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Simple Summary: Despite recent therapeutic advances against cancer, many patients do not respond
well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a
term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the
deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic
pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells
to convey drug resistance. We also focus on our current understanding related to the interactions
between survival and cell death pathways, as well as on mechanisms underlying the balance shift
towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor
microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance
and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize
the current and future therapeutic approaches for overcoming MDR.

Abstract: The ability of tumor cells to evade apoptosis is established as one of the hallmarks of
cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to
develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance
toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway
of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as
well as their regulator, tumor suppressor p53, have been implicated in the development of MDR
in many cancer types. The PI3K/AKT pathway is pivotal in promoting survival and proliferation
and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly
factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce
the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that
occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic
approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule
inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or
in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic
exploitation of epigenetic modifications to reverse the MDR phenotype.

Keywords: apoptosis; Bcl-2 family of proteins; cancer associated fibroblasts; cancer therapy; caspase-
dependent death; epigenetic modifications; multi-drug resistance; PI3K/AKT pathway; tumor-
microenvironment
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1. Introduction

Novel diagnostic and cancer therapeutic technologies have improved patient response
to treatment and have lowered mortality rates. However, in several cases, the 5-year
survival rate remains low, mostly due to the intrinsic resistance or to the development of
acquired resistance to anticancer drugs. Multi-drug resistance (MDR) refers to the state
in which cancer cells become resistant to two or more drugs that have entirely different
mechanisms of action and/or chemical structures. Thus, different cancer types become
difficult to treat because of MDR. These mainly include breast, lung, colorectal and prostate
cancer that represent the most frequently occurring malignancies with the highest mortality
rates [1–5].

A variety of factors and mechanisms promote the development of MDR in cancer cells,
including drug inactivation, detoxification mechanisms, increased drug efflux, mutations
in genes encoding drug targets, epigenetic changes, deregulation of DNA damage/repair
processes, contribution of cancer stem cells, increased tumor heterogeneity, involvement of
the tumor microenvironment (TME), epithelial to mesenchymal transition (EMT), modula-
tion of reactive oxygen species (ROS) and inhibition of cell death pathways [6]. Evasion of
apoptosis or programmed cell death (PCD) has been well established as a one of the major
hallmarks of cancer [7]. Deregulation of apoptotic pathways can lead to tumorigenesis,
autoimmune and degenerative diseases [8]. In this review, we focus on the deregulation of
apoptotic pathways and the development of multi-drug resistance in a variety of tumor
types. We also discuss the role of the TME in regulating apoptosis in MDR tumors, as
well as current and future therapeutic approaches targeting apoptosis that are being devel-
oped to overcome cancer MDR. Finally, we discuss the potential exploitation of epigenetic
modifications for new therapeutic advances.

2. Overview of Apoptotic Pathways

Apoptosis is a tightly controlled physiological process, necessary for normal embry-
onic development, preservation of genome integrity, proper function of the immune system
and maintenance of tissue homeostasis [9]. Apoptosis may be induced by a variety of
agents, including low doses of radiation, hypoxia, heat, cytotoxic drugs or more specialized
anti-cancer molecules. The apoptotic process does not induce inflammation as the cell
contents are eventually absorbed by phagocytic cells [10,11].

Two main pathways contribute to apoptosis, i.e., (a) the intrinsic or mitochondrial
pathway that is mostly activated by intracellular stress signals, including oxidative stress
and (b) the extrinsic or death receptor pathway that is engaged following extracellular
signals. The latter is induced following binding of death ligands to the extracellular domain
of death receptors which (among others) include Receptor 1/Tumor Necrosis Factor-α
(TNFR1/TNF-α) and Fas Receptor/Fas Ligand (FasR/FasL) [12–16]. Downstream to this
binding, death receptors establish homotrimer structures followed by self-assembly of their
intracellular parts that contain death domains (DDs) [17,18]. The intracellular domains of
the TNF or FAS receptors then recruit adaptor proteins, including the TNFR1-associated
death domain protein (TRADD) and FAS-associated death domain protein (FADD), re-
spectively [19,20]; adaptor proteins contain the DED protein interaction component, that
by recruiting inactive initiator caspase-8 forms the Death Inducing Signaling Complex
(DISC) [21] which then triggers caspase-8 activation via oligomerization [22].

Caspases are cysteinyl, aspartate-specific proteases that play critical roles in apopto-
sis [23]. They are expressed as inactive pro-enzymes and contain an N-terminal pro-domain
and a C-terminal catalytic domain. Their C-terminal domain comprises a p20 large sub-
unit and a p10 small subunit [24]. The so-called initiator caspases (casp-2, -8, -9, -10) are
activated in the early stages of apoptosis and induce a cascade of reactions to kickstart the
apoptotic process. Executioner caspases (casp-3, -6, -7) are activated during the later stages
of the process and are responsible for cleaving cellular components [25]. Structurally, the
pro-domain of executioner caspases is very short compared to initiator caspases. Initiator
caspases contain in their pro-domain either a death effector domain (DED) (caspases-8 and
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-10) or a caspase-recruitment domain (CARD) (e.g., caspases-2 and -9). DED is responsible
for the interaction of caspases with molecules that regulate their activity [24]. Inactive
caspases are activated via cleavage at aspartate residues, while the N-terminal domain is
removed by cleavage between the large and small subunits [26]. Initiator caspases then
cleave downstream caspases triggering a proteolytic cascade that amplifies the apoptotic
signaling pathway.

The intrinsic apoptotic pathway is initiated by different signals, including ultra-violet
(UV) or gamma irradiation, hypoxia, growth factors, hormone/cytokine deprivation, viral
virulence factors, heat, DNA-damaging agents and the activation of oncogenic factors
(Figure 1). Apoptotic signals induce a process called mitochondrial outer membrane
permeabilization (MOMP) which involves opening of the mitochondrial permeability
transition (MPT) pore and release of pro-apoptotic proteins from the inter-membrane space
(IMS) into the cytosol [27]. Once the outer mitochondrial membrane becomes permeable,
pro-apoptotic factors located in the inter-membrane mitochondrial space exit towards the
cytosol. For example, cytochrome c and Apoptotic protease activating factor 1 (Apaf-1) are
released, interact with caspase-9 and activate the latter, while forming a structure known
as the apoptosome [28,29]. Further, Smac/DIABLO and HtrA2/Omi are released and
induce apoptosis by inhibiting a group of proteins called Inhibitors of Apoptosis Proteins
(IAPs) [30,31].

