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Simple Summary: Among head and neck squamous cell carcinoma patients, the five-year survival
rates have seen little improvement over the past decade. Prediction of a cancer patient’s clinical
outcome is challenging but important for patient counseling and treatment planning. In this work, we
evaluated common machine learning models in predicting head and neck squamous cell carcinoma
patients’ overall survival based on clinical, demographic features and host factors. We identified the
top-performing model and verified host factors can improve the model performance when proper
methods are applied. The findings are of critical importance for improved risk stratification of head
and neck squamous cell carcinoma patients and provide targeted supportive care for patients who
are likely to have the worst outcome.

Abstract: Prognostication for cancer patients is integral for patient counseling and treatment planning,
yet providing accurate prediction can be challenging using existing patient-specific clinical indicators
and host factors. In this work, we evaluated common machine learning models in predicting head
and neck squamous cell carcinoma (HNSCC) patients’ overall survival based on demographic,
clinical features and host factors. We found random survival forest had best performance among the
models evaluated, which achieved a C-index of 0.729 and AUROC of 0.792 in predicting two-year
overall survival. In addition, we verified that host factors are independently predictive of HNSCC
overall survival, which improved the C-index by a margin of 0.026 and the AUROC by 0.034. Due
to the strong correlation among host factors, we showed that proper dimension reduction is an
important step before their incorporation into the machine learning models, which provides a host
factor score reflecting the patients’ nutrition and inflammation status. The score by itself showed
excellent discriminating capacity with the high-risk group having a hazard ratio of 3.76 (1.93–7.32,
p < 0.0001) over the low-risk group. The hazard ratios were further improved to 7.41 (3.66–14.98,
p < 0.0001) by the random survival forest model after including demographic and clinical features.
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1. Introduction

Among patients with head and neck squamous cell carcinoma (HNSCC), 5-year
survival rates have seen little improvement over the past decade, and, except for HPV-
associated oropharyngeal cancers, remain below 50% for locally advanced disease [1].
The current treatment approach is to treat advanced cancers with multimodal therapies.
This approach, however, carries significant complication rates and comorbidities. Studies
supporting aggressive adjuvant chemotherapy and RT regimens, for example, argue for the
need to recognize those patients that will fail traditional treatment regimens and offer them
new treatment paradigms [2–4]. Therefore, it would be of clinical utility to discriminate
between those patients who may or may not respond well to multimodality therapies, or
to identify patients who would benefit from less toxic intervention.

In addition to well-known factors such as performance status and disease stage, prior
work has demonstrated that patient-specific variables and host factors also influence HN-
SCC patient survival. The host factors can reflect the patient’s immune, inflammation
and nutritional status. It is therefore also logical to assume the host factors are associated
with the host–tumor interaction in an interdependent manner. For example, decreased
hemoglobin is a significant contributor to a hypoxic tumor environment [5], and impaired
oxygen distribution through anemia can contribute to tumor hypoxia and consequently
radio resistance [6–9]. Furthermore, elevated neutrophils can promote an inflammatory
tumor microenvironment that can facilitate several oncologic processes, including suppres-
sion of the antitumor immune response [10–13]. Recent evidence suggests that pretreatment
values of neutrophils, monocytes, lymphocytes, hemoglobin and albumin, are indepen-
dently associated with prognosis in patients with HNSCC [5]. While the findings were
important, these factors need to be validated using multivariate methods that consider
multiple clinical factors in practicable decision models.

Machine learning tools such as random forests [14] (RF) often show superior perfor-
mance over linear models in classification and regression tasks. The random survival forest
(RSF) has extended application of RF model to censored time-to-event data [15], which is
well suited to handle multiple, interrelated factors and potential modifiers. In this study,
we used and compared both linear and non-linear machine learning tools to optimize the
combination of known and novel predictors and thus maximize the prediction accuracy
for patients’ overall survival.

2. Materials and Methods
2.1. Study Cohort

Using a retrospective single-institution database, we reviewed and identified 591 pri-
mary HNSCC patients treated at Roswell Park Comprehensive Cancer Center with defini-
tive or post-operative RT between 2003 and 2017. All patients selected for analysis have
completed RT. Institutional review board approval was obtained (EDR 103707).

