W, DWI, DCE

Siemens (Magnetom Prisma FIT) at
3T with 32-channel body coil and

spine phased-array coil

Limited image
manipulation

Litjens, G. 2015 [22] 1 institution T2W, DWI, DCE Siemens (Trio or Skyra) at 3T
without ERC N/A

Woznicki, P. 2020 [23] 1 institution T2W, DWI Siemens (Magnetom Skyra and Trio)
at 3T with pelvic phased-array coils N/A

Wang, Z. 2018 [24]
(I)1 institution
(II) ProstateX

(DICOM)
T2W, DWI

(I) Siemens (Magnetom Skyra) at 3T
(II) Siemens (Magnetom Trio and

Skyra) at 3T without ERC
Registration

Cao, R. 2019 [25] 1 institution T2W, DWI Siemens (Trio, Skyra, Prisma, Verio)
at 3T with and without ERC

Registration
Normalization

Schelb, P. 2019 [26] 1 institution T2W, DWI
Siemens (Prisma) at 3T with

standard multichannel body coil and
integrated spine phased-array coil

Registration

Mp-MRI is composed of three sequences: T2W, DWI, DCE. However, some studies
used just T2W-DWI [20,24–27,34,36] or DWI-DCE [18,28] or only DCE [31]. Interestingly,
more than half of the studies used DCE and not always together with the other two
sequences. Furthermore, in [42], the higher AUC achieved with a model including DCE has
been shown. Therefore, DCE plays an important role in AI applications. Conversely, DCE
has a secondary role in the PI-RADS evaluation of clinically significant PCa [43]. However,
when used together with T2W and DWI images (depending on the lesion location), it can
be useful for detecting small lesions and characterizing indeterminate findings [42,44].

Commenting on all the chosen protocols parameters is out of the scope of this paper.
However, we would like to report the papers that did not give any information on the in-
house acquired images [34] or that reported a minimal description [29,30]. Others [17,18,27]
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did not report any information but they used a public dataset whose protocols can be
found easily elsewhere. There is a specific parameter of the mp-MRI protocol whose choice
is a remarkable source of variability that is the high b-value of DWI. In agreement with the
PI-RADS 2.1 guidelines [7], for acquiring ADC maps, the DWI sequences of the mentioned
studies have at least two values: One low b-value from 0 to 50 s/mm2 (although the
50–100 s/mm2 range is preferred) and the other from 800 to 1000 s/mm2. Optionally,
intermediate values are also added, ranging from 100 to 500 s/mm2. Interestingly, in [28],
a high b-value of 1400 s/mm2 for ADC maps was used. Sometimes, a DWI sequence
with a higher b-value was joined to the image dataset, which ideally should be above
1400 s/mm2 [7]. Nonetheless, except in [28,30], the other studies used a high b-values of
800 s/mm2.

For the aim of standardization, it is crucial to use the same format for the mp-MR
images. The standard for managing and sharing medical images is Digital Imaging and
Communications in Medicine (DICOM). As it can be seen in Table 1, the DICOM format was
adopted by the studies that used the public dataset Prostate-X [17,18,20,24,27,29,30,34] and
just from two institution datasets [21,28]. The other studies did not report this information.
Considering the studies that used institution data, only one [33] made the images available
upon request. The same study was also the only one that shared the custom-made software
of the analysis in a hosting service platform (GitHub). However, some of the studies
reported basic information on the software packages used in the analysis pipeline, while
others did not give any information [17,22,24,30,31,34]. Disappointingly, sharing data
and code is not a common behavior, strongly limiting the possibility of comparative or
integrated multi-centric studies.

The lack of standardization affects not only MR image acquisition and analyses but
also concerns the reference standard to which images are compared. A standard criterion to
consider the clinical significance of prostate cancer has to be shared to facilitate the process
of validation of the algorithm deputed to automate lesion classification. A comparison
between different AI approaches can be facilitated even with the choice of considering all
the lesions present in each organ with respect to considering only the dominant t lesion for
each patient.

3. The Role of Public Databases

A solution to the problems reported in Sections 2.1 and 2.2, namely overfitting and
lack of standardization/reproducibility, can be a more widespread utilization of publicly
available databases. However, only six studies [17,18,24,27,29,30] used public datasets,
and two adopted both institution and public images [25,36]. Interestingly, the AI models
implemented in the two above-mentioned groups achieved a mean AUC of 0.87 ± 0.06
and 0.93 ± 0.06 using, on average, 282 and 411 lesions, respectively. On the other hand,
the studies that only trained their models with institution data [19,21–23,25,26,28,31–33]
achieved a mean AUC of 0.84 ± 0.07 with 184 lesions on average. Thus, using the larger
public databases may improve the overall AI performance, and increase their robustness
towards new data.

