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Simple Summary: Animal studies are essential for the development of new radiopharmaceuticals
to determine specific accumulation and biodistribution. Alternative models, such as the HET-CAM
model, offer the possibility of reducing animal experiments in accordance with the 3Rs principles.
Accurate quantification of tumor accumulation of a PSMA-specific ligand in the HET-CAM model and
comparison with corresponding animal experiments was performed using the imaging modalities
PET and MRI. It was demonstrated that the HET-CAM model leads to comparable results and is
suitable as an alternative to animal experiments for the initial assessment of target-specific binding of
novel radiopharmaceuticals. However, as evaluation of biodistribution in ovo is still limited, further
animal experiments with promising compounds are mandatory.

Abstract: Assessment of biodistribution and specific tumor accumulation is essential for the devel-
opment of new radiopharmaceuticals and requires animal experiments. The HET-CAM (hens-egg
test—chorioallantoic membrane) model can be used in combination with the non-invasive imaging
modalities PET and MRI for pre-selection during radiopharmaceutical development to reduce the
number of animal experiments required. Critical to the acceptance of this model is the demonstration
of the quantifiability and reproducibility of these data compared to the standard animal model.
Tumor accumulation and biodistribution of the PSMA-specific radiotracer [8F]F-siPSMA-14 was
analyzed in the chick embryo and in an immunodeficient mouse model. Evaluation was based on
MRI and PET data in both models. y-counter measurements and histopathological analyses comple-
mented these data. PSMA-specific accumulation of [18F]E-siPSMA-14 was successfully demonstrated
in the HET-CAM model, similar to the results obtained by mouse model studies. The combination of
MR and PET imaging allowed precise quantification of peptide accumulation, initial assessment of
biodistribution, and accurate determination of tumor volume. Thus, the use of the HET-CAM model
is suitable for the pre-selection of new radiopharmaceuticals and potentially reduces animal testing
in line with the 3Rs principles of animal welfare.

Keywords: PSMA; HET-CAM,; chick embryo; PET; MRI; fluoride ligand; prostate cancer; 3Rs princi-
ples; in ovo; in vivo
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1. Introduction

Novel radiopharmaceuticals are constantly being developed for diagnosis and treat-
ment of cancer. In the corresponding development processes, information on the target
specific accumulation in the tumors as well as the non-specific distribution in the healthy
organs is essential to optimize these substances accordingly. Although several of these
characterization steps can be performed in vitro, the systemic accumulation and distribu-
tion in the body thus far requires an in vivo evaluation, which is primarily performed in
small animal models. To reduce or replace the number of necessary laboratory animals in
the sense of the 3Rs principles (refinement, reduction, replacement), alternative methods
are highly demanded.

Spheroid or 3D organoid models are emerging alternatives that can already partially
replicate tumor heterogeneity but are still significantly inferior to real in vivo experiments
in terms of complexity and lack of vascularization [1,2].

The Hen's egg test-chorioallantoic membrane (HET-CAM) model is widely used in
translational research and has the potential to bridge between conventional in vitro and
in vivo methods, and such, to at least reduce the number of laboratory animals required [3-14].

The development of the chick embryo proceeds from the beginning of incubation to
hatching within 21 days. The chorioallantoic membrane, as a fusion of the chorion and
the allantois, starts to form around the fifth day of embryonic development (EDD) [15,16].
Due to a high vascularization of this membrane as well as a natural immunodeficiency
of the chick embryo model [8,17-19], tumors can be established on the membrane with
modest effort.

Among the major advantages of the chicken egg model are its simple handling,
cost efficiency, and significantly reduced maintenance effort compared to small animal
models. Further, in accordance with European law (Directive 2010/63/EU of the European
Parliament and of the Council of 22 September 2010 on the protection of animals used
for scientific purposes), no legal or ethical approvals are required for experiments with
the HET-CAM model if sacrificed before hatching. Although in Germany the HET-CAM
model is not classified as an animal experiment, for each respective country, the specific
legal situation regarding avian embryos must be consulted. Although regulations may
slightly differ between countries, the model appears highly attractive for efficient initial
screening of new compounds prior to evaluation in small animals.

Although tumors have been already successfully established on the CAM [4,20-29],
and PET-imaging studies are available [10,24,25,30-35], systematic analyses of their use
to evaluate the biodistribution of radiopharmaceuticals and direct comparisons with the
in vivo gold standard are still rare [10].

In a previous study on the accumulation of [©8Ga]Ga-PSMA-11 [24] we demonstrated
the potential of the HET-CAM model with respect to analyses of tumor-specific binding of
the peptide. In this study, we evaluate the HET-CAM model in direct comparison to an
established mouse model regarding biodistribution and specific target binding using the
clinically established '8F-labelled prostate-specific membrane antigen (PSMA) [36] ligand
['8F]F-siPSMA-14 (Figure 1) as a model system [37].
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Figure 1. Chemical structure of the PSMA-specific radioligand [8F]F-siPSMA-14.

2. Materials and Methods
2.1. Synthesis and Radiolabeling

For radiolabeling of the peptide ['YF]F-siPSMA-14 (Technical University Munich,
Garching, Germany), via isotopic exchange (18F / 19F), fluorine-18 was generated using
a PETtrace 860 cyclotron (GE Healthcare, Uppsala, Sweden). Details on this new radio-
pharmaceutical will be published elsewhere. Synthesis was performed according to the
manufacturer’s synthesis instructions (Scintomics, Fiirstenfeldbruck, Germany) for the
synthesis kit on a GRP cassette module, resulting in ['®F]F-siPSMA-14 with an average
specific activity of Ag = (138 &+ 50) MBq/ug.

2.2. Cell Culture Preparation

The androgen-independent and PSMA-positive (PSMA*) prostate carcinoma (PCa)
cell line LNCaP C4-2 (ViroMed Laboratories, Minnetonka, MN, USA) [38] and the PSMA-
negative (PSMA ™) PCa control PC-3 (ACC465, DSMZ, Braunschweig, Germany) [39] were
used to establish xenografts in the HET-CAM and mouse models. While LNCaP C4-2 forms
highly vascularized tumors with low hypoxia and little rim-core effects [40], PC-3 tumors
grow more invasive and are highly proliferating [41], less vascularized, and have a hypoxic
and necrotic core [42]. The cell lines were cultivated as described elsewhere [43]. Cells were
counted using a Neubauer improved hemocytometer (C-Chip, DHC-NO01, NanoEnTek,
Seoul, Korea).

