Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Lung Cancer Cohorts
2.2. Tissue Micro Arrays (TMA)
2.3. Cell Lines
2.4. Protein Constructs
2.5. Immunohistochemistry (IHC)
2.6. Flow Cytometry
2.7. Preparation of Drug Conjugate VDC-MMAE and Control-MMAE
2.8. In Vitro Cytotoxicity Assay of VDC-MMAE of Human Lung Cancer Cell Lines
2.9. The rVAR2 Pulldown and Mass Spectrometry
2.10. Mass Spectrometry Data Analysis
2.11. In Vivo Study
2.12. Statistical Analyses
3. Results
3.1. Baseline Clinical Characteristics and Patient Outcomes
3.2. Oncofetal CS Expression Is an Independent Prognostic Classifier in Early-Stage NSCLC
3.3. NSCLC Cell Lines Are Sensitive to VDC-MMAE
3.4. VDC-MMAE Inhibits Growth of NSCLC Tumors In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gettinger, S.; Horn, L.; Jackman, D.; Spigel, D.; Antonia, S.; Hellmann, M.; Powderly, J.; Heist, R.; Sequist, L.V.; Smith, D.C.; et al. Five-Year Follow-Up of Nivolumab in Previously Treated Advanced Non-Small-Cell Lung Cancer: Results From the CA209-003 Study. J. Clin. Oncol. 2018, 36, 1675–1684. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Liang, Y.; Zhu, V.; Ou, S.I. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer 2017, 103, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekman, S. How selecting best therapy for metastatic NTRK fusion-positive non-small cell lung cancer? Transl. Lung Cancer Res. 2020, 9, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; Desai, J.; Durm, G.A.; Shapiro, G.I.; Falchook, G.S.; Price, T.J.; Sacher, A.; Denlinger, C.S.; et al. KRAS(G12C) Inhibition with Sotorasib in Advanced Solid Tumors. N. Engl. J. Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, G.; Gampenrieder, S.P.; Greil, R. HER2 Directed Antibody-Drug-Conjugates beyond T-DM1 in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 1115. [Google Scholar] [CrossRef] [Green Version]
- Bardia, A.; Mayer, I.A.; Diamond, J.R.; Moroose, R.L.; Isakoff, S.J.; Starodub, A.N.; Shah, N.C.; O’Shaughnessy, J.; Kalinsky, K.; Guarino, M.; et al. Efficacy and Safety of Anti-Trop-2 Antibody Drug Conjugate Sacituzumab Govitecan (IMMU-132) in Heavily Pretreated Patients With Metastatic Triple-Negative Breast Cancer. J. Clin. Oncol. 2017, 35, 2141–2148. [Google Scholar] [CrossRef]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Duran, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Ladenson, R.P.; Schwartz, S.O.; Ivy, A.C. Incidence of the blood groups and the secretor factor in patients with pernicious anemia and stomach carcinoma. Am. J. Med. Sci. 1949, 217, 194–197. [Google Scholar] [CrossRef]
- Hakomori, S.I.; Murakami, W.T. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl. Acad. Sci. USA 1968, 59, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Khazamipour, N.; Al-Nakouzi, N.; Oo, H.Z.; Orum-Madsen, M.; Steino, A.; Sorensen, P.H.; Daugaard, M. Oncofetal Chondroitin Sulfate: A Putative Therapeutic Target in Adult and Pediatric Solid Tumors. Cells 2020, 9, 818. [Google Scholar] [CrossRef] [Green Version]
- Ajit Varki, E.E.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. Essentials of Glycobiology [Internet], 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2015–2017. [Google Scholar]
- Rogerson, S.J.; Chaiyaroj, S.C.; Ng, K.; Reeder, J.C.; Brown, G.V. Chondroitin sulfate A is a cell surface receptor for Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 1995, 182, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Ayres Pereira, M.; Clausen, T.M.; Pehrson, C.; Mao, Y.; Resende, M.; Daugaard, M.; Kristensen, A.R.; Spliid, C.; Mathiesen, L. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1. PLoS Pathog. 2016, 12, e1005831. [Google Scholar] [CrossRef]