MOMP is controlled by Bcl-2 family members. Bcl-2 proteins are categorized into
three different groups according to their function and number of BH domains present in
their structure: 1. anti-apoptotic members including Bcl-2, Bcl-xL and Mcl-1 that contain
three or four BH domains, 2. pro-apoptotic members such as Bax and Bak that contain BH1,
BH2 and BH3 and 3. pro-apoptotic BH3-only members including Bad, Bid, Noxa, Puma
and BNIP3 [32,33]. The anti-apoptotic members can bind to BH3-only members through
hydrophobic grooves formed by their BH domains [34,35]. This interaction determines the
activation status of this class of proteins. BH3-only members induce apoptosis by blocking
the function of anti-apoptotic family members and/or by interacting with and activating
pro-apoptotic proteins such as Bax and Bak [36]. Anti-apoptotic Bcl-2 family proteins, block
apoptosis by inhibiting the activity of pro-apoptotic proteins and preventing MOMP [34].

During apoptosis, anti-apoptotic protein levels decrease, while the levels of pro-
apoptotic members rise; in fact, a decrease in the Bcl-2/Bax ratio is considered a reliable
indicator of apoptosis. Furthermore, since the Bcl-2 family regulates mitochondrial per-
meability, their subcellular localization changes during apoptosis. For example, following
apoptotic stimuli, Bax translocates from the cytosol to mitochondria [34]. The extrinsic
pathway can also induce mitochondrial apoptotic pathways since caspase-8 can cleave Bid
(a Bcl-2 pro-apoptotic protein) to its active form namely tBid which promotes MOMP [37].

Caspases -3, -6 and -7 are considered “effector” caspases and cleave cellular products
during the later stages of apoptosis [38]. Caspase-9 and -8 can cleave caspase-3, while
caspase-7 is a downstream target of caspase-9. Caspase-3 can also activate caspase-6 [39].
Active effector caspases break down many substrates ultimately causing DNA cleavage as
well as nuclear and cytoskeletal protein degradation. The endonuclease Caspase-Activated
DNase (CAD) is physiologically bound to ICAD (Inhibitor of Caspase-Activated DNase), a
substrate of caspase-3. Upon its activation, CAD fragments DNA at ~180-bp pieces [40].
PARP-1 is another caspase substate; normally, it participates in DNA repair mechanisms,
but it is also involved in DNA replication and transcription, cellular repair, cytoskeletal
organization and protein degradation [41]. PARP-1 breakdown by caspases is crucial
during apoptosis. The degradation of these targets ultimately leads to the biochemical and
morphological changes observed in apoptotic cells including cell shrinkage, cytoplasmic
condensation and generation of apoptotic bodies [42,43]. At the final phase of apoptosis,
phagocytic cell receptors recognize ligands presented on the surface of apoptotic bodies
causing their destruction by professional phagocytic cells [9]. The deregulation of apoptotic
pathways that ultimately leads to MDR is described below.
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Figure 1. The extrinsic and intrinsic pathways of apoptosis. The activation of the extrinsic pathway
involves binding of an external ligand to a transmembrane Death Receptor which then induces its
conformation as a homotrimer. In the internal part of the receptor, the exposed Death Domain
(DD) recruit adaptor proteins such as TRADD. Through its Death Effector Domain (DED), TRADD
can then recruit pro-Caspase-8 which is activated through self-proteolysis. Subsequently the death
ligand, receptor, TRADD molecule and caspase-8 form the DISC complex. Active caspase-8 can cleave
downstream effector caspases 3, 6 and 7 which degrade nuclear lamins and other cellular components.
Caspase-8 connects the extrinsic pathway with intrinsic or mitochondrial apoptotic signaling, though
the cleavage of Bid to truncated Bid (t-Bid). Bid, a member of the Bcl-2 family, facilitates the opening
of mitochondrial pores in a process called MOMP by inducing the polymerization of Bax on the
outer mitochondrial membrane. MOMP is also induced by internal signals, such as extensive DNA
damage. Cytochrome-c (cyt-c) is released from mitochondria and along with Apaf-1 and pro-caspase-
9 form the apoptosome heptamer structure. Following proteolysis, caspase-9 cleaves and activates
effector caspases, further amplifying the apoptotic process. Apoptotic Protease Activating Factor
1 (APAF-1); Mitochondrial Outer Membrane Permeabilization (MOMP); TNFR1-Associated Death
Domain protein, (TRADD).

3. Deregulation of the Intrinsic Apoptotic Pathway in MDR Tumors

A particularly important mechanism which promotes cancer cell resistance to chemother-
apy is inhibition of apoptosis [44]. Proteins involved in the intrinsic pathway of apoptosis,
including Bcl-2 family members and the tumor-suppressor p53, are commonly deregulated
in MDR cancers, whereas IAPs, which control caspase activation, are often overexpressed.
In addition, related survival pathways, such as PI3K/AKT, often contribute to the develop-
ment of resistance.

3.1. Bcl-2 Family Deregulation in MDR

Several proteins involved in the intrinsic pathway of apoptosis have been identified
as important cellular oncogenes that not only promote tumorigenesis but also contribute to
anti-cancer drug resistance. Inactivating mutations or deletions of pro-apoptotic Bax or
Bak are rare, but many cancers, especially those being refractory to therapy, such as colon,
gastric and leukemia, overexpress one or more pro-survival family members, including
Bcl-2, Bcl-xL and Mcl-1 [45–49]. Initial studies in Bcl-2 transgenic mice revealed accumu-
lation of lymphocytes resistant to diverse cytotoxic agents, including chemotherapeutic
drugs [50–52]. Multiple subsequent studies indicated that high levels of Bcl-2 gene expres-
sion correlate with severity of malignancy in cancer patients, including melanoma, breast,
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prostate, small cell lung, colorectal and bladder cancer, while increased Bcl-2 expression is
associated with resistance to chemotherapy and radiation [53].

Another gene implicated in chemoresistance, is the tumor suppressor p53 which
controls the transcription of numerous genes involved in DNA repair, metabolism, cell
cycle arrest, apoptosis and senescence [54]. One of the first physiological p53 functions
described was its ability to induce apoptosis in transformed cells [55]. p53 transcriptionally
upregulates the expression of apoptotic-related proteins, such Puma, Noxa, Bid and Bax
and can also physically interact with and neutralize the anti-apoptotic activity of Bcl-2
and Bcl-xL [56]. Thus, p53 has a dual role both as a sensitizer, as well as an activator of
apoptosis. p53 mutations, mainly missense mutations, repress apoptosis thus causing
therapeutic resistance [57]. Notably, mutant p53 can also inhibit apoptosis through the
caspase-dependent apoptotic singling cascade [58]. Overexpression of mutant p53 has
been correlated with resistance to conventional drugs including cisplatin, antimetabolites
(gemcitabine), anthracyclines, (doxorubicin), alkylating agents (temozolomide) and drugs
with specific targets such as EGFR-inhibitors (cetuximab) and antiestrogens (tamoxifen). In
addition to mutations in TP53 gene causing protein conformational changes, p53 activity
may also be impaired due to alterations in p53-regulating proteins, such as MDM2 [59].
Therefore, several small molecules, that accelerate mutant p53 protein turnover or convert it
into the wild-type conformation, have been developed and applied in clinical therapy [54].
However, targeting p53 in tumor cells often leads to several side effects and drug cytotoxic-
ity in normal tissues [60]. Importantly, ROS regulate p53 activity by oxidizing the cysteine
residues present in its structure. This modification leads to p53 inability to bind to DNA
and activate specific genes [61].