2.3. HET-CAM Experiments

HET-CAM experiments were performed as described before [24]. In short, the chick
embryos were incubated at 37.8 °C and 65% relative humidity starting at embryo de-
velopment day (EDD) 0. The eggshell was opened on EDD2. Two silicone rings were
placed on the CAM on EDD5 and 1 x 10° of PC-3 (PSMA ™) and 2 x 10° of LNCaP C4-2
(PSMA™) tumor cells mixed with Matrigel (30%, v/v) in an overall volume of 45 uL were
applied to either ring on EDD6. Tumor growth and embryo health were monitored daily
by visual inspection. The MR and PET imaging experiments were performed between
EDD13 and EDD15. The chick embryos were cooled for 120 min at 4 °C prior to the MR
measurement to prevent motion artefacts, according to the protocols of Bain et al. and
Zuo et al. [9,44]. Prior to the PET scan, 150 uL of ['®F]F-siPSMA-14 ((11.3 + 0.3) ug/mL)
was injected into a chorioallantoic membrane blood vessel through a 30G needle (B. Braun,
Melsungen, Germany). An average activity of (2.4 £ 0.9) MBq (median dose 2.4 MBq)
was injected. Bleedings after the injection were stopped with cotton buds. The complete
chick embryo and needle, syringe, and cotton buds, were measured in an activity meter
(CRC-12, Capintec, NJ, USA) to determine the successfully applied radioactivity (100%
injected activity [%IA]) for further quantification. In total, 34 chick embryos with tumors
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were selected for measurements from which 8 (23.5%) had to be excluded due to failed
peptide injection.

2.4. Animal Studies

The biodistribution of the radioligand was analyzed in male immunodeficient CB17/lcr-
Prkdc scid/Crl mice (SCID; n = 9; Charles River Laboratories, Sulzfeld, Germany). Similar
to the HET-CAM approach, tumor xenografts of the human prostate carcinoma cell lines
LNCaP C4-2 and PC-3 were established by administration of 1 x 10° cells subcutaneously
into the subscapular regions (left = LNCaP C4-2; right = PC-3) of the SCID mice. The
LNCaP C4-2 tumors developed over a period of three weeks after injection. Since the PC-3
tumors grow more rapidly, injection of the PC-3 tumor cells was performed one week after
the injection of the LNCaP C4-2 cells.

The mice were anesthetized using 1.5% isoflurane in pressured air/oxygen (80/20%)
and a catheter was placed to the tail vein for intravenous injection using 0.9% saline solution
containing 5% heparin. The animals were first measured at the MR and then transferred
to the PET. After start of the PET measurement, 150 uL of ['®F]F-siPSMA-14 (11.4 + 0.3)
ng/mL was injected via the catheter with average activity of (3.3 £ 1.6) MBq (median
activity 2.8 MBq). During measurements and during transport, the animals were kept
continuously anaesthetized. Nine mice were prepared for the studies from which two had
to be excluded due to extravasation.

The studies were approved (ethical approval code 1375) by the national authority
(Regierungsprasidium Tiibingen, Baden-Wiirttemberg) in compliance with German lab-
oratory animal experimentation act and study procedures were in accordance with the
European Communities Council Directive of 22 September 2010 (2010/63/EU). All applica-
ble institutional and national guidelines for the care and use of animals were followed.

2.5. MRI and PET Measurements

For MRI, precooled chicken eggs were placed in a customized holder. The holder
contained fiducials filled with CuSOy4 and ['®F]F-siPSMA-14 to facilitate the PET and
MR co-registration. MR measurements were based on implemented protocols accord-
ing to Zuo et al. [9,45]. Data were obtained with a 72 mm quadrature volume T/R res-
onator on an 11.7 Tesla small animal MRI system (Bruker BioSpec 117/16, Bruker Biospin,
Ettlingen, Germany).

For evaluating the ligand biodistribution, a T1-weighted 3D-Flash sequence covering
the whole chicken egg was acquired. For accurate assessment of the tumor volume, location,
and structure a high resolution T2-weighted multislice rapid acquisition with relaxation en-
hancement (RARE) sequence was applied. Scan parameters were as: TR/ TE = 4320/45 ms,
matrix size = 650 x 650, in-plane resolution = 77 x 91 um?, slice thickness = 500 pm, no
interslice gap, RARE factor = 8, and NSA = 4. Cover of the whole tumor region required
30 slices, resulting in a 20 min acquisition time.

Anatomic images of the mouse were obtained with a multislice FLASH sequence with
acquisition parameters as: TR/TE =150/1.5 ms, flip angle FA = 15°, matrix size = 750 x 300,
in-plane resolution = 100 x 133 um?, slice thickness = 500 um, and NSA = 12.

To assess the biodistribution of ['®F]F-siPSMA-14 in chick embryos and in mice, a
dynamic 60 min scan was performed using a small animal PET scanner (Focus120, Siemens
Medical Solutions, Inc., Erlangen, Germany). The Focus120 has a high spatial resolution
(<1.3 mm) and high sensitivity (approximately 7%) with a bore size of 12 cm diameter and
7.6 cm axial length [46]. Obtained list mode files were processed to create histogrammed
data (sinograms) for an image of 12 dynamic frames of 5 min each. Reconstructions were
performed applying OSEM3D/MAP using 4 OSEM2D, 2 OSEM3D, and 18 MAP iterations
with a matrix of 256 x 256 and a zoom factor of 1.5.

MRI and PET of chick embryo and mice were either fused by fiducial registration
using 3Dslicer (ver. 4.11.20210226) [47] or by automatic rigid overlay using the software
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tool PMOD (PMOD Technologies, Ziirich, Switzerland). Additional data conversion was
achieved using the Vinci software (ver. 5.06) [48].

In the HET-CAM model volumes-of-interest (VOIs) were identified manually in the
MR images for the LNCaP C4-2 and PC-3 tumors as well as for the heart, liver, and brain.
In the developing chick embryo, the kidney area was rather difficult to distinguish from the
surrounding tissue in the MRI, thus a standardized spherical VOI (3 x 1.5 x 1.5 mm) was
placed in the kidney region based on the PET images. An additional VOI (4 x 4 X 4 mm)
was positioned in the area of the allantoic fluid to measure possible excretion and the
results were added to the supplementary.

In mice, VOIs were manually identified in the MRI in the tumors (LNCaP C4-2 and
PC-3), heart, lung, liver, spleen, and kidneys. For the brain region a standardized spherical
VOI (3 x 2 x 3 mm) was placed based on the PET images.

Data were decay corrected relative to the time of injection. Time activity curves (TAC)
were generated over all PET data (HET-CAM 7 = 26; mice n = 7) using Graphpad Prism
ver. 9.2.0 (GraphPad Software, San Diego, CA, USA). To compare the TAC, simple linear
regressions of HET-CAM and mouse data were performed, starting 10 min after injection,
and the slopes were calculated. For each individual pair of tumors, the ratios of the activity
concentrations of the tumors (PSMA*/PSMA ™) were calculated.