2.2. Machine Learning Models

The RSFs are generalizations of RFs for analyzing time-to-event data, which are
tree-based ensemble machine learning techniques. Comparing with linear models, the
RF model typically shows higher prediction performance because it naturally handles
nonlinear relationships and complex interactions among predictors. For a new patient, the
RSF predicts the survival probability at any time point (survival function) within eight
years after treatment and the cumulative hazard function. The variable importance was
used to quantify the contribution of each independent variable to the model predictions. In
addition, we evaluated the performance of the Cox proportional hazards model with Least
Absolute Shrinkage and Selection Operator (LASSO) regularization (COX). We further
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compared the DeepSurv, a recently developed Cox proportional hazards deep learning
model [16]. Moreover, we also compared the performance of common machine learning
methods for discriminating patient survival at given time points (year 1~5 after treatment).
The methods evaluated include logistic regression with LASSO regularization [17], RF for
classifications [14], extreme gradient boosting machine (GBM) [18] and artificial neural
networks (ANN) [19]. For each time point, we built a separate model using each of these
methods.

2.3. Performance Metrics

The model prediction performance in terms of overall survival (OS) was evaluated
by concordance index (C-index). The C-index is a generalization of area under the curves
(AUCs) that accounts for the censored data. It is defined as the proportion of concordant
pairs out of the total number of evaluable pairs. A pair is concordant if the subject with
higher predicted probability of survival also has longer survival time. We also evaluated
the model’s performance in predicting patients’ survival at year 1~5. Specifically, a binary
indicator of whether a patient’s survival time is greater than a given time point was used
as the outcome. Patients censored before the time point were excluded from this assess-
ment. The receiver operating characteristic (ROC) curves were obtained by comparing the
predicted risk against the binary outcome. An optimal cutoff was selected by maximizing
the Youden index (sensitivity + specificity − 1) of the ROC at year 2. The sensitivity, speci-
ficity, positive predictive value (PPV) and negative predictive value (NPV) were reported.
Calibration of the selected model was examined by comparing the observed and predicted
probability at year 1~5.

2.4. Modeling Strategy

Before any steps of model training, the cohort was randomly split into a train-
ing/validation set with 70% of subjects and a test set with 30% of subjects. For hosting
factors, the observations with levels outside the range of mean ± 3SD (standard devia-
tions) were trimmed at corresponding limits. Independent variables were standardized
to have zero mean and unit variance before model training within each set separately.
Missing values were imputed using k-nearest neighbors (kNN) with k = 10. Imputation
was performed without involving the outcome variables and strictly within the training,
validation and test cohorts. A standard principal component analysis (PCA) was used for
dimension reduction in the standardized host factors. The PCA was performed only within
the training/validation set. The PC scores of the test cohort were predicted by multiplying
the training set loading matrix with the standardized test host factor levels. The standard-
ization was performed based on the means and standard deviations of the training set to
simulate the real-world prediction settings. We emphasize that no test data set was used in
any model training steps, including pre-processing or unsupervised learning by PCA. The
tuning of hyperparameters and model selection was performed using cross-validations
(CV). The details can be found in the Supplementary Materials File S1.

2.5. Model Interpretation

For RSF, the variable importance (VIMP) will be used to quantify the contribution
of each independent variable to the model predictions. VIMP measures the decrease in
prediction performance (C-index) for the forest ensemble when a variable is randomly
permuted. A large positive VIMP shows that the prediction accuracy of the forest is
substantially degraded when this variable is noised-up by permutations. Therefore, a large
VIMP indicated a potentially predictive variable. Partial dependence plots (PDPs) were
used to show the marginal effect of a predictor on the predicted outcome [15]. The details
can be found in the Supplementary Materials.
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2.6. Statistical Analysis

Spearman’s correlation coefficient was used for the correlative analysis among host
factors. Hierarchical clustering was performed based on Euclidean distance and complete
linkage. The standard errors of C-index and AUROC were estimated using bootstrap
methods with 1000 re-samplings. For cross-validation, the standard errors were estimated
by the standard deviations of C-indices across runs. The results are presented by mean (SE)
unless otherwise specified. For risk stratification, the survival curves were estimated using
Kaplan–Meier product limit estimators. The hazard ratios (HRs) were estimated based on
Cox proportional hazards models and the 95% confidence intervals (CIs) were reported. The
analyses were conducted using R 4.1.0 and R packages randomForestSRC [20], glmnet [21],
xgboost [18], neuralnet [19]. DeepSurv was implemented using PySurvival package [22]
under Python 3.7.