3.2. Inhibitors of Apoptosis Proteins (IAPs) and Their Role in MDR

IAPs are a class of proteins that are frequently overexpressed in human cancers
conveying resistance to apoptosis and therapy. IAP family members include Survivin,
X-linked inhibitor of apoptosis (XIAP), inhibitors of apoptosis 1 and 2 (c-IAP1 and c-
IAP2), BIR-repeat-containing ubiquitin-conjugating enzyme (BRUCE/Apollon), neuronal
apoptosis inhibitor protein (NAIP), IAP-like protein 2 (ILP-2) and melanoma IAP (ML-
IAP/Livin) [62]. IAPs contain one or more baculovirus inhibitor repeat (BIR) domains, an
amino-terminal, 70-residue structure with distinct functions. In XIAP, the region between
BIR1 and BIR2 specifically targets caspases -3 and -7 while BIR3 inhibits the activity of
caspase-9 [63]. The RING domain, located in XIAP, Livin, ILP2, c-IAP-1 and c-IAP-2 protein
structures, catalyzes the ubiquitination and proteasomal degradation of target proteins.
c-IAP and c-IAP-2 are critical regulators of the noncanonical NFkB pathway and promote
malignancy by inducing the degradation of NFkB-inducing kinase (NIK) [64].

IAPs were originally thought to physically bind and block caspase activity, inhibiting
both the extrinsic and intrinsic pathway of apoptosis [65]. Some family members, including
c-IAP1 and c-IAP2, have a caspase recruitment domain in their structure. However, with
the notable exception of XIAP, they cannot directly bind and inhibit caspases [66,67]. Under
physiological conditions, IAP activity is controlled by Smac/DIABLO and Omi/HtrA2
that are released by the mitochondria and diminish their caspase-inhibitory effects. Over-
expression of IAPs has been reported in many human cancers and has been correlated
with resistance to therapy and worsening disease [67,68]. High levels of c-IAP1, c-IAP2,
XIAP, Survivin and NAIP have been reported in breast cancer [69]. Furthermore, during
early stages of pancreatic cancer, elevated levels of c-IAP2 contribute to malignant pro-
gression [70]. In esophageal cancer, increased XIAP levels inhibit caspase-3 activation and
lead to apoptosis resistance [71]. Targeting IAP family members with agents that act as
“SMAC mimetics” is widely investigated as a promising anti-cancer approach against MDR
cancers [72].

Survivin is the smallest IAP protein. It is physiologically expressed during embryonic
development to inhibit apoptosis and promote proliferation in developing tissues [73,74].
Survivin is expressed at very low levels in differentiated tissues. However, it is overex-
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pressed in most primary tumors and has been correlated with resistance to chemotherapy
and radiotherapy-induced cell death as well as poor prognosis [75–80]. Increased Survivin
expression in cancer cells is partially attributed to aberrant activation of upstream survival
pathways, such as NFkB, which transcriptionally upregulate Survivin [81]. The anti-
apoptotic mechanism of Survivin involves formation of a complex with XIAP, that protects
XIAP from ubiquitin-dependent degradation and increases its caspase-inhibiting func-
tion [82]. Furthermore, Survivin may sequester Smac/DIABLO away from XIAP or inhibit
Smac/DIABLO translocation from the mitochondria to prevent XIAP inactivation [83,84].
Therapeutic exploitation of Survivin is pivotal, as it represents a cancer cell-specific drug
target. However, Survivin-targeting agents have performed poorly in clinical studies,
highlighting the need for developing novel approaches against this protein [85].

3.3. PI3K/AKT Pathway in Multi-Drug Resistance

The synergy between apoptosis resistance and increased survival signaling is critically
important in cancer development. The PI3K/AKT pathway responds to a variety of
external signals and is involved in the regulation of different cellular functions, including
cell cycle progression, survival, metabolism, gene transcription and maintenance of DNA
integrity [86]. Deregulation of this pathway has been implicated in MDR of many cancers,
including leukemia, hepatocellular carcinoma, breast cancer, ovarian cancer, lung cancer
and melanoma [87–92].

Binding of growth factors to receptor tyrosine kinases (RTKs) stimulate PI3K by au-
tophosphorylation which leads to the phosphorylation and activation of serine/threonine ki-
nase AKT (Protein Kinase B, PKB). RTK-PI3K complexes localize at the cell membrane where
the PI3K subunit, p110, catalyzes the conversion of Phosphatidylinositol 4,5-bisphosphate
PtdIns(4,5)P2 (PIP2) to Phosphatidylinositol (3,4,5)-triphosphate PtdIns(3,4,5)P3 (PIP3) [93].
Subsequently, AKT travels to the plasma membrane where it becomes phosphorylated. The
tumor suppressor phosphatase and tensin homology deleted on chromosome 10 (PTEN)
indirectly hinders AKT activity by converting PIP3 to PIP2 [94]. The phosphorylation
of PTEN preserves its stability [95]. Phosphoinositide-dependent kinase-1 and -2 (PDK1
and PDK2) are responsible for activating AKT via phosphorylation on residues Thr308

and Ser473, respectively [96–98]. Phosphorylation of Thr308 partially activates AKT, while
phosphorylation of both sites is required for its full activation [99]. Once activated, p-AKT
translocates to the cytosol or the nucleus where it phosphorylates and therefore modu-
lates the function of downstream substrates, including several targets being implicated in
cancer initiation and progression. AKT enhances cell survival by negatively regulating
the function or expression of pro-apoptotic proteins that inactivate Bcl-2 family members.
Additionally, AKT promotes survival by eliciting p53 degradation [100].