- Salanti, A.; Dahlback, M.; Turner, L.; Nielsen, M.A.; Barfod, L.; Magistrado, P.; Jensen, A.T.; Lavstsen, T.; Ofori, M.F.; Marsh, K.; et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 2004, 200, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Salanti, A.; Clausen, T.M.; Agerbaek, M.O.; al Nakouzi, N.; Dahlback, M.; Oo, H.Z.; Lee, S.; Gustavsson, T.; Rich, J.R.; Hedberg, B.J.; et al. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein. Cancer Cell 2015, 28, 500–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, T.M.; Pereira, M.A.; Oo, H.Z.; Resende, M.; Gustavson, T.; Mao, Y.; Sugiura, N.; Liew, J.; Fazli, L.; Theander, T.G.; et al. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting. Sens. Biosensing Res. 2016, 9, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Clausen, T.M.; Pereira, M.A.; al Nakouzi, N.; Oo, H.Z.; Agerbaek, M.O.; Lee, S.; Orum-Madsen, M.S.; Kristensen, A.R.; El-Naggar, A.; Grandgenett, P.M.; et al. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility. Mol. Cancer Res. 2016, 14, 1288–1299. [Google Scholar] [CrossRef] [Green Version]
- Seiler, R.; Oo, H.Z.; Tortora, D.; Clausen, T.M.; Wang, C.K.; Kumar, G.; Pereira, M.A.; Orum-Madsen, M.S.; Agerbaek, M.O.; Gustavsson, T.; et al. An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer. Eur. Urol. 2017, 72, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Raz, G.; Allen, K.E.; Kingsley, C.; Cherni, I.; Arora, S.; Watanabe, A.; Lorenzo, C.D.; Edwards, V.D.; Sridhar, S.; Hostetter, G.; et al. Hedgehog signaling pathway molecules and ALDH1A1 expression in early-stage non-small cell lung cancer. Lung Cancer 2012, 76, 191–196. [Google Scholar] [CrossRef]
- Yumura, K.; Akiba, H.; Nagatoishi, S.; Kusano-Arai, O.; Iwanari, H.; Hamakubo, T.; Tsumoto, K. Use of SpyTag/SpyCatcher to construct bispecific antibodies that target two epitopes of a single antigen. J. Biochem. 2017, 162, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Reddington, S.C.; Howarth, M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr. Opin. Chem. Biol. 2015, 29, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.; Dogan, J.; Herne, N.; Abrahmsen, L.; Nygren, P.A. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng. Des. Sel. 2008, 21, 515–527. [Google Scholar] [CrossRef]
- Toledo, A.G.; Pihl, J.; Spliid, C.B.; Persson, A.; Nilsson, J.; Pereira, M.A.; Gustavsson, T.; Choudhary, S.; Oo, H.Z.; Black, P.C.; et al. An affinity chromatography and glycoproteomics workflow to profile the chondroitin sulfate proteoglycans that interact with malarial VAR2CSA in the placenta and in cancer. Glycobiology 2020, 30, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Nakano, T.; Kanai, Y.; Amano, Y.; Yoshimoto, T.; Matsubara, D.; Shibano, T.; Tamura, T.; Oguni, S.; Katashiba, S.; Ito, T.; et al. Establishment of highly metastatic KRAS mutant lung cancer cell sublines in long-term three-dimensional low attachment cultures. PLoS ONE 2017, 12, e0181342. [Google Scholar] [CrossRef] [Green Version]
- Moran, D.M.; Trusk, P.B.; Pry, K.; Paz, K.; Sidransky, D.; Bacus, S.S. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther. 2014, 13, 1611–1624. [Google Scholar] [CrossRef] [Green Version]
- Robert, N.J.; Espirito, J.L.; Chen, L.; Karhade, M.; Evangelist, M.C.; Spira, A.I.; Neubauer, M.A.; Bullock, S.A.; Coleman, R.L. Biomarker tissue journey among patients (pts) with untreated metastatic non-small cell lung cancer (mNSCLC) in the U.S. Oncology Network community practices. J. Clin. Oncol. 2021, 39, S9004. [Google Scholar] [CrossRef]
- Li, F.; Dam, G.B.T.; Murugan, S.; Yamada, S.; Hashiguchi, T.; Mizumoto, S.; Oguri, K.; Okayama, M.; van Kuppevelt, T.H.; Sugahara, K. Involvement of highly sulfated chondroitin sulfate in the metastasis of the Lewis lung carcinoma cells. J. Biol. Chem. 2008, 283, 34294–34304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agerbaek, M.O.; Bang-Christensen, S.R.; Yang, M.H.; Clausen, T.M.; Pereira, M.A.; Sharma, S.; Ditlev, S.B.; Nielsen, M.A.; Choudhary, S.; Gustavsson, T.; et al. The VAR2CSA malaria protein efficiently retrieves circulating tumor cells in an EpCAM-independent manner. Nat. Commun. 2018, 9, 3279. [Google Scholar] [CrossRef] [Green Version]