3. Results
3.1. Patient Characteristics

The patient characteristics are summarized in Table 1. Among the study cohort, 62%
of the patients received CCRT while 18% received CCRT and surgical treatment. The
demographic and clinical features of patients are listed in Tables 1 and 2. The body mass
index (BMI) and Karnofsky performance status were measured prior to the starting of
radiation. Ethnicity and diagnosis type were not used as candidate predictors as the study
cohort is highly homogeneous regarding these two characteristics. A summary of the
host factors measured is shown in Table 2. The event rate is 40% within eight years after
treatment. The median follow-up of the cohort is 3.27 years, defined as the observation
time for those event-free. The cohort was randomly split into a training/validation set
(70%, n = 414) and test set (30%, n = 177).

Table 1. Summary of patient characteristics.

Variable Value Frequency/Median Percentage/IQR Total

Age 60.49 (54.22, 66.86) 591
BMI 27.09 (23.82, 30.24) 573

Weight loss 6 (2.5, 9.8) 565
Karnofsky Performance

Status 9 (8,10) 591

Dose of primary
radiotherapy 70 (70, 70) 587

Radiotherapy duration 46 (45, 46) 591

Gender
Male 483 81.7% 591

Female 108 18.3%

Marital status
Married 298 50.4% 591

Other 293 49.6%

Anti-coagulants No 546 92.4% 591
Yes 45 7.6%

NSAIDs
No 322 54.5% 591
Yes 269 45.5%

Alcohol consumption
Never 105 18.6% 566

Former 124 21.9%
Current 337 59.5%

Smoking status
Never 131 22.2% 591

Former 301 50.9%
Current 159 26.9%
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Table 1. Cont.

Variable Value Frequency/Median Percentage/IQR Total

Site

Oral cavity/lip 67 11.3% 591
Oropharynx 257 43.5%

Hypopharynx 43 7.3%
Nasopharynx 15 2.5%

Larynx 142 24.0%
Salivary gland 9 1.5%
Not specified 52 8.8%

Other 6 1%

Clinical stage

I 18 3.1% 575
II 46 8%
III 454 79%
IV 57 9.9%

Pathological grading

Well differentiated 40 8.4%
Moderately differentiated 227 47.4%

Poorly differentiated 204 42.6%
Undifferentiated 8 1.7%

HPV
Negative 131 39.3% 333
Positive 202 60.7%

Treatment type

RT only 33 5.6% 591
CCRT 364 61.6%

Surgery + CCRT 106 17.9%
Surgery + RT 25 4.2%

CCRT + Neck Dissection 7 1.2%
ICT + CCRT 56 9.5%

Primary chemotherapy type Other or no chemotherapy 136 23% 591
Cisplatin 455 77%

Radiotherapy delayed No 565 96.6% 585
Yes 20 3.4%

Type of radiation Definitive 474 80.2% 591
Post-operative (adjuvant) 117 19.8%

Laterality of radiation Unilateral 99 32.6% 304
Bilateral 205 67.4%

Feeding tube type No 250 42.3% 591
Yes 341 57.7%

Hospitalized No 463 78.5% 590
Yes 127 21.5%

Table 2. Summary of host factors.

Variable N Median IQR

WBC 591 7.25 (6.05, 9.13)
HGB 591 13.5 (12.1, 14.75)
HCT 591 40.1 (36.4, 43.3)
RBC 591 4.44 (3.96, 4.81)
MCV 591 90.7 (87.1, 93.9)
MCH 590 30.7 (29.5, 31.9)

MCHC 591 33.8 (33, 34.4)
Neutrophil (%) 591 65.8 (59.15, 72.4)

Lymphocyte (%) 591 23.9 (18.6, 30)
Monocyte (%) 591 6.2 (5.1, 7.5)
Eosinophil (%) 591 2.5 (1.5, 3.6)
Basophil (%) 590 0.5 (0.4, 0.7)
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3.2. Host Factors Organized as Clusters

