Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Discussion
2.1. The First Dilemma: What to Sample
2.2. The Foreground: Bacteria
2.3. The Background: Fungi, Viruses and Archaea
2.4. The “Bad Fellas”: Tobacco, Alcohol, Betel and Chronic Mucosal Inflammation
2.5. “What Are They Doing?”: Transcriptomics, Proteomics and Metabolomics
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sami, A.; Elimairi, I.; Stanton, C.; Ross, R.; Ryan, C. The role of the microbiome in oral squamous cell carcinoma with insight into the microbiome–treatment axis. Int. J. Mol. Sci. 2020, 21, 8061. [Google Scholar] [CrossRef]
- Lin, D.; Yang, L.; Wen, L.; Lu, H.; Chen, Q.; Wang, Z. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol. 2021, 1–12. [Google Scholar] [CrossRef]
- Gallimidi, A.B.; Fischman, S.; Revach, B.; Bulvik, R.; Maliutina, A.; Rubinstein, A.M.; Nussbaum, G.; Elkin, M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015, 6, 22613–22623. [Google Scholar] [CrossRef] [Green Version]
- Warnakulasuriya, S. Clinical features and presentation of oral potentially malignant disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Lodi, G. Oral leukoplakia. In UpToDate; Post, T.W., Ed.; UpToDate: Waltham, MA, USA, 2021. [Google Scholar]
- Iocca, O.; Sollecito, T.P.; Alawi, F.; Weinstein, G.S.; Newman, J.G.; De Virgilio, A.; Di Maio, P.; Spriano, G.; López, S.P.; Shanti, R.M. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 2020, 42, 539–555. [Google Scholar] [CrossRef]
- Amer, A.; Galvin, S.; Healy, C.; Moran, G.P. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for fusobacterium, Leptotrichia, campylobacter, and Rothia species. Front. Microbiol. 2017, 8, 2391. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-H.; Chen, H.-M.; Yang, S.-F.; Wen-Liang, C.; Peng, C.-Y.; Tzu-Ling, Y.; Tsai, L.-L.; Wu, B.-C.; Hsin, C.-H.; Huang, C.-N.; et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amer, A.; Whelan, A.; Al-Hebshi, N.; Healy, C.M.; Moran, G.P. Acetaldehyde production by Rothia mucilaginosa isolates from patients with oral leukoplakia. J. Oral Microbiol. 2020, 12, 1743066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, D.; Relman, D.A. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 2017, 21, 421–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decsi, G.; Soki, J.; Pap, B.; Dobra, G.; Harmati, M.; Kormondi, S.; Pankotai, T.; Braunitzer, G.; Minarovits, J.; Sonkodi, I.; et al. Chicken or the egg: Microbial alterations in biopsy samples of patients with oral potentially malignant disorders. Pathol. Oncol. Res. 2019, 25, 1023–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, D.; Menon, R.K.; Wie, C.C.; Banerjee, M.; Panda, S.; Mandal, D.; Behera, P.K.; Roychoudhury, S.; Kheur, S.; Botelho, M.G.; et al. Salivary bacterial shifts in oral leukoplakia resemble the dysbiotic oral cancer bacteriome. J. Oral Microbiol. 2021, 13, 1857998. [Google Scholar] [CrossRef]
- Hernandez, B.Y.; Zhu, X.; Goodman, M.T.; Gatewood, R.; Mendiola, P.; Quinata, K.; Paulino, Y.C. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS ONE 2017, 12, e0172196. [Google Scholar] [CrossRef]
- Zhong, X.; Lu, Q.; Zhang, Q.; He, Y.; Wei, W.; Wang, Y. Oral microbiota alteration associated with oral cancer and areca chewing. Oral Dis. 2021, 27, 226–239. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Q.; Hua, H.; Chen, F. Changes in the salivary microbiota of oral leukoplakia and oral cancer. Oral Oncol. 2016, 56, e6–e8. [Google Scholar] [CrossRef] [PubMed]
- Ganly, I.; Yang, L.; Giese, R.A.; Hao, Y.; Nossa, C.W.; Morris, L.G.T.; Rosenthal, M.; Migliacci, J.; Kelly, D.; Tseng, W.; et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int. J. Cancer 2019, 145, 775–784. [Google Scholar] [CrossRef]
- Hashimoto, K.; Shimizu, D.; Hirabayashi, S.; Ueda, S.; Miyabe, S.; Oh-Iwa, I.; Nagao, T.; Shimozato, K.; Nomoto, S. Changes in oral microbial profiles associated with oral squamous cell carcinoma vs leukoplakia. J. Investig. Clin. Dent. 2019, 10, e12445. [Google Scholar] [CrossRef]
