The Emerging Functions of Circular RNAs in Bladder Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of circRNAs
2.1. Biogenesis and Classification of circRNAs
2.2. CircRNA Identification and Database for circRNA Research
2.3. Functions of circRNAs
3. Expression and Biological Functions of circRNAs in BC
3.1. Abnormal Expression of circRNAs in BC
3.2. circRNAs Regulate Proliferation of BC
3.2.1. Oncogenic circRNAs in BC
3.2.2. Anti-Oncogenic circRNAs in BC
3.3. circRNAs Regulate Metastasis of BC
3.3.1. Oncogenic circRNAs in BC Migration or Invasion
3.3.2. Anti-Oncogenic circRNAs in BC Migration or Invasion
3.3.3. CircRNAs in Regulation of EMT
3.4. CircRNAs in BC Drug-Resistance and Chemo-Sensitization
4. CircRNAs Are Potential Diagnostic and Prognostic Biomarkers of Bladder Cancer
5. Relationships between circRNAs Quantities and Clinicopathologic Features in BC
6. Limitations and Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Antoni, S.; Ferlay, J.; Soerjomataram, I.; Znaor, A.; Jemal, A.; Bray, F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur. Urol. 2017, 71, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Ploeg, M.; Aben, K.K.H.; Kiemeney, L.A. The present and future burden of urinary bladder cancer in the world. World J. Urol. 2009, 27, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Mattiuzzi, C.; Lippi, G. Cancer statistics: A comparison between World Health Organization (WHO) and Global Burden of Disease (GBD). Eur. J. Public Health 2019, 30, 1026–1027. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Compérat, E.M.; Cowan, N.C.; Gakis, G.; Hernández, V.; Espinós, E.L.; Lorch, A.; Neuzillet, Y.; et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Clark, P.E.; Downs, T.M.; Efstathiou, J.A.; Flaig, T.W.; Friedlander, T.; et al. Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2017, 15, 1240–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer-Valuck, B.W.; Michalski, J.M.; Contreras, J.A.; Brenneman, R.; Christodouleas, J.P.; Abraham, C.D.; Kim, E.H.; Arora, V.K.; Bullock, A.D.; Carmona, R.; et al. A propensity analysis comparing definitive chemo-radiotherapy for muscle-invasive squamous cell carcinoma of the bladder vs. Urothelial carcinoma of the bladder using the national cancer database. Clin. Transl. Radiat. Oncol. 2019, 15, 38–41. [Google Scholar] [CrossRef] [Green Version]
- Dreicer, R. Chemotherapy for advanced urothelial cancer: End of the beginning? Lancet Oncol. 2017, 18, 567–569. [Google Scholar] [CrossRef]
- Torgovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015, 6, 157. [Google Scholar] [CrossRef] [Green Version]
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S. Urologic Diseases in America, P. Re-currence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef] [Green Version]
- Abdollah, F.; Gandaglia, G.; Thuret, R.; Schmitges, J.; Tian, Z.; Jeldres, C.; Passoni, N.M.; Briganti, A.; Shariat, S.F.; Perrotte, P.; et al. Incidence, survival and mortality rates of stage-specific bladder cancer in United States: A trend analysis. Cancer Epidemiol. 2013, 37, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Nakai, Y.; Nonomura, N.; Kawashima, A.; Mukai, M.; Nagahara, A.; Nakayama, M.; Takayama, H.; Nishimura, K.; Okuyama, A. Tumor Multiplicity is an Independent Prognostic Factor of Non-muscle-invasive High-grade (T1G3) Bladder Cancer. Jpn. J. Clin. Oncol. 2009, 40, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Chen, C.; Li, H.; Xu, J.; Wu, L.; Yu, Y.; Ren, S.; Li, H.; Hua, X.; Yan, H.; et al. miR-3687 Overexpression Promotes Bladder Cancer Cell Growth by Inhibiting the Negative Effect of FOXP1 on Cyclin E2 Transcription. Mol. Ther. 2019, 27, 1028–1038. