Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. MRI Analysis
2.2. Statistics
3. Results
3.1. Symptoms at Presentation
3.2. MRI Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, C.D.M.; Bridge, J.A.; Hogendoorn, P.C.W.; Mertens, F. World Health Organization Classification of Tumours of Soft Tissue and Bone, 4th ed.; IARC Press: Lyon, France, 2013; Volume 5. [Google Scholar]
- Bovée, J.V.M.G.; Bloem, J.L.; Flanagan, A.M.; Nielsen, G.P.; Yoshida, A. WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Crim, J.; Schmidt, R.; Layfield, L.; Hanrahan, C.; Manaster, B.J. Can imaging criteria distinguish enchondroma from grade 1 chondrosarcoma? Eur. J. Radiol. 2015, 84, 2222–2230. [Google Scholar] [CrossRef]
- Ferrer-Santacreu, E.M.; Ortiz-Cruz, E.J.; González-López, J.M.; Pérez Fernández, E. Enchondroma versus low-grade chondrosarcoma in appendicular skeleton: Clinical and radiological criteria. J. Oncol. 2012, 2012, 437958. [Google Scholar] [CrossRef]
- Skeletal Lesions Interobserver Correlation among Expert Diagnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. JBJS 2007, 89, 2113–2123. [Google Scholar] [CrossRef]
- Davies, A.M.; Patel, A.; Botchu, R.; Azzopardi, C.; James, S.S.; Jeys, L. The changing face of central chondrosarcoma of bone. One UK-based orthopaedic oncology unit’s experience of 33 years referrals. J. Clin. Orthop. Trauma 2021, 17, 106–111. [Google Scholar] [CrossRef]
- van Praag, V.; Rueten-Budde, A.; Ho, V.; Dijkstra, P.; van der Geest, I.C.; Bramer, J.A.; Schaap, G.R.; Jutte, P.C.; Schreuder, H.B.; Ploegmakers, J. Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas. Surg. Oncol. 2018, 27, 402–408. [Google Scholar] [CrossRef] [PubMed]
- van de Sande, M.A.; van der Wal, R.J.; Navas Cañete, A.; van Rijswijk, C.S.; Kroon, H.M.; Dijkstra, P.S.; Bloem, J.L. Radiologic differentiation of enchondromas, atypical cartilaginous tumors, and high-grade chondrosarcomas—Improving tumor-specific treatment: A paradigm in transit? Cancer 2019, 125, 3288–3291. [Google Scholar] [CrossRef] [PubMed]
- Damron, T.A. CORR Insights®: Do Orthopaedic Oncologists Agree on the Diagnosis and Treatment of Cartilage Tumors of the Appendicular Skeleton? Clin. Orthop. Relat. Res. 2017, 475, 2187–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, C.W.; Kazley, J.M.; Murtaza, H.; Cooley, M.; Jones, D.; DiCaprio, M.R. Team Approach: Evaluation and Management of Low-Grade Cartilaginous Lesions. JBJS Rev. 2020, 8, e0054. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Davies, A.; Botchu, R.; James, S. A pragmatic approach to the imaging and follow-up of solitary central cartilage tumours of the proximal humerus and knee. Clin. Radiol. 2019, 74, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Chung, B.M.; Hong, S.H.; Yoo, H.J.; Choi, J.-Y.; Chae, H.-D.; Kim, D.H. Magnetic resonance imaging follow-up of chondroid tumors: Regression vs. progression. Skelet. Radiol. 2018, 47, 755–761. [Google Scholar] [CrossRef]
- Davies, A.; Patel, A.; James, S.; Botchu, R. A retrospective validation of an imaging protocol for the management of solitary central cartilage tumours of the proximal humerus and around the knee. Clin. Radiol. 2019, 74, 962–971. [Google Scholar] [CrossRef]