2.6. Ex Vivo Validation

Excised HET-CAM tumor xenografts were washed to reduce overestimation of accu-
mulated activity due to blood spillage. Following a 1 min wash using PBS, the extracted
tumors of the HET-CAM models were analyzed by y-counter COBRA II (Perkin Elmer,
Waltham, MA, USA) to accurately quantify the accumulated radioactivity. Mouse tumors
were also rinsed to remove blood from the extraction. Tumor volume (mL) was determined
for the HET-CAM and mouse model based on the MR images while, in addition, tumor
wet weight (g) was measured for the mouse model. Quantification of the radioactivity
in the tumor was based on decay-corrected y-counter data in relation to the total activity
injected into the chicken egg or mouse (percent injected activity, %IA). These data were
normalized to the MRI-derived tumor volume or tumor wet weight. For the determined
activity concentrations in [%IA/mL] or [%IA/g], the mean value £ standard deviation
and, additionally, the median were reported in the sections below. The ratio of the activity
concentration for each pair of PSMA* and PSMA™ xenografts was calculated to provide a
measure for evaluation of the relative ligand accumulation. Values > 1 indicate a higher
accumulation in the PSMA™ tumor.

2.7. Protein Expression and Histopathological Analyses

PSMA expression was determined in tumor cell lysates before grafting onto the CAM
and tumor lysates after y-counter measurements. Cells were washed with cold PBS and
resuspended in RIPA buffer (Sigma-Aldrich, Taufkirchen, Germany) containing 1 x pro-
tease inhibitor cocktail (Roche, Basel, Switzerland). LNCaP C4-2 and PC-3 tumors were
homogenized in RIPA buffer with 1x protease inhibitor cocktail and incubated on ice for
20 min. Protein concentration was determined using Coomassie Protein Assay Reagent
(Thermo Fisher Scientific, Waltham, MA, USA) according to manufacturer’s instructions
at a wavelength of 595 nm. Respectively, 20 pg of protein was separated by SDS-PAGE
(12% reducing acrylamide gel) and transferred to a nitrocellulose membrane (GE Health-
care, Solingen, Germany). To detect PSMA and glyceraldehyde-3-phophate dehydrogenase
(GAPDH), the following antibodies were used: anti-PSMA (abcam, Cambridge, UK, cat-
alog ab19071, 1:500) and anti-GAPDH (Santa Cruz Biotechnology, Inc., Dallas, TX, USA,
catalogue SC-365062, 1:2000). As positive control, 0.11 pg recombinant human PSMA
(rhPSMA) was used (R&D Systems, Minneapolis, MN, USA).

Tumors were fixed over night with 4% formaldehyde solution in phosphate buffered
saline (PBS) pH 7.4 (Thermo Fisher Scientific, Waltham, MA, USA). Tissue was dehydrated
and paraffin embedded before preparation of 4 um sections using a rotary microtome
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(Leica JUNG RM2045, Wetzlar, Germany). After deparaffinization, antigen retrieval was
performed using antigen unmasking solution (BIOZOL, Eching, Germany) for 10 min at
95 °C. To quench endogenous peroxidase activity, sections were treated with 0.75% hydro-
gen peroxide for 10 min. Subsequently, slides were blocked for 20 min using blocking-serum
(BIOZOL). Anti-PSMA antibody (abcam, Cambridge, UK catalog ab133579, 1:800) was incu-
bated over night at 4 °C. The next day, sections were washed with PBS and incubated with
biotinylated second antibody (BIOZOL) for 1 h. After another washing step with PBS, sec-
tions were treated with the avidin/biotin-based VECTASTAIN® Elite® ABC Reagent (HRP)
(BIOZOL) for 40 min. Afterward, slides were washed again and the HRP substrate, Vector®
DAB Peroxidase Substrate (BIOZOL), was added for 6 min. DAB substrate turnover was
stopped by washing with PBS. Cell nuclei were counterstained with hematoxylin (Waldeck
GmbH & Co. KG, Miinster, Germany) for 1 min. Following, slides were mounted using
Entellan® (Merck, Darmstadt, Germany).

For HE-staining, slices were deparaffinized and cell nuclei were stained with hema-
toxylin (Waldeck GmbH & Co. KG, Miinster, Germany) for 10 min. Cell bodies were
stained using a 2% eosin (Waldeck GmbH & Co. KG, Miinster, Germany) solution in water
for 2 min. Subsequently, slides were mounted in Entellan® (Merck, Darmstadt, Germany).

Images of the section were captured using an Axioskop 2 plus in combination with
the AxioCamMRC-TV2/3”C (Zeiss, Oberkochen, Germany) with 5x magnification lens
for overview images and 10x magnification lens for close-up images.

2.8. Statistical Evaluation

Wilcoxon matched-pairs signed rank test, Pearson correlation analysis, and simple
linear regression were performed using GraphPad Prism (ver. 9.2.0 for Windows, GraphPad
Software, San Diego, CA, USA). A p value < 0.05 was assumed statistically significant.

3. Results
3.1. Tumor Growth and Peptide Accumulation in the Tumors

MRI measurements were used to evaluate tumor growth in the chick embryo model
and to accurately determine tumor volumes (Figure 2). The measurements revealed tumor
volumes of (0.025 + 0.008) mL for LNCaP C4-2 and (0.023 + 0.011) mL for PC-3 after
8 days of tumor growth.

Tumor volumes in the mouse model resulted in (0.22 £ 0.13) mL for LNCaP C4-2 and
(0.22 £ 0.10) mL for PC-3 cell lines. The weight of the extracted tumor of (0.27 £ 0.18) g for
LNCaP C4-2 (after 21 days of tumor growth) and (0.24 £ 0.12) g for PC-3 (after 14 days
of tumor growths) was in good agreement with the MRI-based volumes (LNCaP C4-2
r=0.93; p <0.005/PC-3 r = 0.88; p < 0.05).

MRI and PET images were successfully obtained as described and overlay of the
images using PMOD software allowed the direct correlation of the measured radioactiv-
ity to an anatomical region. For the HET-CAM-model as well as for the mouse model,
marked accumulation of the radioligand was observed in the PSMA* LNCaP C4-2 tumors.
Only weak signals were detected for the PSMA™ PC-3 tumor xenografts for both models
(Figure 2).