- Uramoto, H.; Tanaka, F. Recurrence after surgery in patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [PubMed]
- Alshangiti, A.; Chandhoke, G.; Ellis, P.M. Antiangiogenic therapies in non-small-cell lung cancer. Curr. Oncol. 2018, 25 (Suppl. 1), S45–S58. [Google Scholar] [CrossRef] [Green Version]
- Sandler, J.E.; D’Aiello, A.; Halmos, B. Changes in store for early-stage non-small cell lung cancer. J. Thorac. Dis. 2019, 11, 2117–2125. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Mermel, C.H.; Robinson, J.T.; Garraway, L.A.; Golub, T.R.; Meyerson, M.; Gabriel, S.B.; Lander, E.S.; Getz, G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014, 505, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Sinchaikul, S.; Hongsachart, P.; Sriyam, S.; Tantipaiboonwong, P.; Phutrakul, S.; Chen, S.T. Current proteomic analysis and post-translational modifications of biomarkers in human lung cancer materials. Chang. Gung Med. J. 2008, 31, 417–430. [Google Scholar]
- Oo, H.Z.; Seiler, R.; Black, P.C.; Daugaard, M. Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urol. Oncol. 2020, 38, 858–866. [Google Scholar] [CrossRef]
- Iida, J.; Meijne, A.M.; Knutson, J.R.; Furcht, L.T.; McCarthy, J.B. Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin. Cancer Biol. 1996, 7, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Shah, L.; Walter, K.L.; Borczuk, A.C.; Kawut, S.M.; Sonett, J.R.; Gorenstein, L.A.; Ginsburg, M.E.; Steinglass, K.M.; Powell, C.A. Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer 2004, 101, 1632–1638. [Google Scholar] [CrossRef]
- Toyoshima, E.; Ohsaki, Y.; Nishigaki, Y.; Fujimoto, Y.; Kohgo, Y.; Kikuchi, K. Expression of syndecan-1 is common in human lung cancers independent of expression of epidermal growth factor receptor. Lung Cancer 2001, 31, 193–202. [Google Scholar] [CrossRef]
- Joensuu, H.; Anttonen, A.; Eriksson, M.; Makitaro, R.; Alfthan, H.; Kinnula, V.; Leppa, S. Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res. 2002, 62, 5210–5217. [Google Scholar]
- Anttonen, A.; Leppa, S.; Ruotsalainen, T.; Alfthan, H.; Mattson, K.; Joensuu, H. Pretreatment serum syndecan-1 levels and outcome in small cell lung cancer patients treated with platinum-based chemotherapy. Lung Cancer 2003, 41, 171–177. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, H.; Wu, X.; Zhang, Y.; Li, J.; Shen, J.; Zhao, Y.; Xiao, Z.; Lu, L.; Huang, C.; et al. CD44 inhibition attenuates EGFR signaling and enhances cisplatin sensitivity in human EGFR wildtype nonsmallcell lung cancer cells. Int. J. Mol. Med. 2020, 45, 1783–1792. [Google Scholar]
- Kong, T.; Ahn, R.; Yang, K.; Zhu, X.; Fu, Z.; Morin, G.; Bramley, R.; Cliffe, N.C.; Xue, Y.; Kuasne, H.; et al. CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers. Cancer Res. 2020, 80, 444–457. [Google Scholar] [CrossRef]
- Pirinen, R.; Leinonen, T.; Bohm, J.; Johansson, R.; Ropponen, K.; Kumpulainen, E.; Kosma, V.M. Versican in nonsmall cell lung cancer: Relation to hyaluronan, clinicopathologic factors, and prognosis. Hum. Pathol. 2005, 36, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Du, W.; Lei, Z.; Zhang, Y.; Zhu, J.; Zeng, Y.; Wang, S.; Zheng, Y.; Liu, Z.; Huang, J.A. Neuropilin 1 modulates TGFbeta1induced epithelialmesenchymal transition in nonsmall cell lung cancer. Int. J. Oncol. 2020, 56, 531–543. [Google Scholar] [PubMed] [Green Version]
- Kim, Y.J.; Baek, D.S.; Lee, S.; Park, D.; Kang, H.N.; Cho, B.C.; Kim, Y.S. Dual-targeting of EGFR and Neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett. 2019, 466, 23–34. [Google Scholar] [CrossRef]