A large percentage of tumors carry alterations in PI3K, AKT or PTEN leading to MDR.
The sustained expression of pro-survival signals renders cancer cells resistant to anticancer
agents. Phosphorylated AKT enhances cell survival by phosphorylating many proteins
implicated in apoptotic pathways, including glycogen synthase kinase-3 (GSK-3), forkhead
transcription factors (FOXO), caspases and proteins implicated in NFkB signaling [101].
AKT activates anti-apoptotic members of the Bcl-2 family, such as Bcl-2 and Bcl-xL, and
IAPs including Survivin and XIAP via phosphorylation of the transcription factor cyclic
AMP response element-binding protein (CREB) and IkB kinase (IKK), a positive regulator
of NFkB [102–105]. Increased activity of the PI3K/AKT pathway attenuates chemotherapy-
induced apoptosis by diminishing the levels of pro-apoptotic Bax and increasing the levels
of anti-apoptotic Bcl-2 and XIAP [106]. In addition, AKT phosphorylates the pro-apoptotic
protein Bad at Ser136, thus hindering its interaction with Bcl-xL and allowing the anti-
apoptotic function of the latter. GSK-3, in response to insulin, regulates glycogen synthesis
which has been shown to regulate cyclin D1 proteolysis and subcellular localization. GSK-3
activity is inhibited by AKT-mediated phosphorylation Ser21 [107–109]. AKT also activates
the MEK-MAP kinase pathway in cancer cells promoting survival and proliferation, by
phosphorylating cRAF at multiple amino acid residues, controlling its activity. [110]. Impor-
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tantly, AKT can directly inhibit the caspase cascade; pro-caspase-9 is an AKT substrate and
can be phosphorylated on Ser196 [111]. Moreover, the phosphorylation of FOXO transcrip-
tion factors by AKT causes their degradation in the cytoplasm and enhances cell survival by
blocking the transcription of death receptor ligands TRAIL and Fas, and of pro-apoptotic
Bcl-2 members Bim and BNIP3 [112]. The implication of FOXOs in the development of
MDR is highlighted by their key role in regulating drug efflux pump ABCD1 in leukemic
and breast cancers and by eliciting resistance to agents that act via the accumulation of
ROS [113]. A deeper understanding of the role of FOXOs in these two processes will enable
the development of effective therapeutics.

Often, upstream and downstream proteins should also be deregulated to achieve
MDR in cancer cells. Upstream regulators of PI3K, RTKs HER-2 and EGFR were found
to be amplified in human cancers. HER-2 is overexpressed in 20–30% of primary breast
cancers that also exhibit constitutive AKT activity, while EGFR overexpression has been
reported in breast, lung and colorectal carcinoma and glioblastoma [114–116]. Notably,
almost 70% of endometrial and ovarian cancers harbor activating mutations of PIK3CA,
the gene that encodes the p110α catalytic subunit of PI3K [106]. PIK3CA mutation has
been associated with elevated PI3K and AKT activity [117,118]. A mutated form of the
PIK3CA protein was also found to selectively phosphorylate AKT and FOXO promoting
cellular growth and cancer cell invasion [119]. The AKT2 gene is often amplified in human
cancers, including lung and ovarian cancers while both AKT1 and AKT2 gene amplification
has been reported in breast and colorectal cancers [120–124]. As previously mentioned,
PTEN is responsible for the indirect inactivation of AKT by converting PIP3 to PIP2, thus
acting as a tumor suppressor. Loss of PTEN can occur either via gene mutation, deletion
or promoter hypermethylation leading to elevated concentrations of the PIP3 substrate.
Consequently, downstream components of the PI3K pathway, including AKT and mTOR,
are constitutively active [94,125]. Based on its implication in cancer cell progression, the
PI3K/AKT pathway has been extensively studied as a promising drug target against
malignant progression [126].

4. Implications of the TME in Apoptosis and MDR

The TME plays a crucial role in tumor growth, metastasis and development of MDR.
The TME consists of immune cells, fibroblasts and endothelial cells that communicate
with cancer cells through paracrine signaling [127]. Immune cells present in the TME
can activate or inhibit apoptotic pathways and affect response to therapy [128]. Cyto-
toxic lymphocytes induce the activation of effector mechanisms, such as release of death
ligands such as FasL and TRAIL [129,130], as well as activation of granule exocytosis
pathway [131,132]. Neutrophils and monocytes express TRAIL and target TRAIL receptor-
expressing tumor cells [133]. Macrophages, the major phagocytic cells of the innate immune
system, can also induce TRAIL-mediated apoptosis of cancer cells [134]. Cytokines, such
IFNs, CD137 and IL-24, secreted by tumor-associated immune cells promote apoptosis in
cancer cells [133,135–137]. In addition, non-cellular TME constituents are important media-
tors of cancer cell behavior, such as excess extracellular matrix (ECM) deposition, which
compresses blood vessels and reduces perfusion, as well as acidic and hypoxic milieu,
which collectively impair drug delivery [138–140]. Here, we mainly focus on the cellular
components of the TME that regulate apoptosis of cancer cells and, more specifically, cancer
associated fibroblasts (CAFs) which alter the apoptotic responses of cancer cells to cytotoxic
drugs (Figure 2).
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Figure 2. Deregulation of apoptotic pathways during the MDR development in cancer. The
PI3K/AKT survival pathway is frequently overactive in MDR cancers, partly due to increased
levels of growth ligands and receptors. Binding of growth factors to receptor tyrosine kinases (RTKs)
stimulates PI3K by autophosphorylation; PI3K then catalyzes the conversion of PIP2 to PIP3 while
tumor suppressor PTEN has an opposing function. PTEN is often mutated and thus inactive in
MDR cancers. PI3K mediates the activation of AKT via phosphorylation on Thr308 and Ser473 by
PDK1 and PDK2, respectively. AKT can then activate MDM2 which blocks the function of p53. P53
regulates (among others) the levels and activation status of the Bcl-2 family of proteins. The balance
between the levels of the pro-apoptotic and anti-apoptotic Bcl-2 family proteins, controls the release of
pro-apoptotic factors from mitochondria. Once released, cytochrome-c activates firstly caspase-9 and
then the executioner caspases-3, -6 and -7. Furthermore, in MDR cancers, members of the IAP family
are overexpressed, blocking caspase function. SMAC/Diablo are also released from the mitochondria
during apoptosis and can inhibit the function of IAPs. NFkB is indirectly activated by growth factors
via the PI3K/AKT pathway and up-regulates IAPs, e.g., survivin via regulation at the transcriptional
level. Factors released by CAFs increase tumor cells survival via the activation of the PI3K/AKT
pathway and inhibit apoptotic pathways. The cellular and non-cellular components of the TME as
well as modifications in metabolic pathways and mechanical stress have been also implicated in
resistance to cancer-cells targeting pro-apoptotic therapeutic agents. The composition and structure
of stromal components in tumors increase interstitial fluid pressure (IFP) hindering the penetration
of macromolecules through tissue and influence the sensitivity of tumor cells to therapy [141]. The
hypoxic TME favours cells that have lost sensitivity to p53-mediated apoptosis and that are deficient
in DNA mismatch repair leading to resistance to platinum-based chemotherapeutic agents [142].
Moreover, the low extracellular pH in tumors decreases the cellular uptake of weakly basic drugs
such as doxorubicin, mitoxantrone, vincristine and vinblastine [143]. Multi Drug Resistant (MDR);
Receptor Tyrosine Kinases (RTKs); Phosphatidylinositol 4,5-bisphosphate PtdIns(4,5)P2, (PIP2); Phos-
phatidylinositol (3,4,5)-triphosphate PtdIns(3,4,5)P3, (PIP3); Phosphoinositide-dependent kinase,
(PDK); Tumor Microenvironment (TME); Inhibitors of Apoptosis Proteins, (IAPs); Cancer Associated
Fibroblasts, (CAFs).