The TACs based on dynamic PET scans are depicted in Figure 3. Data from all PET
scans were used for this analysis. For the HET-CAM model as well as for the mouse
model, an accumulation of ['*®F]F-siPSMA-14 was observed to increase with time for the
PSMA* LNCaP C4-2 tumor while for the PSMA- PC-3 tumor, a constantly lower level
was observed.
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Figure 2. Representative MR and PET images of chick embryo and mice with corresponding fusion image. Anatomy of
the chick embryo and mice was obtained by a T1-weighted Flash scan (left) while a static reconstruction of a 60 min PET
scan was used to demonstrate the biodistribution of the radioligand (right). In the resulting fusion image (middle), clear
accumulation of ['8F]F-siPSMA-14 could be localized in the PSMA-positive tumor LNCaP C4-2 (orange arrow) while for
PC-3 (blue arrow), a weak signal was observed for both in vivo models. Magnified views of the corresponding tumor
regions are depicted on the right. For the HET-CAM model, the images were based on the T2-weighted RARE scan and for
the mice, on the T1-weighted Flash images. The PET signal in the HET-CAM model is clearly localized in the LNCaP C4-2
tumor, whereas the weak signal slightly below the PC-3 tumor was caused by an adjacent blood vessel.
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Figure 3. PET-data-based time-activity curves of ['8F]F-siPSMA-14 accumulation in tumor xenografts of the HET-CAM
model (left) and the mouse model (right). An increasing activity concentration [%IA/mL] over 60 min scan time was
observed for the PSMA* LNCaP C4-2 tumors in both models, whereas for PC-3 the signal was roughly constant. The
resulting positive slope for LNCaP C4-2 indicates uptake of [18F]F-siPSMA-14. VOIs were drawn on anatomical MR scans
in the PET /MR fusion images. Depicted mean and standard deviation values were determined using all measured PET
data (HET-CAM n = 26; mice n = 7). Linear regression lines are shown for the HET-CAM data (left), whereas connecting
lines are shown for the mouse data (right).
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Activity concentration

[%IA/mL]

In the HET-CAM model, a steady increase (slope: 0.026 £ 0.004) of the activity
concentration was observed in the LNCaP C4-2 tumor, where for the PC-3 tumor, a nearly
constant signal (slope: 0.008 £ 0.004) resulted.

In mice, a small perfusion peak was observed for PC-3 after catheter injection, fol-
lowed by a decreasing activity concentration. For the LNCaP C4-2 tumor, a slope of
0.081 +£ 0.027 was observed starting 10 min after injection, where in the PC-3 tumor, a slope
of —0.009 £ 0.004 resulted based on linear regression.

A clear difference of the TACs between the PSMA* and the PSMA ™ tumors indicated
a PSMA-specific accumulation of ['8F]F-siPSMA-14 as shown in Figure 3.

For the HET-CAM model, a significantly higher accumulation (p < 0.05) in the
PSMA* tumor LNCaP C4-2 (mean (12.3 £ 6.4)%IA/mL; median: 11.0%IA/mL) com-
pared to the PSMA™ tumor PC-3 (mean: (9.3 £ 4.1)%IA/mL; median: 8.4%IA/mL) was
observed for y-counter measurements (Figure 4), resulting in a ratio of PSMA*/PSMA ™ of
1.5 £ 0.8. (7/26 chick embryos show PSMA*/PSMA™ ratios < 1). Similar results were
obtained comparing the PET values at 60 min post scan start: PSMA* LNCaP C4-2 (mean:
(2.8 £ 1.3)%IA/mL; median: 2.61%IA/mL), PSMA™ PC-3 (mean: (2.1 £ 1.2)%IA/mL;
median: 1.8%IA/mL), resulting in a ratio of PSMA*/PSMA™ of 2.0 £ 1.5 (Figure 4).
6 out of 26 chick embryos showed PSMA*/PSMA ™ ratios < 1; thus, indicating a specific
accumulation of ['8F]F-siPSMA-14 in the PSMA* tumor LNCaP C4-2.

y-counter PET ! y-counter PET
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Figure 4. Comparison of chick embryo (left diagram) and mouse model (right diagram) using two different evaluation
methods (y-counter and PET-based data). A significantly higher activity concentration (*, p < 0.05) in the PSMA™ tumor
xenograft LNCaP C4-2 is demonstrated regarding PSMA ™ PC-3 for both evaluation methods and in both in vivo models.
Significance was tested by Wilcoxon matched-pairs signed rank test.

In the mouse model, a significantly higher accumulation (p < 0.05) of ['8F]F-siPSMA-14
was determined by y-counter measurements for LNCaP C4-2 (mean: (17.0 £ 10.5)%IA/g;
median: 13.6%IA/g) compared to the PSMA™ PC-3 (mean: (1.8 £ 0.4)%IA/g; median:
1.8%IA/g) (Figure 4), resulting in a ratio of PSMA*/PSMA™ of 9.5 = 5.1. Evaluation
from PET data using the last value of the dynamic 60-min PET scans provided similar
results: PSMA* LNCaP C4-2 (mean: (9.4 + 4.4) %IA/mL; median: 8.2%IA/mL); PSMA~
PC-3 (mean: (1.6 £ 0.4)%IA/mL; median: 1.6%IA /mL); ratio PSMA*/PSMA™: 6.4 + 3.2
(Figure 4).
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For both evaluation methods, an increased [8F]F-siPSMA-14 uptake in the LNCaP
C4-2 tumor was observed in the HET-CAM (1.5-fold higher (y-counter), 2-fold higher
(PET) activity concentration) and the mouse model (9.5-fold higher (y-counter) and 6.4-fold
higher (PET) activity concentration). All data (mean =+ SD and ratio) are summarized in
Table 1. Calculated activity concentrations, ratios, and tumor volumes for each separate
chicken egg and mouse are listed in Tables S1 and S2.

Table 1. Summary of the activity concentrations (mean + standard deviation) in PSMA* and PSMA ™~
tumor xenografts obtained with y-counter and PET measurement for both in vivo models.

HET-CAM Mice
Prostate Cancer Cell Line ‘y-C()unter PET ‘y-Counter PET
[%IA/mL] [%IA/mL] [%IA/g] [%IA/mL]
LNCaP C4-2 (PSMA™) 123+ 64 28+13 17.0 £ 10.5 94+44
PC-3 (PSMA™) 93+41 21+13 1.8£04 1.6 £04
Ratio [PSMA™*/PSMA™] 1.5+ 0.8 20£15 95+51 6.4 +32

3.2. Biodistribution

Combination of high-resolution MR imaging and dynamic PET imaging using ['8F]F-
siPSMA-14 enabled the assessment of biodistribution in organs of interest in chick embryos
as well as in mice. Based on fusion images of MRI and PET, time-activity curves were
generated and the biodistribution of the radioligand in the chick embryo model and in the
mouse model was evaluated.

For chick embryo imaging, the main axis of the chicken egg was defined as axial
and images from all three axes: coronal, sagittal, and axial, were displayed for better
visualization. In the MR image, the following organs could be differentiated as: heart,
brain, liver, kidneys, gizzard, and eye. Based on the visual evaluation, most radioactivity
was detected in kidneys, heart, and liver. No accumulation of [\8F]F-siPSMA-14 was
detected by visual inspection in brain, gizzard, and eyes (Figure 5).