Correlative analyses within the training/validation cohort revealed two major clus-
ters of the host factors. Figure 1A shows the absolute values of the pairwise Spearman’s
correlation coefficients among the host factors. Highly correlated factors tend to cluster
together and reflect the status of an underlying biological process. A hierarchical clustering
shows one mutually correlated group of MCHC, MCV and MCH. A second cluster mainly
corresponds to the nutrition status or ability in oxygen delivering. The third cluster primar-
ily reflects the immune or inflammatory status. A closer examination of the third cluster
shows the neutrophil and WBC percentages form a strongly correlated group, which is
negatively correlated with lymphocyte percentage (Figure 1B). Considering the strong
correlations, we performed PCA on the HF variables. Consistent with Figure 1A,B, the
biplot (Figure 1C) also shows three groups of variables. The biplot shows the projections
(contributions) of each host factor to the first two principal components. A large horizon-
tal (vertical) projection suggests the host factor primarily contributes to the PC1 (PC2).
Generally, correlated factors tend to have projections to the same or opposite directions
(positively/negatively correlated). The groups with projections in the bottom-left and
upper-right quadrants correspond well to the lower cluster in Figure 1A, which reflects
inflammatory status. Note that the factors in this cluster also forms two negatively corre-
lated groups, as shown in Figure 1B. The other group in upper-left quadrant corresponds
to the bottom cluster in Figure 1A. Although these two groups are mutually independent
(projections are perpendicular), the first principal component (PC1) constitutes a composite
score of these two domains in opposite directions. We define a host factor (HF) score as
HF score = PC1, then a higher HF score corresponds to a higher inflammation and poorer
nutrition status.

3.3. Model Selection and Evaluation

The COX and RSF models’ performance were compared using the CV within the
training/validation set. Adding large number of strongly correlated features is generally
harmful to a model’s performance. Therefore, we postulate that including the HF features
naively will not provide optimal model performance. Instead, the scores derived from
PCA will be naturally uncorrelated summarizing features. We sequentially added the PCs
ranked by their eigen values into the model and compared their performance (Table 3).
Indeed, adding all HF features naively reduced the performance of RSF and did not
maximize COX models’ performance (RSF-ALL/COX-ALL) comparing with the models
with clinical/demographic features alone (RSFc/COXc). Using the elastic net or ridge
penalties which are better suited for correlated features only showed negligible difference.
On the other hand, inclusion of PC scores improved both models’ performance. Overall,
the RSF model with only PC1 (HF score) showed best performance. Inclusion of more
components does not further improve the validation performance. The COX-1, COX-2 and
COX-3 models are identical because PC2 and PC3 were not selected by the model, which
further suggests that only PC1 (HF score) is a useful predictor. The superiority of RSF over
COX model suggests a nonlinear relationship between predictors and the patient survival
or complex interaction among the predictors, which cannot be captured by linear models.
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Figure 1. The host factors are mutually correlated. (A) The heatmap of the absolute Spearman correlation (|ρs|) between
host factors and the hierarchical clustering based on correlations. The correlations were obtained using the training cohort
data. (B) The heatmap of the Spearman correlation (ρs) between host factors in the first cluster. (C) The biplot of the PCA of
the host factors. The biplot shows the projections (contributions) of each host factor to the first two principal components. A
large horizontal (vertical) projection suggests the host factor primarily contributes to the PC1 (PC2). Two host factors with
projections to the same (opposite) direction suggest they are positively (negatively) correlated with projections onto other
PCs ignored. Perpendicular projections imply independence, for example RBC and WBC. The variance explained by each
component are shown in corresponding axis labels.

Table 3. Model performance evaluated by the average C-index from cross-validations.