4.1. Cancer Associated Fibroblasts in Apoptosis and MDR

During carcinogenesis, CAFs are activated as a major component of the tumor
stroma [144,145]. CAFs secrete various extracellular matrix proteins, chemokines, cy-
tokines, as well as growth factors and extensively contribute to tumor progression, invasion
and metastasis [145,146]. CAFs are also linked to poor survival in most cancers and are
considered potential therapeutic targets [147]. Factors released by CAFs increase tumor
cell survival via the activation of anti-apoptotic pathways or by induction of the epithelial
to mesenchymal transition (EMT) and cancer stem cell (CSC) phenotype, as demonstrated
in melanoma, non-small cell lung cancer (NSCLC) and colorectal cancer [148–153].
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4.1.1. CAF-Derived Extracellular Vesicles

The significance of extracellular vesicles (EVs) derived from CAFs (CAF-EVs) in the
progression of carcinomas and resistance to apoptosis has been increasingly recognized.
CAFs secrete exosomes that are loaded with proteins, lipids and RNAs to functionally
control the properties of the TME [154]. CAF-EVs exert tumor-promoting functions and
microRNAs (miRNAs) found in CAF-EVs participate in the interaction between cancer cells
and CAFs [154–156]. Apoptosis of breast cancer cells is inhibited by CAF-EVs that reduce
miR-30e expression to upregulate collagen triple helix repeat containing 1 (CTHRC1); this,
in turn, activates the Wnt/β-catenin pathway to facilitate breast cancer development and
progression. Overexpression of miR-30e or silencing of CTHRC1 suppresses proliferation,
migration/invasion of breast cancer cells and promotes apoptosis [154]. CAF-derived
exosomes could also transfer miR-181d-5p to enhance breast cancer aggressiveness. CAFs
antagonize apoptosis in MCF-7 cells via transfer of miR-181d-5p which downregulates
homeobox A5 (HOXA5) and caudal-related homeobox 2 (CDX2) [157]. Long non-coding
RNAs (lncRNAs) are a heterogeneous class of transcripts longer than 200 nucleotides with
limited protein-coding potential [158,159]. CAFs were shown to transfer lncRNA H19 to
neighboring colorectal cancer cells [151,160–162] and promote the stemness via activat-
ing Wnt/β-catenin signaling causing resistance to oxaliplatin-mediated apoptosis [163].
Exosomal lncRNA enhance invasion, migration, proliferation and inhibit apoptosis in
cervical cancer cells and in NSCLC [164,165]. The importance of lncRNAs in regulating
drug resistance in cancer cells has recently been described in a detailed review [166].

4.1.2. Interleukins Secreted by CAFs

Lung adenocarcinoma is one of the most CAF-rich cancers. The role of CAFs in re-
sistance to chemotherapy of lung adenocarcinoma is well appreciated [167,168]. Cisplatin
treatment increases Interleukin-11 (IL-11) levels in CAFs which protects lung adenocar-
cinoma cells from apoptosis [169]. Cisplatin induces DNA damage and subsequently
activation of apoptosis [170]. IL-11, a member of IL-6 family, binds to IL-11Ra2 to activate
signaling. [171]. Patients with high IL-11Rα levels show poor response to cisplatin-based
chemotherapy [169]. IL-11 induces Signal transducer and activator of transcription 3
(STAT3) phosphorylation and increases the expression of anti-apoptotic protein Bcl-2 and
Survivin in cancer cells. As mentioned above, Bcl-2 and Survivin have been extensively
implicated in the development of chemoresistance in cancer [172,173]. The anti-apoptotic
effects of IL-11 can be prevented by suppressing STAT3 phosphorylation or silencing
IL-11Rα expression in lung adenocarcinoma [169].

IL-6 is another key cytokine, secreted by cancer cells, immune cells and CAFs, which
inhibits apoptosis of cancer cells through STAT3 activation [174–176]. IL-6 binds to the
cell surface receptor glycoprotein 130 (gp130) and activates several cell survival-related
pathways promoting chemotherapeutic resistance in breast, ovarian and endometrial can-
cers [177–179]. Significant amount of IL-6 in the TME originates from CAFs and is involved
in carcinogenesis and metastasis [180,181]. IL-6 derived from CAFs prevents chemotherapy-
induced apoptosis by increasing the phosphorylation of Jak1 and STAT3, and the expression
of the anti-apoptotic proteins Bcl-2 and Survivin in gastric carcinoma [182]. Studies con-
ducted in CAFs derived from human gastric carcinomas further demonstrated the role of
CAFs in prevention of early apoptosis of gastric cancer cells treated with 5-fluorouracil
(5-FU). Factors secreted from CAFs not only inhibit apoptosis but also induce an EMT
phenotype in gastric carcinoma [183]. Treatment with conditioned medium from activated
gastric carcinoma CAFs decreases response of gastric cancer cells to 5-FU by suppression
of apoptosis-related proteins, such as Bak, Bax, cleaved caspase 3 and cleaved PARP [183].
Similarly, chemotherapy-induced apoptosis of pancreatic cancer cells significantly de-
creases in the presence of CAFs [184,185]. Overall, the role of IL-6, IL-11 as well as of other
interleukins, has been observed in MDR cancer cells; the clinical attempts to block their
effects for therapeutic intervention have been described in a recent review [186].
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4.1.3. Regulation of Sex Determining Region Y-box 2 by CAFs

Sex determining region Y -box 2 (Sox2), an essential embryonal stem cell transcription
factor, may also play an important role in CAF-induced drug resistance. Sox2 is linked to
the formation and maintenance of CSC phenotype and is implicated in drug resistance and
poor patient prognosis [187–192]. In ER+ breast cancer cells, a mixture of CAF-secreted
factors strongly induced Sox2 expression. In addition, Sox2 blocked apoptosis, enabled
cellular growth and shielded cells against the anti-estrogen fulvestrant [193]. CAFs also
minimized the effectiveness of tamoxifen in breast cancer cells [194]. Whereas Sox2 is
an attractive therapeutic target, direct targeting of Sox2 via siRNA has shown poor out-
comes due to inefficient delivery and efficacy; novel approaches include the design of
artificial transcription factors (ATFs), that bind to proximal SOX2 promoters and reduce its
expression [195].