In the mouse model, differentiation of the following organs was possible based on
MR imaging: heart, brain, liver, kidneys, lung, spleen, and stomach. Highest PET signal
was observed in the kidneys, specifically the renal cortex. While a higher signal was also
detected for the spleen, no increased accumulation was detected for the other organs.
Significantly lower activities were observed for the brain and stomach (Figure 6).
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Figure 5. Biodistribution of ['®F]F-siPSMA-14 in the HET-CAM model visualized by MR and PET imaging. Using anatomical
T1-weighted MRI (left column), organs can be differentiated in the chick embryo. In the PET images (right column), the
distribution of ['®F]F-siPSMA-14 is visualized. By superimposing MRI and PET, the accumulation can be assigned to the
respective organs. In the different sectional planes (coronal, sagittal, and axial, where axial was defined to be the main axis
in the chicken egg), it is evident that there is no signal in the eye (E), brain (B), or gizzard (G). Accumulation of radioligand
is observable in liver (L) and heart (H) while the most intense signal is observable in the kidneys (K). PET signal is presented

in kBq/cc and MRI intensity in arbitrary units (AU).



Cancers 2021, 13, 4007 11 of 24

MRI+PET

Figure 6. Assessment of ['8F]F-siPSMA-14 biodistribution in tumor-bearing mice by MRI and PET. Anatomy is visual-
ized by T1-weighted MR images (left panel), and the accumulation of ['®F]F-siPSMA-14 is represented by PET images
(right panel). In the corresponding fusion image (middle column), the radioactive signal can be assigned to the respective
organs. In the 3 section planes (coronal, sagittal, and axial), radioactive signal is assigned in PSMA* LNCaP C4-2 tumor (C),
whereas no accumulation higher than the background signal can be seen in PSMA™ PC-3 tumor (P). Also, no accumulation
of [18F]F-siPSMA-14 is detected in brain (B) and stomach (St). Increased activity is observed in heart (H), liver (Li), lung
(Lu), and spleen (Sp), whereas the highest activity is detected in the kidneys (K).

Time-activity curves for the selected organs: brain, heart, liver, and kidneys, based on
the MRI and PET fusion images, are depicted in Figure 7.
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Figure 7. Time-activity curves based on the analysis of PET data of the HET-CAM (left) and mouse (right) models. The
activity concentration of the organs-of-interest (brain, heart, liver, and kidneys) was monitored over a 60 min PET scan. In
both models, only low levels of radioactivity are seen in the brain. For heart and liver, a decrease in signal is observed after
an initial increase. As measurements in the HET-CAM model were not started until approximately 10 min after injection,
there is no increase mapped in the graph. Heart and liver are often correlated with the blood pool. The activity concentration
in the kidneys of the chick embryos remained constant, whereas in the mouse model, the activity concentration increased
during the measurement.

In both models, as expected, almost no activity concentration was detected in the
brain. The slopes obtained were —0.0006 £ 0.0007 in the mouse model and 0.011 &+ 0.002
in the chick embryo. In both the chick embryo and the mouse model, a signal from
['8F]F-siPSMA-14 was detected in the heart and liver, which decreased considerably over
the measurement period. The slopes were similar for these organs in both models with
—0.068 £ 0.008 (chick embryo) and —0.078 £ 0.007 (mouse) for heart and —0.052 + 0.008
(chick embryo) and —0.056 + 0.005 (mouse) for liver. In the mouse model, due to the
catheter injection of the radioligand, a perfusion peak was evident for the heart, brain, and
liver in the first minutes after injection.

The highest activity concentration was measured for the kidneys in both in vivo
models. Whereas in the HET-CAM model, the activity concentration in the kidneys slightly
decreased over time (slope — 0.02 £ 0.01); a considerable increase was detected in the
kidneys in the mouse model (slope 0.36 = 0.09).

For the chick embryo model, the highest activity concentration after 60 min PET
measurement was determined in the kidneys (10.8 &+ 4.2) %IA /mL, followed by the heart
region (8.5 £ 2.0) %IA/mL and the liver (7.4 & 2.0) %IA/mL. In the brain, the lowest
signal (1.8 & 0.5) %IA/mL was measured, indicating that the ligand cannot cross the
blood-brain barrier. Minimal accumulation was also detected in the chick embryo eye
(1.8 £ 0.7) %IA/mL; these data were not included in the direct comparison with the mouse
model.

Analysis of Pearson correlation between the heart signal and the other organs revealed
a strong correlation to liver (r = 0.92, p < 0.0001), moderate correlation to kidneys (r = 0.56,
p <0.0001), and a weak correlation to eye (r = 0.36, p < 0.0001), brain (r = 0.33, p < 0.0001),
PC-3 (r = 0.31, p < 0.0001), and LNCaP C4-2 (r = 0.21, p < 0.0005).

Quantification of the distribution of [8F]F-siPSMA-14 based on PET data was also
performed in the mouse model. At the end of the 60-min PET scan, only modest activity
concentrations were detected in brain (0.3 £ 0.1) %IA/mL, muscle (0.9 £ 0.2) %IA/mL,
and bone (1.1 £ 0.3) %IA/mL. Higher activity accumulations were detected for heart
(2.6 = 0.6) %IA/mL, liver (2.3 £ 0.5) %IA/mL, and lung (2.1 £ 0.5) %IA/mL. In addition
to the high accumulation in the PSMA* tumor (9.4 =+ 4.4) %IA /mL as described above, a
high value (12.1 & 5.7) %IA/mL was also detected for the spleen. The peak signal was
determined for the kidneys (47.0 & 15.3) %IA/mL (Figure 8).
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Figure 8. Biodistribution of ['®F]F-siPSMA-14 in organs of interest, based on PET evaluations in the HET-CAM model
(top row) and PET and y-counter evaluation in the mouse model (bottom row), respectively. In both models, as described
previously, a significantly higher uptake of [\®F]F-siPSMA-14 was detected in the PSMA* tumor LNCaP C4-2 compared
with the PSMA™ tumor PC-3. The highest activity concentration was detected in kidneys in both models, or evaluation
approaches. In the mouse, a high activity concentration was additionally detected in the spleen. In both in vivo models,
accumulation in the brain was minimal. Low signal was also detected in the heart, lung, muscle, and bone in the mouse
with both evaluation methods, whereas based on the PET data in the HET-CAM, activity concentrations were raised in the
heart and liver.

The described findings were confirmed by y-counter-based analysis (Figure 8). Minor
accumulations were determined in brain (0.1 & 0.1) %IA /g, muscle (0.8 £ 0.2) %lA/g, and
bone (1.5 £ 0.3) %IA/g. Slightly lower activity concentrations were determined in heart
(1.7 £ 0.4) %lA/g and liver (1.7 & 0.4) %IA /g compared with PET measurement. The value
for the lung (2.2 &= 0.6) %IA /g was in close agreement with the PET signal. In the blood, a
value of (2.5 £ 0.9) %IA /g was still detectable after 1h. The high activity levels in PSMA*
LNCaP C4-2 tumor (17.0 & 10.5) %IA /g and spleen (26.3 £ 15.3) %IA /g were confirmed by
y-counter measurements. The highest signal, as in the mouse PET and HET-CAM models,
respectively, was determined for the kidneys (114.7 & 34.2) %IA/g. All data (mean + SD
and ratio) were summarized in Table 2. Calculated activity concentrations of the respective
organs for each separate chicken egg and mouse are listed in Tables S3 and S4.
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Table 2. Summary of the mean activity concentrations in the organs of interest obtained with
y-counter and PET measurement for both in vivo models.