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Xie, R.; Huang, M.; Dong, W.; Han, J.; Zhang, J.; Zhou, Q.; Li, H.; Huang, J.; et al. DANCR Promotes Metastasis and Proliferation in Bladder Cancer Cells by Enhancing IL-11-STAT3 Signaling and CCND1 Expression. Mol. Ther. 2019, 27, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, R.; Hua, X.; Huang, M.; Tian, Z.; Li, J.; Lam, H.Y.; Jiang, G.; Cohen, M.; Huang, C. lncRNA SNHG1 Promotes Basal Bladder Cancer Invasion via Interaction with PP2A Catalytic Subunit and Induction of Autophagy. Mol. Ther. Nucleic Acids 2020, 21, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, G.; Guo, X.; Yao, H.; Wang, G.; Li, C. Non-coding RNA in bladder cancer. Cancer Lett. 2020, 485, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.P.; Henrique, R.; Jerónimo, C.; Paramio, J.M. DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020, 9, 1850. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.M.; Cairns, P. Epigenetics of kidney cancer and bladder cancer. Epigenomics 2011, 3, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Zuo, Y.; Wang, J.; Zhang, M.Q.; Malhotra, A.; Mayeda, A. Characterization of rnase r-digested cellular rna source that consists of lariat and circular rnas from pre-mrna splicing. Nucleic Acids Res. 2006, 34, e63. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef]
- Chen, I.; Chen, C.Y.; Chuang, T.J. Biogenesis, identification, and function of exonic circular rnas. Wiley Inter. Discip Rev. RNA 2015, 6, 563–579. [Google Scholar] [CrossRef]
- Patop, I.L.; Wust, S.; Kadener, S. Past, present, and future of circrnas. EMBO J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak-Wolf, A.; Maier, L.; Mackowiak, S.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Tucker, D.; Zheng, W.; Zhang, D.-H.; Dong, X. Circular RNA and its potential as prostate cancer biomarkers. World J. Clin. Oncol. 2020, 11, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Artemaki, P.I.; Scorilas, A.; Kontos, C.K. Circular RNAs: A New Piece in the Colorectal Cancer Puzzle. Cancers 2020, 12, 2464. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Zhou, P.; Le, Y.; Zhou, C.; Wang, S.; Xu, D.; Lin, H.-K.; Gong, Z. Circular RNAs in cancer: Novel insights into origins, properties, functions and implications. Am. J. Cancer Res. 2015, 5, 472–480. [Google Scholar]
- He, X.; Xu, T.; Hu, W.; Tan, Y.; Wang, D.; Wang, Y.; Zhao, C.; Yi, Y.; Xiong, M.; Lv, W.; et al. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef]
- Shahzad, U.; Krumholtz, S.; Rutka, J.; Das, S. Noncoding RNAs in Glioblastoma: Emerging Biological Concepts and Potential Therapeutic Implications. Cancers 2021, 13, 1555. [Google Scholar] [CrossRef]
- Fang, L.; Du, W.W.; Lyu, J.; Dong, J.; Zhang, C.; Yang, W.; He, A.; Kwok, Y.S.S.; Ma, J.; Wu, N.; et al. Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1. Cell Death Differ. 2018, 25, 2195–2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Liu, H.-S.; Wang, F.-W.; Hu, T.; Liang, Z.-X.; Lan, N.; He, X.-W.; Zheng, X.-B.; Wu, X.-J.; Xie, D.; et al. circCAMSAP1 Promotes Tumor Growth in Colorectal Cancer via the miR-328-5p/E2F1 Axis. Mol. Ther. 2019, 28, 914–928. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, X.; Tao, D.; Huang, C.; Wang, L.; Liu, F.; Zhang, H.; Niu, H.; Jiang, G. circNR3C1 Suppresses Bladder Cancer Progression through Acting as an Endogenous Blocker of BRD4/C-myc Complex. Mol. Ther. Nucleic Acids 2020, 22, 510–519. [Google Scholar] [CrossRef]
- Zhu, J.; Luo, Y.; Zhao, Y.; Kong, Y.; Zheng, H.; Li, Y.; Gao, B.; Ai, L.; Huang, H.; Huang, J.; et al. Circehbp1 promotes lymphan-giogenesis and lymphatic metastasis of bladder cancer via mir-130a-3p/tgfbetar1/vegf-d signaling. Mol. Ther. J. Am. Soc. Gene Therapy. 2021, 29, 1838–1852. [Google Scholar] [CrossRef]