- Sampath Kumar, V.; Tyrrell, P.; Singh, J.; Gregory, J.; Cribb, G.; Cool, P. Surveillance of intramedullary cartilage tumours in long bones. Bone Jt. J. 2016, 98, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Omlor, G.W.; Lohnherr, V.; Lange, J.; Gantz, S.; Mechtersheimer, G.; Merle, C.; Raiss, P.; Fellenberg, J.; Lehner, B. Outcome of conservative and surgical treatment of enchondromas and atypical cartilaginous tumors of the long bones: Retrospective analysis of 228 patients. BMC Musculoskelet. Disord. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckers, C.; Schreuder, B.H.; Hannink, G.; de Rooy, J.W.; van der Geest, I.C. Radiologic follow-up of untreated enchondroma and atypical cartilaginous tumors in the long bones. J. Surg. Oncol. 2016, 114, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.; Suchard, G.; Hatem, M.; de Abreu, A. The role of magnetic resonance imaging in the evaluation of bone tumours and tumour-like lesions. Insights Imaging 2014, 5, 419–440. [Google Scholar] [CrossRef] [Green Version]
- Murphey, M.D.; Walker, E.A.; Wilson, A.J.; Kransdorf, M.J.; Temple, H.T.; Gannon, F.H. From the archives of the AFIP: Imaging of primary chondrosarcoma: Radiologic-pathologic correlation. Radiographics 2003, 23, 1245–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhumaid, S.M.; Alharbi, A., IV; Aljubair, H. Magnetic Resonance Imaging Role in the Differentiation Between Atypical Cartilaginous Tumors and High-Grade Chondrosarcoma: An Updated Systematic Review. Cureus 2020, 12, e11237. [Google Scholar] [CrossRef]
- Van Der Geest, I.; De Valk, M.; De Rooy, J.; Pruszczynski, M.; Veth, R.; Schreuder, H. Oncological and functional results of cryosurgical therapy of enchondromas and chondrosarcomas grade 1. J. Surg. Oncol. 2008, 98, 421–426. [Google Scholar] [CrossRef]
- Veth, R.; Schreuder, B.; van Beem, H.; Pruszczynski, M.; de Rooy, J. Cryosurgery in aggressive, benign, and low-grade malignant bone tumours. Lancet Oncol. 2005, 6, 25–34. [Google Scholar] [CrossRef]
- Fletcher, C.D.; Unni, K.; Mertens, F. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone; IARC Press: Lyon, France, 2002. [Google Scholar]
- Vanel, D.; Kreshak, J.; Larousserie, F.; Alberghini, M.; Mirra, J.; De Paolis, M.; Picci, P. Enchondroma vs. chondrosarcoma: A simple, easy-to-use, new magnetic resonance sign. Eur. J. Radiol. 2013, 82, 2154–2160. [Google Scholar] [CrossRef]
- Sensarma, A.; Madewell, J.E.; Meis, J.M.; Kumar, R.; Lin, P.P.; Amini, B. Regression of an enchondroma: A case report and proposed etiology. Skelet. Radiol. 2015, 44, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Deckers, C.; Steyvers, M.J.; Hannink, G.; Schreuder, H.B.; de Rooy, J.W.; Van Der Geest, I.C. Can MRI differentiate between atypical cartilaginous tumors and high-grade chondrosarcoma? A systematic review. Acta Orthop. 2020, 91, 471–478. [Google Scholar] [CrossRef]
- Campanacci, D.A.; Scoccianti, G.; Franchi, A.; Roselli, G.; Beltrami, G.; Ippolito, M.; Caff, G.; Frenos, F.; Capanna, R. Surgical treatment of central grade 1 chondrosarcoma of the appendicular skeleton. J. Orthop. Traumatol. 2013, 14, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.J.; Zumsteg, J.W.; Hartley, K.A.; Long, J.H.; Mesko, N.W.; Halpern, J.L.; Schwartz, H.S.; Holt, G.E. Overutilization and cost of advanced imaging for long-bone cartilaginous lesions. Ann. Surg. Oncol. 2015, 22, 3466–3473. [Google Scholar] [CrossRef]
- Errani, C.; Tsukamoto, S.; Ciani, G.; Akahane, M.; Cevolani, L.; Tanzi, P.; Kido, A.; Honoki, K.; Tanaka, Y.; Donati, D.M. Risk factors for local recurrence from atypical cartilaginous tumour and enchondroma of the long bones. Eur. J. Orthop. Surg. Traumatol. 2017, 27, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Bui, K.L.; Ilaslan, H.; Bauer, T.W.; Lietman, S.A.; Joyce, M.J.; Sundaram, M. Cortical scalloping and cortical penetration by small eccentric chondroid lesions in the long tubular bones: Not a sign of malignancy? Skelet. Radiol. 2009, 38, 791–796. [Google Scholar] [CrossRef]