HET-CAM Mice
Organ PET PET v-Counter
[%IA/mL] [%IA/mL] [%IA/g]
Brain 1.8+ 05 03 +0.1 0.1+0.1
Heart 85420 2.6+ 0.6 1.7+04
Liver 74+20 23+05 1.7+ 04
Kidneys 10.8 + 4.2 47.0 £ 15.3 114.7 £ 34.2
(Eye) 1.8+ 0.7 - -
Spleen - 12.1+£57 26.3 +15.3
Lung - 21+05 224+0.6
Muscle - 09+0.2 08402
Bone - 1.1+£03 1.5+03
Blood - - 25+09

Pearson correlation analysis on PET data, comparing the heart signal to the other
organs, resulted in strong correlation to lung (r = 0.99, p < 0.0001), brain (r = 0.96, p < 0.0001),
and liver (r = 0.81, p < 0.0001), no or weak negative correlation to PC-3 (r = —0.26, p < 0.001),
muscle (r = —0.33, p < 0.0001), and spleen (r = —0.36, p < 0.0001), and moderate negative
correlation to kidneys (r = —0.43, p < 0.0001) and LNCaP C4-2 (r = —0.50, p < 0.0001).

3.3. Evaluation of PSMA-Expression

Immunohistochemistry (Figure 9) in the form of H&E staining and labeling with
PSMA-specific antibody were performed to validate tumor growth and target protein
expression in the tumor xenograft. Detection staining was performed on consecutive
sections in both HET-CAM and mouse models. The tumors are clearly visible in the H&E
overview sections and specific staining was clearly detected for the PSMA* tumor LNCaP
C4-2 in the magnified sections. Accordingly, no expression was detected in the PSMA~
tumor PC-3.

The MR images of the respective HET-CAM tumors additional to the overviews
demonstrate the high level of detail of the MR measurements (Figure 9).

PSMA expression was additionally detected by WB (Figure S1). A clear signal was ob-
served in the PSMA™ tumor, whereas the low signal in PC-3 was due to non-specific binding
of the antibody. Additional detection of the housekeeping protein GAPDH demonstrated
that equal amounts of protein were used in all analyses.
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LNCaP C4-2

.
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Figure 9. Histopathological analysis of the tumor xenografts grown on the HET-CAM (left) and mouse model (right). The

prostate cancer cell line, based tumors LNCaP C4-2 (upper row) and PC-3 (bottom row), were stained using hematoxylin

and eosin (H&E) as depicted in overview sections (left side). Consecutive sections of the same tumors were stained using a

PSMA-specific antibody. Detailed images of the section (regions marked with dotted line boxes) are depicted on the right
side. Clearly PSMA-specific staining was observed for LNCaP C4-2 but not for PC-3. MR images of the HET-CAM tumors
were imaged in addition to the H&E sections to illustrate the excellent resolution of the RARE sequence.

4. Discussion

In the present comparative study, we successfully demonstrated that the chick embryo
model in combination with PET and MR imaging is qualified for the evaluation of specific
target binding of radiopharmaceuticals and provides similar results compared to the mouse
model using ['8F]F-siPSMA-14 as a model compound. While we demonstrated that initial
information on biodistribution in organs is also possible in the HET-CAM model and
in good agreement with the mouse data, further small animal studies for more detailed
assessment of biodistribution and dosimetry are still necessary.

Thus, our results corroborate that the PET and MR imaging in the HET-CAM model
can be used for initial evaluation of target specific binding of novel radiopharmaceuticals
instead of mouse xenograft experiments, which in terms of the 3Rs principles, contributes
to the reduction of animal experiments.

4.1. Evaluation of Tumor Accumulation of [\ F]F-siPSMA-14 in the HET-CAM Model Compared
to a Mouse Model

We chose the prostate cancer model for our experiments as it is of great clinical
relevance and PSMA-specific ligands as well as established cell lines are widely available.
The radioligand ['8F]F-siPSMA-14 was commercially available and has already been used
in clinical applications [37].

Based on the activity concentrations and ratios between the PSMA* and PSMA ™~
tumors, kinetics, and correlation analyses, there was evidence of significantly higher
accumulation of the ligand in the PSMA* tumor. The results were in good agreement with
the data from the mouse experiments. Thus, the HET-CAM model is appropriate for the
analysis of specific tumor accumulation based on PET and MR imaging and may contribute
to the reduction of the required number of animal experiments as an alternative to the
animal model.
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However, there was a minor difference in ligand accumulation between PSMA* and
PSMA™ and a higher variation in the HET-CAM model compared with the mouse model.

In the mouse and especially the HET-CAM model, a minor accumulation was de-
tected in the PSMA-negative PC-3 tumor. We obtained similar results in our studies with
[48Ga]Ga-PSMA-11 [24]. Laidler et al. [49] demonstrated that under appropriate conditions,
the expression of PSMA can also be re-established in PC-3. In our experiments, recon-
stituted expression of PSMA in PC-3 could not be noted in the Western blot and in the
histological sections.

We hypothesize that the nonspecific accumulation in the PSMA-negative tumors
results from the PSMA concentration in the blood. Blood retention seems to be prolonged
in the chick model compared to the mouse model, which may explain the increased
accumulation in the PC-3 tumor in ovo compared to the mouse. Since transient binding
with albumin enables longer retention in blood for various compounds, it is also conceivable
that a radioligand-albumin complex transiently reaches a higher concentration in the PSMA-
negative tumor than in the blood itself due to the EPR effect. The same effect can also occur
in the PSMA-positive tumors, but may be masked by the specific accumulation.

The TACs for the LNCaP C4-2 tumors show a steady increase over time in the in ovo
and in the mouse model. Blood concentration (arterial input function) and continuous
internalization and exchange of PSMA at the cell surface are the two dominant factors for
the shape of the TAC. The steady increase in the TAC of LNCaP C4-2 in ovo is likely due
to higher blood concentration over time, whereas in the mouse, the blood concentration
decreases, causing a flattening of the curve over time.

Furthermore, the LNCaP C4-2 tumor in mice is significantly more vascularized and
less hypoxic than the PC-3 tumor [40-42]. These anatomical differences between the tumors
likely enhance the apparent PSMA*/PSMA™ ratio, which is why a further analysis of the
vascularity of the tumors in the chick embryo model is needed.