Model Validation C-Index

RSFc 0.707 (0.032)
RSF-1 0.721 (0.013)
RSF-2 0.717 (0.013)
RSF-3 0.717 (0.009)

RSF-ALL 0.705 (0.015)
COXc 0.671 (0.042)
COX-1 0.690 (0.024)
COX-2 0.690 (0.024)
COX-3 0.690 (0.024)

COX-ALL 0.686 (0.021)

In the test set, we further compared RSF’s performance with COX model and the RSF
model with only clinical/demographic features. Consistent with the CV results, the RSF
model performed best in terms of C-index and AUCs (Figure 2A, Table 4). It also showed
better performance than DeepSurv. This is not surprising since deep neural network models
are often advantageous when sufficient amount of training data available. DeepSurv model
is typical successfully applied when there are over thousands of records available for model
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training [16,23–25]. The C-index we obtained using DeepSurv is also close to the result
in [23]. Another common strategy for predicting clinical outcome is to treat the prediction
of survival at given times points as classification problems. Therefore, performance of the
models trained above was further compared with common classification machine learning
algorithms in predicting the survival at year 1~5. The methods tested include logistic
regression with LASSO regularization (logistic), RF, GBM and ANN. Note that because we
are treating the prediction of survival at each time point as separate classification problems,
an independent model was trained for each time point in the training/validation set. This
is different from RSF, which can predict the survival probability for any time point based
on a single model. The result shows that RSF outperforms all classification models in terms
of AUC (Figure 2B, Table 4). Only the RF and GBM models showed a better performance
at year 1. This is probably because the classification methods cannot fully utilize the time-
to-event information. Model calibration of RSF was examined by comparing the predicted
and actual two-year survival probability (Figure 2C).

Cancers 2021, 13, x  8 of 13 
 

 

 

Figure 2. RSF predicts HNSCC patients’ overall survival. (A) The ROC curves of the predicted risk 
by the survival models against observed survival at year two. (B) RSF achieved highest AUCs in 
predicting OS at year 2~5 among the models tested. (C) Model calibration of RSF by comparing the 
predicted and observed two-year survival probability. The black solid line denotes the perfect cali-
bration line. 

Table 4. Model test performance measured by C-index and AUC of two-year survival. The cutoffs 
were selected by maximizing the Youden index. For classification models, the C-index is obtained 
based on the predicted two-year survival probability. 

Model C-Index AUC Specificity Sensitivity PPV NPV 
RSF 0.729 (0.027) 0.792 (0.039) 0.615 0.864 0.487 0.914 
RSFc 0.703 (0.029) 0.758 (0.042) 0.663 0.795 0.500 0.885 
COX 0.679 (0.035) 0.718 (0.048) 0.817 0.568 0.568 0.817 
COXc 0.636 (0.036) 0.712 (0.047) 0.808 0.545 0.545 0.808 

DeepSurv 0.712 (0.029) 0.759 (0.042) 0.731 0.705 0.525 0.854 
RF 0.719 (0.029) 0.771 (0.040) 0.625 0.818 0.480 0.89 

Logistic 0.697 (0.035) 0.740 (0.050) 0.760 0.682 0.545 0.849 
ANN 0.640 (0.037) 0.660 (0.050) 0.750 0.568 0.490 0.804 
GBM 0.717 (0.030) 0.767 (0.040) 0.683 0.750 0.500 0.866 

Variable importance plot shows that the HF score is ranked as one of the top three 
variables contributing to the prediction (Figure 3A). As a baseline, the variable alone can 
achieve a C-index of 0.656 (0.034), while the other two top-ranked variables BMI and KPS 
alone achieve C-indices of 0.648 (0.034) and 0.598 (0.033), respectively. 

As shown above, the better performance of RSF over COX model suggest non-linear 
relationships. This is supported by the partial dependence plots (Figure 3B), which show 
the relationship between the certain predictors and patients’ two-year survival is not lin-
ear or even monotonic. For example, the two-year survival rate increases as BMI increases 
up to 25, but then plateaus, and even decreases as the BMI further increases. The partial 
dependence plot shows an overall negative relationship between HF score and two-year 
survival (Figure 3C), i.e., patients with poorer nutrition and higher inflammation status 
tend to have worse OS, which is consistent with the previous findings. 

Figure 2. RSF predicts HNSCC patients’ overall survival. (A) The ROC curves of the predicted risk by the survival models
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tested. (C) Model calibration of RSF by comparing the predicted and observed two-year survival probability. The black
solid line denotes the perfect calibration line.

Variable importance plot shows that the HF score is ranked as one of the top three
variables contributing to the prediction (Figure 3A). As a baseline, the variable alone can
achieve a C-index of 0.656 (0.034), while the other two top-ranked variables BMI and KPS
alone achieve C-indices of 0.648 (0.034) and 0.598 (0.033), respectively.