- Dong, J.C.; Gao, H.; Zuo, S.Y.; Zhang, H.Q.; Zhao, G.; Sun, S.L.; Han, H.L.; Jin, L.L.; Shao, L.H.; Wei, W.; et al. Neuropilin 1 expression correlates with the Radio-resistance of human non-small-cell lung cancer cells. J. Cell Mol. Med. 2015, 19, 2286–2295. [Google Scholar] [CrossRef]
- Jia, H.; Cheng, L.; Tickner, M.; Bagherzadeh, A.; Selwood, D.; Zachary, I. Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. Br. J. Cancer 2010, 102, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.M.; Chen, Y.L.; Wu, Y.Y.; Yuan, A.; Chao, Y.C.; Chung, Y.C.; Wu, M.H.; Yang, S.C.; Pan, S.H.; Shih, J.Y.; et al. Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin. Cancer Res. 2007, 13, 4759–4768. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Emara, N.; Solomides, C.; Parekh, H.; Simpkins, H. Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother. Pharmacol. 2010, 66, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Oncofetal CS Expression | p-Value | |
---|---|---|---|
High | Low | ||
Age | |||
≤70 years (n = 351) | 91 (26%) | 260 | 0.664 |
>70 years (n = 188) | 52 (28%) | 136 | - |
Gender | |||
Female (n = 274) | 64 (23%) | 210 | 0.090 |
Male (n = 265) | 79 (30%) | 186 | - |
Stage | |||
Stage I (n = 318) | 81 (25%) | 237 | 0.450 |
Stage II (n = 187) | 55 (29%) | 132 | - |
Missing (n = 34) | 7 (21%) | 27 | - |
Histology | |||
ADC (n = 374) | 70 (19%) | 304 | <0.001 |
SCC (n = 152) | 70 (46%) | 82 | - |
Others (n = 13) | 3 (23%) | 10 | - |
Smoking | |||
Smoker (n = 472) | 132 (28%) | 340 | 0.044 * |
Non-smoker (n = 55) | 7 (13%) | 48 | - |
Missing (n = 12) | 9 (75%) | 3 | - |
Characteristics | Median OS (Months) | Median DFS (Months) | |||||
---|---|---|---|---|---|---|---|
Oncofetal CS | p-Value | Oncofetal CS | p-Value | ||||
High | Low | High | Low | ||||
Age | Age ≤70 | 76 | 80.3 | 0.26 | 25.8 | 78.1 | 0.04 |
Age >70 | 44.9 | 57.9 | 0.23 | 39 | 55.4 | 0.08 | |
Gender | Male | 44.3 | 69.8 | 0.03 | 25.4 | 67.6 | 0.01 |
Female | 76 | 80.3 | 0.96 | 39 | 61.8 | 0.29 | |
Stage | Stage I | 58 | 77.5 | 0.16 | 47 | 72 | 0.09 |
Stage II | 45 | 52.2 | 0.39 | 20 | 53 | 0.03 | |
Histology | ADC | 45 | 68 | 0.18 | 23 | 55.4 | 0.01 |
SCC | 51.6 | 72 | 0.37 | NR | NR | 0.01 | |
Others | NR | 51 | 0.61 | 11.7 | 55.4 | 0.98 |
Characteristics | OS | DFS | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.50 | 1.15–1.96 | <0.01 | 1.09 | 0.81–1.46 | 0.58 |
Gender | 0.85 | 0.64–1.11 | 0.23 | 0.94 | 0.70–1.26 | 0.68 |
Histology | 0.96 | 0.74–1.24 | 0.77 | 0.60 | 0.44–0.83 | <0.01 |
Stage I vs. II | 0.74 | 0.57–0.96 | 0.03 | 0.63 | 0.47–0.84 | <0.01 |
Smoking | 0.87 | 0.53–1.43 | 0.59 | 0.68 | 0.40–1.15 | 0.15 |
Oncofetal CS Expression | 1.26 | 0.93–1.69 | 0.13 | 1.76 | 1.32–2.48 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oo, H.Z.; Lohinai, Z.; Khazamipour, N.; Lo, J.; Kumar, G.; Pihl, J.; Adomat, H.; Nabavi, N.; Behmanesh, H.; Zhai, B.; et al. Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer. Cancers 2021, 13, 4489. https://doi.org/10.3390/cancers13174489
Oo HZ, Lohinai Z, Khazamipour N, Lo J, Kumar G, Pihl J, Adomat H, Nabavi N, Behmanesh H, Zhai B, et al. Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer. Cancers. 2021; 13(17):4489. https://doi.org/10.3390/cancers13174489
Chicago/Turabian StyleOo, Htoo Zarni, Zoltan Lohinai, Nastaran Khazamipour, Joey Lo, Gunjan Kumar, Jessica Pihl, Hans Adomat, Noushin Nabavi, Hakhamanesh Behmanesh, Beibei Zhai, and et al. 2021. "Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer" Cancers 13, no. 17: 4489. https://doi.org/10.3390/cancers13174489
APA StyleOo, H. Z., Lohinai, Z., Khazamipour, N., Lo, J., Kumar, G., Pihl, J., Adomat, H., Nabavi, N., Behmanesh, H., Zhai, B., Dagil, R., Choudhary, S., Gustavsson, T., Clausen, T. M., Esko, J. D., Allen, J. W., Thompson, M. A., Tran, N. L., Moldvay, J., ... Daugaard, M. (2021). Oncofetal Chondroitin Sulfate Is a Highly Expressed Therapeutic Target in Non-Small Cell Lung Cancer. Cancers, 13(17), 4489. https://doi.org/10.3390/cancers13174489