- Shridhar, K.; Aggarwal, A.; Rawal, I.; Gupta, R.; Masih, S.; Mehrotra, R.; Gillespie, T.W.; Dhillon, P.K.; Michaud, D.S.; Prabhakaran, D.; et al. Feasibility of investigating the association between bacterial pathogens and oral leukoplakia in low and middle income countries: A population-based pilot study in India. PLoS ONE 2021, 16, e0251017. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.R.; Yu, W.-H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robledo-Sierra, J.; Ben-Amy, D.P.; Varoni, E.; Bavarian, R.; Simonsen, J.L.; Paster, B.J.; Wade, W.G.; Kerr, R.; Peterson, D.E.; Lau, E.F.; et al. World workshop on oral medicine VII: Targeting the oral microbiome Part 2: Current knowledge on malignant and potentially malignant oral disorders. Oral Dis. 2019, 25, 28–48. [Google Scholar] [CrossRef] [PubMed]
- Healy, C.; Moran, G.P. The microbiome and oral cancer: More questions than answers. Oral Oncol. 2019, 89, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.S.; Kong, E.F.; Rizk, A.M.; Jabra-Rizk, M.A. The oral microbiome: A lesson in coexistence. PLoS Pathog. 2018, 14, e1006719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartnicka, D.; Gonzalez-Gonzalez, M.; Sykut, J.; Koziel, J.; Ciaston, I.; Adamowicz, K.; Bras, G.; Zawrotniak, M.; Karkowska-Kuleta, J.; Satala, D.; et al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int. J. Mol. Sci. 2020, 21, 1984. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Peng, J.; Zhou, Y.; Chen, Q.; Xu, H. Association of human papillomavirus with oral lichen planus and oral leukoplakia: A meta-analysis. J. Évid. Based Dent. Pr. 2020, 20, 101485. [Google Scholar] [CrossRef]
- de la Cour, C.D.; Sperling, C.D.; Belmonte, F.; Syrjänen, S.; Kjaer, S.K. Human papillomavirus prevalence in oral potentially malignant disorders: Systematic review and meta-analysis. Oral Dis. 2021, 27, 431–438. [Google Scholar] [CrossRef]
- Wu, J.; Peters, B.A.; Dominianni, C.; Zhang, Y.; Pei, Z.; Yang, L.; Ma, Y.; Purdue, M.P.; Jacobs, E.J.; Gapstur, S.M.; et al. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J. 2016, 10, 2435–2446. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Di Cosola, M.; Inchingolo, A.M.; Malcangi, G.; Pettini, F.; Scarano, A.; Bordea, I.R.; Hazballa, D.; Lorusso, F.; Inchingolo, F.; et al. Correlation between occlusal trauma and oral microbiota: A microbiological investigation. J Biol Regul Homeost Agents 2021, 35 (Suppl. S1), 295–302. [Google Scholar] [CrossRef]
- Lissoni, A.; Agliardi, E.; Peri, A.; Marchioni, R.; Abati, S. Oral microbiome and mucosal trauma as risk factors for oral cancer: Beyond alcohol and tobacco. A literature review. J. Biol. Regul. Homeost. Agents 2021, 34, 11–18. [Google Scholar]
- Rowińska, I.; Szyperska-Ślaska, A.; Zariczny, P.; Pasławski, R.; Kramkowski, K.; Kowalczyk, P. The influence of diet on oxidative stress and inflammation induced by bacterial biofilms in the human oral cavity. Materials 2021, 14, 1444. [Google Scholar] [CrossRef]
- Grigg, J.B.; Sonnenberg, G.F. Host-Microbiota interactions shape local and systemic inflammatory diseases. J. Immunol. 2017, 198, 564–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijazi, K.; Morrison, R.W.; Mukhopadhya, I.; Martin, B.; Gemmell, M.; Shaw, S.; Santoro, F. Oral bacterial diversity is inversely correlated with mucosal inflammation. Oral Dis. 2020, 26, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Kansara, S.; Sivam, S. Premalignant lesions of the oral mucosa. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Takahashi, N. Oral microbiome metabolism. J. Dent. Res. 2015, 94, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
Author | Number of Samples | Number of Patients with OSCC | Number of Patients with Premalignant Lesions | Type of Premalignant Lesions | Definition of Premalignant Lesions (Histological/ Clinical) | Microbiological Sampling | Healthy Controls | Other Carcinogenic Factors | Main Microbiological Results |
---|---|---|---|---|---|---|---|---|---|