As shown above, the better performance of RSF over COX model suggest non-linear
relationships. This is supported by the partial dependence plots (Figure 3B), which show
the relationship between the certain predictors and patients’ two-year survival is not linear
or even monotonic. For example, the two-year survival rate increases as BMI increases
up to 25, but then plateaus, and even decreases as the BMI further increases. The partial
dependence plot shows an overall negative relationship between HF score and two-year
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survival (Figure 3C), i.e., patients with poorer nutrition and higher inflammation status
tend to have worse OS, which is consistent with the previous findings.

Table 4. Model test performance measured by C-index and AUC of two-year survival. The cutoffs
were selected by maximizing the Youden index. For classification models, the C-index is obtained
based on the predicted two-year survival probability.

Model C-Index AUC Specificity Sensitivity PPV NPV

RSF 0.729
(0.027)

0.792
(0.039) 0.615 0.864 0.487 0.914

RSFc 0.703
(0.029)

0.758
(0.042) 0.663 0.795 0.500 0.885

COX 0.679
(0.035)

0.718
(0.048) 0.817 0.568 0.568 0.817

COXc 0.636
(0.036)

0.712
(0.047) 0.808 0.545 0.545 0.808

DeepSurv 0.712
(0.029)

0.759
(0.042) 0.731 0.705 0.525 0.854

RF 0.719
(0.029)

0.771
(0.040) 0.625 0.818 0.480 0.89

Logistic 0.697
(0.035)

0.740
(0.050) 0.760 0.682 0.545 0.849

ANN 0.640
(0.037)

0.660
(0.050) 0.750 0.568 0.490 0.804

GBM 0.717
(0.030)

0.767
(0.040) 0.683 0.750 0.500 0.866
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3.4. Patient Stratification by HF Score and RSF Predicted Risk

We further stratified the test cohort patients based on the 40th and 85th percentiles
of the predicted mortality by RSF. The cutoff values were previously used by Valero et al.
for the H-index they derived for the stratification of oral cavity cancer patients [5]. We
used the same set of cutoffs for comparison purpose. Survival analysis showed that the
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group with highest HF scores has significantly higher risk than the low and middle groups
in terms of five-year OS (Figure 4A, p < 0.0001). The hazard ratios (HRs) are 3.76 (95%
CI:1.93–7.32) and 1.93 (1.07–3.50), respectively. The HRs are both slightly higher than that
of the H-index (3.22 and 1.47) [5]. The HRs are further improved to 7.41 (3.66–14.98) and
2.58 (1.47–4.51) when stratified by the RSF predicted risk, which combined the HF score
and clinical/demographic information (Figure 4B). It should be noted the higher HRs does
not mean the HF score outperforms the H-index, as the underlying patient population is
different. Instead, our results verified the finding that host factors are predictive of head
and neck cancer patients’ OS.
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4. Discussion

In this study, we used machine learning techniques to build a multivariate model
for the prediction of OS in HNSCC patients receiving radiation therapy based on an
institutional data set. We further evaluated the contribution of host factors in improving
the prediction. The selected model was rigorously validated in test datasets separated
before any processing and model training steps to ensure the model’s robustness.

The result shows that RSF achieved the best performance among all common modeling
methods tested. The model achieved a C-index of 0.729, and with all AUCs above 0.7 for
year 1~5. In particular, the AUC for two-year OS is 0.792, and over 0.8 for one-year OS.
Notably, the model only relies on measurements that are routinely collected in clinical
settings, so it is highly useful in practice. Our work recapitulated that a model that can
handle nonlinear associations and complex interactions works better in predicting head
and neck cancer patients’ OS. Indeed, nonlinear relationships between predictors and
survival rates were observed. The deep learning model is capable of automatic feature
extraction, so it may be able to learn the relationship among host factors. However, it
did not show advantage in our study, which is possibly due to the moderate sample size
available. Another contribution of this work is we verified the previous finding that host
factors are independently associated with prognosis of head and neck cancer patients [5],
and objectively assessed the improvement in prediction performance by their inclusion into
the predictive models. To efficiently utilize the host factor information, we proposed the
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application of PCA. The first component naturally provides a composite score of the states
of two groups of factors, which makes interpretation of this score biologically convenient.
The HF score alone stratifies the HNSCC patients in the test cohort into distinct risk groups
with excellent discriminating capacity. This finding also suggests that dimension reduction
is crucial for efficient usage of host factor information by machine learning models, at least
when the sample size is moderate.