4.1.4. Growth Promoting Proteins Released by CAFs

CAFs secrete hepatocyte growth factor (HGF) that mediates resistance to cancer cell
apoptosis [196]. HGF also induces cell proliferation, cancer cell motility and migration.
Many cancer types, including ovarian, gastric, colorectal and pancreatic, overexpress c-
Met, which functions as a specific HGF receptor [197,198]. HGF-induced c-Met activation
triggers downstream the PI3K/Akt pathway, enabling cancer progression [199–201]. In
lung cancer, HGF derived from CAFs, attenuates the apoptotic effects of paclitaxel (PAC) by
upregulating glucose-regulated protein 78 (GRP78) [167]. GRP78 acts as a chaperon protein
in the endoplasmic reticulum (ER) where it regulates protein folding; it is highly expressed
on the surface of cancer cells [202] and enables malignant growth, motility, migration
and resistance to therapy [203,204]. In ovarian cancer, HGF secreted by CAFs attenuated
paclitaxel-induced apoptosis by activating the c-Met/PI3K/Akt pathway and signaling
involving GRP78 [196]. In addition, GRP78 inhibits apoptosis by interacting with caspase-7
or p53 [205,206] and also by binding to Bax and Bik to prevent mitochondrial release of
cyt-c [207,208]. This evidence suggests that the activation of PI3K/Akt and GRP78 may
be implicated in cancer progression and resistance to therapy. Activation of PI3K/Akt
pathway by other CAF-originated factors can also lead to resistance to apoptosis induced by
cytotoxic drugs. More specifically, the CAF-derived chemokine CCL5, promoted cisplatin
resistance in ovarian cancer cells by affecting the PI3K/Akt signaling pathway [209,210].
Netrin-1 is a multifunctional secreted glycoprotein upregulated in various cancers, such as
gastric and lung, and may inhibit apoptosis induced by the dependence receptors DCC
and UNC5H [211,212]. Netrin-1 and its receptor (UNC5B) are upregulated in CAFs of lung
and colon tumors [213]. Inhibition of netrin-1 abrogates CAF-mediated increase in cancer
stemness [213]. Hence, Netrin-1 secreted by CAFs may play an important role in inhibition
of apoptosis and drug resistance.

TP53-regulated inhibitor of apoptosis 1 (TRIAP1) is a small, 76-amino acid long, evo-
lutionary conserved protein which inhibits apoptosis and promotes DNA repair [214,215].
Loss of caveolin-1 in CAFs augmented the secretion of TRIAP1 from CAFs causing radia-
tion resistance of prostate cancer cells by hindering apoptosis [216]. Similarly, knockdown
of TRIAP1, using microRNA miR-320b, induced mitochondrial apoptosis [214,217].

Folicular lymphoma-associated CAFs, isolated from malignant lymphoma patients,
were shown to protect tumor cells from apoptosis in response to cytotoxic drugs [218].
These CAFs do not alter proliferation rate of cancer cells but markedly upregulate the
expression of the anti-apoptotic BCL2L1 gene in folicular lymphoma cells [219–221]. Mid-
kine can also mediate CAF-induced inhibition of apoptosis and chemoresistance. Mid-
kine is a heparin-binding growth factor and induces tumor progression by enhancing
carcinoma cell growth, survival [222,223], invasiveness, migration, and chemotherapy
resistance [224,225]. Primary CAFs from oral squamous cell carcinoma secrete high levels
of midkine, which abrogate cisplatin-induced cell death [226]. Midkine also enables glioma
cells to become resistant to tetrahydrocannabinol by obstructing the ALK receptor and
inhibiting autophagy-mediated cell death via the Akt/mTORC1 pathway [227]. Midkine
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induces the expression of lncRNA ANRIL in cancer cells while lncRNA ANRIL knock-
down blocked proliferation and promoted apoptosis to augment cisplatin cytotoxicity via
impairment of the drug transporters MRP1 and ABCC2 [226]. Furthermore, knockdown of
lncRNA ANRIL increased the activation of caspase-3 and inhibited Bcl-2 expression [226].

Conclusively, CAFs not only enhance the aggressiveness of cancer cells but also render
them resistant to therapy-induced apoptotic effects by secreting various factors including
miRNAs, lncRNAs, cytokines and chemokines. All these CAF-secreted factors induce
activation or upregulation of factors implicated in apoptosis inhibition and overactivation
of survival pathways in cancer cells in response to chemotherapy. Given the crucial roles of
CAFs in carcinogenesis and drug resistance, better understanding of the underlying mech-
anisms will uncover novel targets to overcome drug resistance mediated via deregulation
of cell death pathways.

5. Therapeutic Approaches to Induce Apoptosis in MDR Cancers

Potent apoptosis-inducing approaches can prevent tumor initiation and progression.
Many proteins involved in apoptosis have been targeted with small molecule inhibitors,
epigenetic drugs and natural or synthetic compounds (Table 1). These agents may be
used as monotherapy, but they have been often evaluated in combination with other
targeted or conventional anti-tumor therapeutics. The Bcl-2 family of proteins represent
an attractive target for therapy as it is often deregulated and confers resistance in cancer.
Consequently, small molecule inhibitors that can interact with BH3 domains and antisense
oligonucleotides have been developed [228,229]. These small molecules against Bcl-2
proteins can be categorized as BH3 mimetics (i.e., ABT-737, ABT-263) and small molecules
with BH3 putative mimetic action (i.e., gossypol, obatoclax etc.) [230].

Table 1. Types of anti-cancer treatments against multi-drug resistance involving apoptotic pathways.

Therapeutic Class Compound Observed Effect Model Ref

Small molecule inhibitors

Venetoclax
(Bcl-2 inhibitor)

Directly blocked the wild-type ABCG2
efflux function and inhibited the ATPase

activity of ABCG2.

Human embryonic kidney
cell line HEK293

overexpressing ABCG2
in vitro.

[231]

ABT-737
(BH3-mimetic)

In combination with Fenretinide,
synergistically induced cyt-c release,

activation of caspases, Bax, t-Bid and Bak.

MDR neuroblastoma cell
lines in vitro. [232]

Nutlin5
(MDM2-p53 antagonist)

Reversed MDR-1-mediated multidrug
resistance in a p53-independent manner.

High MDR-1-expressing
p53 mutant neuroblastoma

cell lines in vitro.
[233]

MI-219
(MDM2 inhibitor)

Sensitized cells to androgen ablation and
radiotherapy by inducing DNA damage

and apoptosis.

Prostate Cancer Cells
in vitro. [234]

Thiosemicarbazone Inhibited cell cycle progression at the G1
phase.