Hu et al. [15] | 45 | 16 | 10 | Leukoplakia | Clinical | Saliva collection | 19 | - | The genus Streptococcus was the most abundant in all three groups while Neisseria was the second most abundant Streptococcus and Abiotrophia the most abundant in the HC group. Haemophilus was much more abundant in the OLK group than in the OSCC, while Bacillus was the most abundant in the OSCC group. |
Amer et al. [7] | 68 | - | 36 | Leukoplakia | Histological | Mucosal swab | 23 | Smoking, alcohol, oral hygiene, denture | The species most enriched in OLK include Fusobacterium, Leptotrichia, Campylobacter, and Rothia species. |
Hernandez et al. [13] | 122 | - | 10 | Leukoplakia, erythroplakia, and submucous fibrosis | Clinical | Mucosal swab + saliva collection | - | Smoking, alcohol, chewing betel nut | Streptococcus infantis increased in current chewers compared to past/never chewers of betel nut. Streptococcus anginosus was increased in betel nut chewers with oral lesions compared to individuals with no lesions. |
Lee et al. [8] | 376 | 125 | 124 | Dysplasia, hyperplasia, and hyperkeratosis | Clinical | Saliva collection | 127 | Smoking, alcohol | Alistipes, Bacteroides, Blautia, Clostridium, Dorea, Escherichia, Faecalibacterium, Megamonas, and Phascolarctobacterium displayed positive correlations with each other in the epithelial precursor lesion and cancer groups. |
Decsi et al. [11] | 7 | - | 7 | Leukoplakia, lichen reticularis, lichen atrophicans | Histological | Tissue biopsy + mucosal swab | 7 | Smoking, alcohol | Increased Fusobacterium nucleatum and decreased Streptococcus mitis in patients with premalignant lesions. |
Ganly et al. [16] | 38 | 18 | 8 | Leukoplakia | Histological | Saliva collection | 12 | - | OSCC patients showed enrichment in Fusobacterium, Prevotella, and Alloprevotella and depletion in Streptococcus. Fusobacterium and Veillonella were more abundant in patients with premalignant lesions than in the controls. An association of Capnocytophaga with OSCC recurrence was shown. |
Hashimoto et al. [17] | 16 | 6 | 6 | Leukoplakia | Histological | Saliva collection | 19 | Smoking, alcohol | Solobacterium was increased in OSCC. A decrease in the abundance of the genus Streptococcus in patients with OSCC when compared with those with OLK was evaluated. P. gingivalis and S. anginosus increased in the OSCC and OLK groups. |
Gopinath et al. [12] | 74 | 31 | 20 | Leukoplakia | Clinical | Mucosal swab + saliva collection | 23 | Smoking, alcohol, chewing betel nut, denture | OLK patients exhibited a decrease in Firmicutes and an increase in Bacteroidetes. The most variable genera between the OLK and OSCC groups were Megaspheara, unclassified Enterobacteria, Prevotella, Porphyromonas, Granulicatella, and Salmonella. |
Shridhar et al. [18] | 99 | - | 25 | Leukoplakia | Clinical | Mucosal swab + saliva collection | 74 | Smoking, alcohol, chewing betel nut, denture | P. gingivalis, F. nucleatum, and P. intermedia were correlated among leukoplakia cases compared to the leukoplakia-free controls. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrobon, G.; Tagliabue, M.; Stringa, L.M.; De Berardinis, R.; Chu, F.; Zocchi, J.; Carlotto, E.; Chiocca, S.; Ansarin, M. Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review. Cancers 2021, 13, 4439. https://doi.org/10.3390/cancers13174439
Pietrobon G, Tagliabue M, Stringa LM, De Berardinis R, Chu F, Zocchi J, Carlotto E, Chiocca S, Ansarin M. Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review. Cancers. 2021; 13(17):4439. https://doi.org/10.3390/cancers13174439
Chicago/Turabian StylePietrobon, Giacomo, Marta Tagliabue, Luigi Marco Stringa, Rita De Berardinis, Francesco Chu, Jacopo Zocchi, Elena Carlotto, Susanna Chiocca, and Mohssen Ansarin. 2021. "Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review" Cancers 13, no. 17: 4439. https://doi.org/10.3390/cancers13174439
APA StylePietrobon, G., Tagliabue, M., Stringa, L. M., De Berardinis, R., Chu, F., Zocchi, J., Carlotto, E., Chiocca, S., & Ansarin, M. (2021). Leukoplakia in the Oral Cavity and Oral Microbiota: A Comprehensive Review. Cancers, 13(17), 4439. https://doi.org/10.3390/cancers13174439