It should be noted that we included different patient subgroups who underwent
surgical treatment and received exclusive chemoradiation therapy. The tree based (RSF, RF,
GBM) and neural network machine learning models (DeepSurv and ANN) are expected
to account for the disparity in associations between predictors and outcomes in different
subgroups. On the other hand, if the associations are shared among subgroups the strategy
of combining cohorts is expected to boost the model performance. The C-indices for
predicting OS in patients with definitive and post-operative radiotherapies are 0.746 (0.028)
and 0.710 (0.081), respectively. Therefore, the prediction for non-surgical patients is slightly
better, though we cannot accurately evaluate the accuracy in surgical patients due to the
small sample size. In addition, some prognostic factors such as pathological grading were
not found to be independently predictive in our work. This is possibly due to the fact that
most patients had moderately and poor differentiated tumors (Table 1).

Recently, a convolutional neural network (CNN) applied to pre-treatment computed
tomography (CT) images achieved an AUC of 0.7 for two-year OS, which was trained on a
much smaller data set (n = 194) [26]. Cozzi et al. used CT-based radiomics and attained a C-
index of 0.9 in predicting the OS locally advanced head and neck cancer patients. However,
there were 40 patients in the validation cohort with only three events [27]. Similarly, a
study reported a C-index of 0.781 for cancer-related death for oral cancer patients but there
are only 11 events in the test cohort [28]. The model development and selection procedures
were not described in detail, making it difficult to evaluate the model’s generalizability. In
addition, the study used cancer recurrence as a predictor, which contributes roughly 0.06
to the prediction accuracy based on the VIMP reported. However, this is not applicable
for primary cancer patients at baseline. In another study, Hung et al. used demographic
and clinical data to model oral cancer survival as a continuous variable with all censored
observations excluded [29]. The study was conducted on a patient cohort spanning from
1975 to 2016 and the year of diagnosis was found as the most predictive feature. Due to the
high heterogeneity in diagnostic years and different metrics of performance, the model is
not directly comparable with ours [29]. Moreover, the output of these models cannot be
directly converted into survival functions or survival probabilities, so the application is
quite limited. In another study, Howard et al. investigated the usage of machine learning
in the guidance of the adjuvant treatment of head and neck cancers. While other models
had better performance on personalized treatment recommendations, RSF showed best
performance in predicting the OS with a C-index of 0.695 [23]. This observation is consistent
with our results using clinical and demographic features alone (0.703). Other studies used
machine learning models to predict different outcomes such as toxicities [30].

None of the above work investigated the roles of host factors in prognostic modeling.
Valero et al. derived the H-index based on host factors for oral cavity cancer patients. While
the authors did not assess the index’s discriminating ability, based on their categorization,
the HR between the highest and lowest risk group (top 14.5% and bottom 38.6%) for OS is
3.22, which is lower than the HF score we derived [5]. Note that our results may not be
comparable due to the difference in patient groups. However, our result verified that the
host factors are independent predictors of head and neck cancer patients’ OS.

The study may have some intrinsic limitations due to its retrospective nature. In
addition, the model was only internally validated. We are currently building a cohort
for validation to ensure the model’s generalizability. Based on the stratification by our
predictive model, we will be able to provide supportive care for patients likely to have worst
outcome, and design trials specifically on the high-risk patients and test novel treatment
management paradigms. As a next step, models predicting adverse events or toxicities
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such as kidney injury from Cisplatin will be investigated. Another important direction
is to investigate whether host factor can further improve the prediction performance in
combination with radiomics.

5. Conclusions

In this work, we evaluated common machine learning models in predicting the head
HNSCC patients’ overall survival based on clinical, demographic features and host factors.
We found the random survival forest had best performance among the models evaluated.
We further verified that host factors are independently predictive of HNSCC overall
survival and proper dimension reduction is an important step for their incorporation into
the machine learning models. The score derived from this process also showed excellent
discriminating capacity by itself. The results are of critical importance for improved risk
stratification of HNSCC patients and providing targeted supportive care for patients who
are likely to have worst outcome.
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