So far, a recent review [45] identified 42 publicly available, patient-centered PCa
datasets, but only 8 contain mp-MR image data. All eight datasets (including Prostate-X)
are stored in The Cancer Image Archive (TCIA) [46]. TCIA is a large-scale and open-
source repository of high-quality images, often supported with genomic, proteomic, and
clinical data to investigate cancer phenotype correlates, hence enabling more personalized
medicine. TCIA is built following the pillars of the data sharing given by the FAIR
principle [47] guidelines to ease the data re-usability. Two of the PCa datasets in TCIA are
part of the Quantitative Imaging Network (QIN) [48]. One of the aims of QIN is to help
researchers to standardize protocols and procedures and benchmark analysis tools and
image biomarkers both for clinical decision-making and prognosis.



Cancers 2021, 13, 3944 9 of 12

In response to the demand for more integration between clinical information and
imaging data, another project has been initiated, the Prostate Medical Intelligence System
Enterprise-Clinical, Imaging, and Pathology (PROMISE CLIP) [49].

Another promising EU-founded project for boosting the accuracy of AI models in
PCa characterization is the ProCancer-I (https://www.procancer-i.eu/, accessed on 20
December 2020). The main purpose of this high-achieving initiative is to develop a platform
for storing a large collection of MR images and robust AI implementation to improve tumor
staging and hence helping to choose more suitable treatments.

Within these initiatives, it would be desirable that a greater quantity of data would
have prostatectomy as a reference standard because this will assure robustness to the
models for automatic classification of PCa.

4. Conclusions

Although the research community is changing towards better practices in data acquisi-
tion, classification, and analysis, many efforts are still required. AI for PCa characterization
needs great work in the direction of harmonization of data, for example, it was promoted in
the last years by the neuroscience community [50,51]; this could encourage the use of public
databases and future studies to combine images coming from different datasets, acquired
with heterogeneous MR platforms and protocols. A fundamental contribution will be
provided by the very recent international initiatives to integrate multi-centric databases,
allowing larger studies and the identification of critical issues in data integration and
harmonization in this field.

As we have seen, the AI models performed classifications between not clinically sig-
nificant and clinically significant lesions with relatively good performance, and sometimes
they even outperformed PI-RADS outcomes, suggesting that AI can be a tool to overcome
high inter-reader variability or possible lack of reader experience, specifically in the du-
bious zones like the TZ. However, most of the datasets contained few images that just
partially covered all the PCa variability, e.g., given by aspect and localization, leading to
a high risk of overfitting. Moreover, the attempt to systematically study how AI models
may improve the understanding of the relationship between histopathology findings and
mp-MR images, especially for lesions with the ambiguous PI-RADS score 3, is still really
limited. Besides, only a few studies try to adopt more standardized approaches or to make
their protocols and analysis more reproducible and comparable. In addition, the sharing
of processing and analysis pipelines will be a crucial issue, to compare methodologies
and identify the weakest points in terms of generalization to new data or specific issues
associated with different anatomic regions.

Moreover, considering the recent introduction of PSMA (Prostate Specific Membrane
Antigen) PET (Position Emission Tomography) imaging with very promising results in
terms of detection PCa both for staging [52] and restaging proposal [53,54], some authors
have proposed to combine the anatomic precision of MRI and functional information of
PSMA PET by PSMA PET/MRI with the aim to improve the accuracy of detection of PCa
foci within the prostate and the identification of nodal metastases. If these promising results
are confirmed, multimodal imaging modalities comprising metabolic imaging [55] could
give a wide spectrum of features for AI models. Thus, the hybrid PSMA PET/MRI may be
the objective of further development of AI methods based on CNN to help radiologists and
nuclear medicine physicians with better PCa diagnosis based on high-quality and high-
complexity novel imaging. An improvement in terms of the availability of high-quality
mp-MR images will enable the development of the promising 3D CNNs [56], using 3D
(isotropic) MR acquisitions, to take advantage of the whole lesion structure and aspect
to accurately predict its aggressiveness. Noticeably, DL techniques are less prone to pre-
processing steps and do not require feature extraction, intrinsically provided by the CNN
architecture. Even if the training step is usually quite time-consuming, once the network
is ready, an image can be classified very rapidly, typically with a reduced computational
burden as compared to the training phase. Considering the enormous amount of time

https://www.procancer-i.eu/
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needed by radiologists to analyze mp-MR images, it is surely worthy to keep improving
the AI contribution to diagnosis. Hopefully, once the AI models trained to detect and stage
PCa lesions with mp-MR images are highly performant and reliable, they will be applied
in a clinical setting as a further powerful tool for fighting PCa.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13163944/s1, Table S1: Table reports the binary classification tasks in the form (class
1 vs. class 2) and the AI models specifying if DL or ML and the anti-overfitting methods (Data
Augmentation or Transfer Learning) adopted for the 18 papers considered, named using the first
author and the year of publication.
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