No Change (n = 65, 51%) | Regression (n = 46, 36%) | Progression (n = 17, 13%) | p-Value | |
---|---|---|---|---|
Mean age (range, years) | 55 (21–73) | 52 (23–76) | 39 (20–56) | 0.000 b, c |
Male: Female | 25:40 | 16:30 | 9:8 | 0.419 |
Median follow-up (months) | 46 (25–102) | 49 (26–116) | 47 (30–138) | 0.149 |
Tumor location (n, %) | 0.078 | |||
Proximal humerus | 23 (35.4) | 15 (32.6) | 3 (17.6) | |
Humerus diaphysis | 0 | 4 (8.7) | 0 | |
Proximal femur | 12 (18.5) | 4 (8.7) | 1 (5.9) | |
Femur diaphysis | 5 (7.7) | 7 (15.2) | 2 (11.8) | |
Distal femur | 19 (29.2) | 13 (28.3) | 7 (41.2) | |
Proximal tibia | 2 (3.1) | 0 | 2 (11.8) | |
Tibia diaphysis | 1 (1.5) | 1 (2.2) | 0 | |
Distal tibia | 0 | 0 | 1 (5.9) | |
Proximal fibula | 2 (3.1) | 2 (4.3) | 1 (5.9) | |
Distal fibula | 1 (1.5) | 0 | 0 | |
Baseline MRI characteristics | ||||
Median size (mm) | 38 (13–158) | 54 (14–170) | 40 (12–64) | 0.000 a, c |
Excentric location of the tumor | 33 (51) | 19 (41.3) | 6 (35.3) | 0.413 |
Scalloping | 34 (52.3) | 20 (43.5) | 7 (41.2) | 0.557 |
Fat entrapment | 40 (61.5) | 40 (87.0) | 6 (35.3) | 0.000 a, c |
Septa nodular enhancement | 7 (10.8) | 4 (8.7) | 4 (23.5) | 0.107 |
Calcifications | 57 (87.7) | 43 (93.5) | 13 (76.5) | 0.172 |
MRI Characteristics | Baseline MRI | Last MRI | |||||
---|---|---|---|---|---|---|---|
Present n (%) | Absent n (%) | N.A. | Increased n (%) | Decreased n (%) | Unchanged n (%) | N.A. | |
Scalloping | 61 (48) | 67 (52) | - | 0 | 5 (4) | 123 (96) | - |
Peritumoral edema | 1 (1) | 127 (99) | - | 0 | 1 (1) | 127 (99) | - |
Fat entrapment | 86 (67) | 42 (33) | - | 39 (30) | 0 | 89 (70) | - |
Calcifications | 113 (88) | 15 (12) | - | 11 (8) | 1 (1) | 116 (91) | - |
Ring and arc enhancement | 116 (91) | 0 | 12 | 0 | 20 (16) | 94 (73) | 14 |
Present | Absent | ||||||
Fatty replacement | - | - | - | 37 (29) | 91 (71) |
Referral | Age at Diagnosis | Location | Initial Size (mm) | Total Growth (mm) | Reason for Surgery | Time in Months from Diagnosis to Surgery | Pathologic Diagnosis |
---|---|---|---|---|---|---|---|
Incidental | 49 | Tibia (proximal) | 30 | 5 | Growth | 40 | Sample error |
Incidental * | 47 | Femur (distal) | 50 | 11 | Growth | 43 | ACT |
Incidental | 36 | Fibula (proximal) | 12 | 4 | Growth | 49 | ACT |
Incidental | 22 | Femur (distal) | 34 | 23 × | Growth | 55 | ACT |
Incidental * | 38 | Tibia (distal) | 32 | 7 | Growth | 53 | ACT |
Incidental * | 64 | Femur (distal) | 32 | - | Prosthesis | 57 | Enchondroma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deckers, C.; Rooy, J.W.J.d.; Flucke, U.; Schreuder, H.W.B.; Dierselhuis, E.F.; Geest, I.C.M.v.d. Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones. Cancers 2021, 13, 4093. https://doi.org/10.3390/cancers13164093
Deckers C, Rooy JWJd, Flucke U, Schreuder HWB, Dierselhuis EF, Geest ICMvd. Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones. Cancers. 2021; 13(16):4093. https://doi.org/10.3390/cancers13164093
Chicago/Turabian StyleDeckers, Claudia, Jacky W. J. de Rooy, Uta Flucke, H. W. Bart Schreuder, Edwin F. Dierselhuis, and Ingrid C. M. van der Geest. 2021. "Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones" Cancers 13, no. 16: 4093. https://doi.org/10.3390/cancers13164093
APA StyleDeckers, C., Rooy, J. W. J. d., Flucke, U., Schreuder, H. W. B., Dierselhuis, E. F., & Geest, I. C. M. v. d. (2021). Midterm MRI Follow-Up of Untreated Enchondroma and Atypical Cartilaginous Tumors in the Long Bones. Cancers, 13(16), 4093. https://doi.org/10.3390/cancers13164093