Accumulation in the tumor is based on the combination of ligand binding and internal-
ization. For PSMA, low temperatures of 4 °C, such as those occurring during cooling of the
embryo, are known to stop internalization but have no effect on binding [50]. Therefore, an
overall reduction of the accumulation due to the lowered body temperature cannot be com-
pletely ruled out. However, in the case of a complete absence of internalization, saturation
of the binding sites will occur, causing a plateau in the TAC of LNCaP C4-2. Furthermore,
PET measurements were started approximately 1.5 h after cooling, which we believe is
sufficient time for rewarming of the chick embryo. A more detailed analysis may be pro-
vided by additional simulations in a PBPK model. If cooling affects internalization and
pharmacokinetics of the ligand, alternative immobilization techniques such as isoflurane
vaporization or application of liquid narcotics to the surface may be considered [45,51-53].

In the HET-CAM as well as in the mouse models, y-counter measurements yield
significantly higher activity concentrations than PET for LNCaP C4-2 (PSMA™) tumors.
This may be caused by both an overestimation of the y-counter due to residual blood in the
investigated sample and an underestimation of the PET data due to partial volume effects
(PVE). Therefore, in future experiments, the excess blood needs to be more accurately
removed from the tumor tissue, e.g., by a specific perfusion protocol.

In addition, because tumor volumes were less than 1 mL in the HET-CAM model,
overestimation of activity concentration might have played a role in both the y-counter
analyses and the PET evaluation. Small blood vessels in close proximity to tumors are
often more difficult to remove and then contribute in y-counter measurements. In the PET
evaluation, such vessels adjacent to the tumor have an influence due to the PVE. The partial
volume effect is already relevant for the comparatively large tumor and organ structures
from mice and may be of particular importance due to the again significantly smaller tumor
and organ volumes in the HET-CAM model.

The finite spatial resolution of the PET scanner leads to closely spaced anatomical
structures with different activity levels in the image influencing each other. In these “spill-
over” and “spill-in” effects, the activity of the region under consideration is underestimated
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or the activity in the region under consideration is overestimated due to activity from
neighboring regions. In addition, there is the “tissue fraction effect” caused by the division
of PET data into discrete voxels with activities often composed of a mixture of different
anatomical regions, since voxels are not correlated with anatomy [54].

While partial volume correction in the chicken egg still requires an enormous effort, a
PVE factor of small animal imaging can be optimized with less effort.

While positron range does not significantly matter at the 4-5 mm resolution of clin-
ical scanners, the choice of radionuclide matters for PVE in studies using preclinical
scanners, such as the Focus120 with an optimal spatial resolution of 1.13 mm full-width
half-maximum (tangential, Filtered-Back-Projection) in the center field of view [46,55,56].
Comparing the mean positron range in water of ®Ga (2.9 mm) that was used in our previ-
ous study [24] and 18F (0.6 mm) [57-59], it is clear that ®8Ga significantly reduces the overall
resolution of the scanner. This problem is well known [60-62] and several approaches exist
using partial volume correction [63], e.g., based on CT images [64] or direct calculations
during image reconstruction [65] to solve the resolution problems. While there are already
several approaches of partial volume correction using MR images [66-68], the application
is still challenging.

Nevertheless, we consider the HET-CAM model to be a beneficial method for initial
assessment of specific tumor binding of new compounds and, accordingly, for reducing
animal testing.

4.2. Analysis Regarding the Applicability of the HET-CAM Model for Biodistribution Studies in
Comparison to the Mouse Model

To the best of our knowledge, this work was the first to investigate comparability of
radiopharmaceutical biodistribution in the chick embryo with the mouse model. Based
on the imaging data, the key organs: heart, brain, liver, and kidney, may be identified.
Spleen and lung could not yet be sufficiently differentiated by our current methods in the
HET-CAM model. However, in future studies, it is expected to optimize the measurement
methods to include these organs as well.

The biokinetics of the radioligand were successfully followed and quantitatively
evaluated in the HET-CAM model. For the heart, liver, and brain, the data agreed well
with the results of the mouse experiments.

In the kidneys, the highest activity concentration was also determined in the chick
embryo model, but no increase in accumulation was detected over the measurement period.

The differences between the activity concentrations in the kidneys and those in the
heart and liver after 10 min of the measurement period were significantly smaller in the
HET-CAM model compared to the mouse model. The increased accumulation as well as
the significantly slower decrease in activity concentrations in the kidneys compared to the
liver and heart indicate that the signal decrease can only be explained to a minor extent by
a decreasing ligand concentration in the blood pool.

The data based on heart, liver, and brain imply that the HET-CAM model can also
be used for biodistribution analyses. The differences in kidney biodistribution require
further analysis to allow a final evaluation and taking into account the influence due to the
not yet fully developed organs and the distinct anatomical differences between avian and
mammalian kidneys.

In humans, PSMA was detected in the proximal renal tubes of the renal cortex [69,70]. In
mice, PSMA expression and specific binding of different ligands have been published [71-74].
Bacich et al. published analyses showing a 76% nucleotide and 86% amino acid homology
between murine and human PSMA [75]. An alignment analysis between the protein se-
quences of human glutamate carboxypeptidase II (Q04609), and the homologous structures
of mice (O35409) and corresponding putative protein in chicken (AOA1L1RPX5) revealed
an amino acid equality between human and mouse PSMA of 84% and between human and
chicken PSMA of 74.6%. Thereby, the amino acids for the binding regions, active region,
and metal binding sites were highly conserved in all three proteins. However, no evidence
of binding of PSMA-specific ligands to chicken PSMA has been published to date.
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In the mouse model, the accumulation of [\8F]F-siPSMA-14 in the renal cortex was
clearly demonstrated visually. In general, the excretion of small molecules and peptides
occurs via the kidneys [76,77]. While in the mouse, excretion occurs via the urinary bladder,
in the closed system chick embryo, excretions are accumulated in the allantoic fluid [78].
No accumulation in the allantoic fluid has been observed (Figure S2).

According to Bolin et al. [79], kidney development in the chick embryo is advanced by
EDD15, suggesting that the kidneys begin to function at this time. However, reduced accu-
mulation can indicate incomplete functionality. Nevertheless, the reduced accumulation
over time in the kidneys is consistent with extended blood retention.

Although mammalian and avian kidneys are structurally different, they share similar
functions. In particular, avian kidneys possess both mammalian-type and reptilian-type
nephrons that are equally active in adulthood [79-81]. Mammalian-type nephrons develop
first during embryonic development. This development can be advantageous for the analy-
sis of peptides for human application. Based on the present data, it cannot be demonstrated
that PSMA is expressed in the embryonic avian kidneys or that corresponding radioligands
can bind specifically. Studies of PSMA expression in avian kidneys may provide further
information on the comparability of the models in the future.