MCF7 and MCF7/ADR
cells in vitro. [235]

LY294002
(PI3K inhibitor) Inhibited the expression of p-Akt and P-gp.

Leukemia cell line
K562/DNR and gastric

cancer cell line
SGC7901/ADR in vitro.

[236]

Metformin
(Metabolic inhibitor)

In combination with 2-deoxyglucose
selectively enhanced cytotoxicity of

Doxorubicin leading to G2/M arrest and
apoptosis.

MCF-7/Dox breast cancer
cells in vitro. [237]
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Table 1. Cont.

Therapeutic Class Compound Observed Effect Model Ref

BEZ235
(PI3K/mTOR inhibitor)

Caused a dose-dependent decrease in cell
viability in combination with Dox,

associated with an increase in cleaved
PARP.

Ovarian A2780 and
pancreatic MiaPaca2
cancer cells in vitro.

[238]

AZ D8055
(mTORC1/2 inhibitor)

Inhibition of mTOR and caspase-3 cleavage
in platinum-resistant cells.

Advanced-stage ovarian
clear cell carcinoma

patient-derived xenograft
models.

[239]

Rapamycine
(mTOR inhibitor)

Inhibited PI3K/AKT pathway, blocked
proliferation, sensitized cells to Tamoxifen

and Fulvestrant.

Breast cancer cells
resistant to endocrine

therapy in vitro.
[240]

YM155
(Survivin inhibitor) Survivin depletion and p53 activation.

Neuroblastoma cell lines
and their sublines with
acquired resistance to

clinically relevant drugs
in vitro.

[241]

Natural agents
and derivatives

Wagonin

Promoted TRAIL-induced apoptosis
in vitro and downregulated the expression
of anti-apoptotic XIAP, cFLIPL, cIAP-1 and

cIAP-2.

Non-small cell lung cancer
in vivo. [242]

Luteolin
Generated ROS leading to DNA damage

and activated the ATR/Chk2/p53 pathway
independently of the P-gp efflux pump.

MDR breast cancer cells
in vitro. [243]

Fisetin

Concurrent treatment with
chemotherapeutic drugs activated caspases

-8 and -3, release of cyt-c and inhibited
survival pathways IGF1R and AKT.

Colon cancer cells
resistant to both Irinotecan

and Oxaliplatin
in vitro/in vivo.

[244]

Genistein

Pre-treatment inhibited NFkB activity and
led to increased growth inhibition and

apoptosis in combination with Cisplatin
and Docetaxel.

Prostate and lung cancer
cells in vitro/in vivo. [245]

Resveratrol
- Induced apoptosis by upregulating

miR-34c and p53.

- Platinum-resistant
colorectal cancer cells,

in vivo.
[246]

- Reversed MDR by targeting Survivin and
activating caspase-3.

- Non-small cell lung
MDR cancer cells, in vivo. [247]

Curcumin

- Sensitized cells to capecitabine by
inhibiting NFkB, reduced Bcl-2, IAP-1,

Survivin, COX-2, MMP-2, ICAM-1, CXCR4
and VEGF

- Colorectal cancer to
capecitabine in vivo [248]

- Difluorinated Curcumin downregulated
PTEN inhibitor, miR-21.

- Colorectal cancer cells
resistant to 5-FU and
oxaliplatin in vitro.

[249]

- In combination with EGCG led to
synergistic effects through activation of the
caspase-dependent signaling pathway, and

downregulation of Bcl-2 and Survivin.

- Resistant breast cancer
cells in vitro. [250]

Ellagic acid

In combination with 5-FU increased the
Bax/Bcl-2 ratio, caused changes in
mitochondrial membrane potential,

activated caspase-3 and induced apoptosis.

Colorectal cancer cells
in vitro. [251]

O-methylated coumarin Inhibited the PI3K/Akt signaling pathway. Myelogenous leukemia
K562/ADM cells in vitro. [252]

Vitamin E and
derivatives

TPGS induced cell cycle arrest and
apoptosis selectively in

Survivin-overexpressing breast cancer cells.
Breast cancer cells in vitro. [253]
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Table 1. Cont.

Therapeutic Class Compound Observed Effect Model Ref

TME/Immune regulation

Pirfenidone

Induced apoptosis in CAFs at high
concentration; at low concentrations

induced apoptosis and decreased tumor
progression synergistically with Cisplatin.

NSCLC cells in vitro and
in vivo. [254]

Combination of
anti–CTL-4 plus

anti–PD1 therapy

Mediated a switch from expansion of
phenotypically exhausted CD8+ T cells to

expansion of activated effector CD8+ T
cells.

Melanoma patients. [255]

Combination of
EGFR-TKIs and

anti-PD-1/PD-L1
antibodies

PD-L1 mediated by EGFR activation could
induce the apoptosis of T cells through

PD-L1/PD-1 axis in tumor cells.

EGFR-TKIs-resistant
NSCLC cells with EGFR

mutation in vitro.
[256]

MEDI9447
Antibody targeting ectoenzyme CD73,

increased CD8+ effector cells and activated
macrophages.

Mouse syngeneic
colorectal tumor growth

in vivo.
[257]

Epigenetic drugs

Hydralazine
(DNMTi)

In combination with Magnesium Valproate
LP improved progression-free survival.

Metastatic Recurrent or
Persistent Cervical Cancer

patients.
[258]

Parthenolide
(HDACi) NFkB and HIF1-α Inhibition. Brain, breast, colon cancer

cell lines in vitro. [259]

Decitabine (DNMTi) and
Panobinostat (HDACi)

In combination with alkylating agent
temozolomide showed great improvements

in disease stabilization and remission.

Resistant metastatic
melanoma patients [260]

Azacitidine and
Valproic acid

In combination with carboplatin
demonstrates decreased DR4 methylation
and shows modest evidence of antitumor

activity

Patients with heavily
treated advanced ovarian

cancer.
[261]

BRD4i
(BRD4 inhibitor)

Induced homologous recombination
deficiency and sensitized cells to PARP

inhibition.

Multiple tumor lineages
regardless of BRCA1/2,

TP53, RAS or BRAF
mutation status in vitro

and in vivo.

[262]

Inhibiting AKT has for long been a major focus as a promising therapeutic approach
in cancer. To date, there are two classes of AKT inhibitors, namely, ATP-competitive and
allosteric inhibitors which either block ATP binding or prevent AKT phosphorylation and
activation [263]. However, despite the development of many compounds with promising
results for targeting AKT, none of these inhibitors has been approved yet for clinical use.
This is, at least in part, attributed to the complex and pleiotropic functions that AKT exerts
in cells. Therefore, combinational therapy approaches seem to represent a major research
direction for the successful clinical utilization of AKT inhibitors [264].

Conventional drugs, such as cisplatin and doxorubicin, exert their anti-cancer effects
via the accumulation of ROS and DNA damage. However, reduction of ROS generation
leads to resistance [265]. Moreover, synthetic agents tested against MDR cancers, can
sometimes cause toxic side effects and lack specificity. For these reasons, efforts have
also been focused on natural agents and their derivatives, to take advantage of their
beneficial properties. Polyphenols represent a large family of organic, naturally occurring
compounds that are characterized by the presence of many phenol groups in their structure.
Phenolic compounds, including flavones, ellagitannins and curcumin, are known to act as
chemopreventive agents due to their antioxidant properties and their ability to inactivate
pro-carcinogens. Certain natural compounds, rely on the upregulation of ROS to induce
DNA damage. However, low oxygen levels within the tumor leads to limited generation
of ROS and allows cancer cells to escape death [266]. Reduced ROS levels in cancer
cells have been reported to increase the levels of P-gp efflux pump through the JNK
pathway, further promoting drug resistance [267]. Importantly, natural compounds also
exert chemotherapeutic properties because they can regulate signaling pathways to inhibit
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the proliferation of cancer cells, block angiogenesis and metastasis, and induce immune
and inflammatory responses [268]. Importantly, phenolic compounds can induce apoptosis
in cancer cells by activating various pro-apoptotic machineries and, interestingly, several
have been reported to be effective against MDR tumors [269]. The TME is also being
targeted to improve drug efficacy in difficult to treat cancers; immune checkpoint inhibitors
(ICIs) that have shown promising clinical efficacy, are now being tested in combination
with other agents to overcome intrinsic or acquired tumor resistance [270].

6. Future Perspectives: The Implication and Therapeutic Exploitation of Epigenetics
in MDR

For decades, genetic mutations during cancer progression and acquired MDR were
considered a major cause of treatment failure in relapsed cases, ignoring the non-genetic
basis of tumor heterogeneity [271]. A breakthrough in anti-cancer therapy was achieved
when it was realized that the high predominance of MDR is attributed not only to DNA
mutations but also to a variety of epigenetic alterations. Moreover, it became increasingly
evident that the probability of an irreversible mutation to appear, increases as more critical
modifications emerge in the epigenome of tumor cells [272]. Among the observations
that led to this conclusion were the reversal of drug resistance observed upon drug-free
periods, the frequent absence of mutations in drug targets or activated pathways, as
well as the heterogeneity in acquired MDR and in relapsed cases [273,274]. Recent data
highlight the major role of epigenetic changes in tumorigenesis and in the development of
MDR [275]. Cancer cells can escape from a poised drug-tolerant condition and enter into
an epigenetically fixed acquired-resistant state via poorly understood mechanisms. During
carcinogenesis, environmental pressure upon tumor cells results in an array of epigenetic
aberrations, such as DNA and RNA methylation, alterations in the miRNAs expression
and histone modifications, which eventually lead to epigenetically-induced transcriptional
adaptation [272,275].

Epigenetic changes are generally reversible and susceptible to external factors; these
characteristics make them appealing targets either for monotherapy or in combination
with other anti-cancer agents to treat MDR [276,277]. Therefore, multiple generations of
drugs that target epigenetic regulators, called epi-drugs, have been designed during the
last 40 years, demonstrating valuable effects on cancer therapy in clinical trials [278,279].
Epigenetic modifications such as DNA hypermethylation of gene promoters could par-
tially explain the acquired resistance after prolonged treatment [280,281]. Recent studies
have shown that epi-drugs, such as the DNA methylation inhibitor (iDNMT), 5-aza-20-
deoxycytidine (decitabine; DAC), can be effective against resistant cancers (including
lung cancer and AML), in combination with conventional chemotherapeutics by reversing
DNA methylation which sensitizes cancer cells to other chemotherapeutics, including
carboplatin, cisplatin and 5-FU [282–284].

Several challenges remain, however, to improve the effectiveness of epi-drugs against
MDR cancers. In contrast to hematological malignancies, solid tumors do not respond well
to epi-drugs possibly due to the contribution of the TME [285]. To overcome these obstacles,
single-cell sequencing technologies (i.e., scRNA-seq, scATAC-seq, sc-Hi-C and scChIP-
seq) using patients’ biopsies immediately before and/or after epi-drug administration
could provide more detailed information about the drug resistance landscape derived
from genome/epigenome interactions. In addition, many epi-drugs, such as HDACs
inhibitors which were shown to be effective against hematological malignancies and MDR,
result in numerous off-target effects, since they act as pan-HDAC inhibitors [286]. A
novel therapeutic approach, called proteolysis-targeting chimera (PROTAC) has been
developed to improve the specificity of drugs against targets at low concentrations. The
PROTACs technology promotes proteasomal protein degradation through E3 ubiquitin
ligase activity. Importantly, side effects are significantly reduced [57]. PROTAC drugs
targeting the epigenetic reader BRD4 are under preclinical evaluation in various cancer
types showing promising therapeutic effects in reversing drug resistance phenotypes [57].
In addition, the replacement of preclinical models, such as two-dimensional (2D) in vitro
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cancer cell lines, with more clinically relevant 3D in vitro or mouse models that recapitulate
the TME of resistant cells in relapsed patients should be considered [287,288]. Importantly,
epigenetic interpatient and intratumor heterogeneity, a hallmark of human cancers that
plays crucial roles in developing MDR need to be more thoroughly investigated [271,277].
Taken together, current evidence suggests that to improve efficacy of epi-drugs, new
generations of more selective agents should be developed with optimized drug dosage,
pharmacodynamics and pharmacokinetics properties, along with low toxicity levels in
normal cells and tissues.

7. Conclusions

Deregulation of the major apoptotic pathways, and the related survival pathways
that control the expression and/or activation of apoptotic proteins, may lead to MDR.
Imbalance in Bcl-2 family levels, overexpression of IAPs and p53 inactivation have been
widely reported in various types of MDR tumors. The TME appears to be pivotal in
tumor progression and is known to impair the effectiveness of many therapeutics. A
better understanding of how epigenetic alterations control cancer development may lead
improved drug efficacy and contribute to the improvement of several agents already
employed against MDR tumors. Recent studies using in vitro models have shown that
different MDR mechanisms can be derived from a single ancestor cell [289]. Subsequently,
in these cases, detection and characterization of residual tumor cells using single-cell
sequencing technologies, will elucidate the contribution of genetic and epigenetic variability
in developing drug resistance phenotypes [290,291]. It has been suggested that one of the
better strategies in the fight against acquired MDR could be a therapeutic scheme that
targets cancer cells prior to the acquisition of drug resistance, i.e., before they express a
pro-survival program [280]. At the dawn of personalized medicine, the study of these
alterations could provide novel and promising predictive biomarkers with great clinical
significance against the evolution of acquired MDR.
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