The kinetics of activity in the heart is similar to the data from the mouse model. The
chick embryo model allows analysis of the biodistribution of the radioligand. The signal in
the heart region is usually based on the peptide concentration in the blood pool; no PSMA
expression in the heart has been demonstrated thus far [70].

In PET, the signal in the heart was strongly influenced by the concentration in the
blood; this was also observed when comparing PET and y-counter data in mice. Here, the
y-counter signal was again weaker because the heart was rinsed during extraction.

The heart was already fully functional at the time of measurements [82]. The high
activity concentration in the heart indicated a high blood concentration, and the elimination
appeared to be slower than in the mouse.

In the liver in the chick embryo, similar kinetics to the mouse model were also
observed. Again, our data confirm the suitability of the HET-CAM model for analyzing the
biodistribution of radiolabeled peptides.

PSMA expression has not been previously demonstrated for liver [70]. The liver was
already fully functional at the time of the analyses [83,84] and the decreasing kinetics
suggest a nonspecific accumulation in the first minutes after injection.

The liver signal was also due to the concentration of the peptide in the vascular space
as suggested by the strong correlation of the liver and heart data.

Analysis of biodistribution kinetics in the brain revealed interesting results. Although
the brain, in particular the blood-brain barrier, was not yet fully developed at the time
of analysis, only marginal accumulation in the brain was detected in the chick embryo,
similar to the mouse model. Thus, the chick embryo model seems to be also applicable for
the analysis of radioligands with respect to accumulation in the brain.

In detail, in both HET-CAM and the mouse model, the least activity concentration
was detected in the brain.

In humans, expression of PSMA has been detected in the brain [85,86], but the blood-
brain barrier prevents accumulation of PSMA-specific ligands. Similarly, in mice, an
intact blood-brain barrier halts the accumulation of PSMA ligands [87-89]. Our data
demonstrated that [\8F]F-siPSMA-14 is also not transported across an intact blood-brain
barrier in mice.

In the chick embryo, the blood-brain barrier is still developing. In the publications
of Ribatti et al. and Roncali et al. [90,91], the permeability of the barrier was analyzed at
different days of development with Evans Blue (960 Da) and with horseradish peroxidase
(HRP, 40,000 Da), respectively. It was shown that after EDD14, HRP was no longer able to
pass the barrier, whereas Evans Blue was detected until about 1 month after hatching. Evans
Blue binds to serum albumin after application and then disperses as a complex [92,93].
In this form, it cannot cross the blood-brain barrier. Ribatti et al. postulated that during
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development, the serum albumin concentration was still low enough that free Evans Blue
was present and could be transported across the blood-brain barrier.

The investigated ligand ['®F]F-siPSMA-14, with a molecular mass of 1472.57 Da,
corresponded more closely to the size of Evans Blue than HRP. Nevertheless, only marginal
ligand accumulation could be detected, indicating minor transport across the blood-brain
barrier. It is not known whether the ligand interacts with albumin.

In the mouse, an accumulation of the ligand in the spleen was also observed. This
organ could not be differentiated in the chick embryo based on MR or PET imaging.
Optimization of the MR scan may possibly reveal more details here in future studies.

Based on these data, the HET-CAM model may be potentially suitable for initial
biodistribution analyses of peptide ligands in certain aspects; however, due to substantial
obvious differences and limitations of the model, cannot fully replace further small animal
studies in this respect.

4.3. Limitations

The HET-CAM model is limited in terms of metabolic processes due to the ongoing
development of the chick embryo, which may differ from the adult animal and between
different developmental stages. For example, the chick embryo undergoes strong metabolic
changes during the different days of development. Hu et al. specifically studied gluconeo-
genesis, non-essential amino acid synthesis, and other citric acid cycle synthesis products
at embryo development day 14 and EDD19 and demonstrated strong changes [94]. For this
reason, when evaluating the HET-CAM model for biodistribution studies, it is important
not only to detect the expression of the specific target structure of interest, e.g., glutamate
carboxypeptidase II (PSMA), but to analyze it at different developmental stages.

Small anatomical structures with sizes smaller than three times the full-width half-
maximum (FWHM) are affected by the PVE. Consequently, in the case of Focus 120,
structures of 3.39 mm and smaller are affected [24,46], which include smaller tumors and
small organs.

Tumor growth is primarily determined by the cell division rate. Due to the devel-
opmental days of the embryo as well as the planned experiments, the time for tumor
growth is limited when working with cultured cells. There is also the possibility of growing
tumor-like structures in vitro and then allowing them to grow into the CAM [95]. With this
technique, it is also possible to establish larger tumors in a shorter time. Here, attention
must be paid to vascularity.

For a small number of chick embryos, ratios of activity concentrations in the tumors
(PSMA* /PSMA™) < 1 were determined using PET or y-counter data. Again, tumor volume
may have been a predominant factor. In most cases, PC-3 tumor volume was below average;
thus, adjacent activities contributed more substantially to PVE. Large blood vessels in the
immediate vicinity of the PC-3 tumor may lead to an overestimation of the signal in the
tumor because of the spill-in/spill-over effects mentioned earlier. Volume determination
was as accurate as possible based on MR images, but extraction of small tumor structures
is significantly less accurate. Normalization to volume may cause portions of surrounding
tissue with accumulated activity to cause an overestimation of actual tumor activity. To
compensate for these inconsistencies, a larger number of chicken eggs may be required for
reliable substance characterization. In Germany, the HET-CAM model is not considered
an animal experiment. Thus, the larger number of chicken eggs (34 chick embryos versus
9 mice) corresponds to an animal saving in the sense of the 3Rs. For the future, a further
reduction in the number of chick embryos will be envisaged by method optimization.

Accurate modeling of the kinetics of both tumor uptake and biodistribution to other
organs requires continuous measurement from or shortly before the time of injection. Such
PET measurements require catheter injection, which cannot be reliably performed in the
chicken egg with the technical means available to us at the moment. The optimal approach
here is to position the catheter by microsurgery assisted by a microscope, similar to what
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was conducted in 2013 by Warnock et al. [26]. We are committed to establishing these
techniques in our laboratory in the future.

5. Conclusions

Our data indicate the high potential of the HET-CAM model to reduce the number of
first-in-class animal experiments required for the development of new radiopharmaceutical
with respect to the analysis of target specific binding. While our first data on analysis of
biodistribution were promising, due to substantial differences of the chick embryo to adult
small animals, further animal experiments in this context cannot be fully replaced.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ cancers13164007 /51, Figure S1: Western blot of CAM tumor lysates. Figure S2: study on
excretion into the allantoic fluid. Table S1: summary of activity concentrations in tumors of the HET-
CAM model. Table S2: summary of activity concentrations in tumors of the mouse model. Table S3:
summary of biodistribution data from the HET-CAM model. Table S4: summary of biodistribution
data from the mouse model. Methods: description of the overlay procedure using PMOD.
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