- Wang, F.; Fan, M.; Cai, Y.; Zhou, X.; Tai, S.; Yu, Y.; Wu, H.; Zhang, Y.; Liu, J.; Huang, S.; et al. Circular RNA circRIMS1 Acts as a Sponge of miR-433-3p to Promote Bladder Cancer Progression by Regulating CCAR1 Expression. Mol. Ther. Nucleic Acids 2020, 22, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kos, A.; Dijkema, R.; Arnberg, A.C.; Van Der Meide, P.H.; Schellekens, H. The hepatitis delta (δ) virus possesses a circular RNA. Nature 1986, 323, 558–560. [Google Scholar] [CrossRef]
- Pasman, Z.; Been, M.D.; Garcia-Blanco, M.A. Exon circularization in mammalian nuclear extracts. RNA 1996, 2, 603–610. [Google Scholar] [PubMed]
- Capel, B.; Swain, A.; Nicolis, S.; Hacker, A.; Walter, M.; Koopman, P.; Goodfellow, P.; Lovell-Badge, R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993, 73, 1019–1030. [Google Scholar] [CrossRef]
- Barrett, S.P.; Salzman, J. Circular RNAs: Analysis, expression and potential functions. Development 2016, 143, 1838–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Du, W.W.; Yang, W.; Li, X.; Fang, L.; Wu, N.; Li, F.; Chen, Y.; He, Q.; Liu, E.; Yang, Z.; et al. The circular rna circska3 binds integrin beta1 to induce invadopodium formation enhancing breast cancer invasion. Mol. Ther. 2020, 28, 1287–1298. [Google Scholar] [CrossRef]
- Du, W.W.; Xu, J.; Yang, W.; Wu, N.; Li, F.; Zhou, L.; Wang, S.; Li, X.; He, A.T.; Du, K.Y.; et al. A Neuroligin Isoform Translated by circNlgn Contributes to Cardiac Remodeling. Circ. Res. 2021, 129, 568–582. [Google Scholar] [CrossRef]
- Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular rna expression. PLoS Genet. 2013, 9, e1003777. [Google Scholar] [CrossRef]
- Du, W.W.; Zhang, C.; Yang, W.; Yong, T.; Awan, F.M.; Yang, B.B. Identifying and characterizing circrna-protein interaction. Theranostics 2017, 7, 4183–4191. [Google Scholar] [CrossRef] [PubMed]
- Du, W.W.; Yang, W.; Chen, Y.; Wu, Z.-K.; Foster, F.S.; Yang, Z.; Li, X.; Yang, B.B. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Hear. J. 2016, 38, 1402–1412. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Cai, Y.; Xu, J. Circular rnas: Biogenesis, mechanism, and function in human cancers. Int. J. Mol. Sci. 2019, 20, 3926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2014, 21, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Eger, N.; Schoppe, L.; Schuster, S.; Laufs, U.; Boeckel, J.-N. Circular RNA Splicing. Circ. RNAs 2018, 1087, 41–52. [Google Scholar] [CrossRef]
- Barrett, S.P.; Wang, P.L.; Salzman, J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. eLife 2015, 4, e07540. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.; Jost, I.; Rossbach, O.; Schneider, T.; Schreiner, S.; Hung, L.-H.; Bindereif, A. Exon Circularization Requires Canonical Splice Signals. Cell Rep. 2015, 10, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Liang, D.; Wilusz, J.E. Short intronic repeat sequences facilitate circular rna production. Genes Dev. 2014, 28, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-O.; Wang, H.-B.; Zhang, Y.; Lu, X.; Chen, L.-L.; Yang, L. Complementary Sequence-Mediated Exon Circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Conn, S.; Pillman, K.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.; Roslan, S.; Schreiber, A.; Gregory, P.; Goodall, G.J. The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell 2015, 160, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liang, D.; Tatomer, D.C.; Wilusz, J.E. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018, 32, 639–644. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.-O.; Chen, T.; Xiang, J.-F.; Yin, Q.-F.; Xing, Y.-H.; Zhu, S.; Yang, L.; Chen, L.-L. Circular Intronic Long Noncoding RNAs. Mol. Cell 2013, 51, 792–806. [Google Scholar] [CrossRef] [Green Version]
- Petkovic, S.; Müller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 2015, 43, 2454–2465. [Google Scholar] [CrossRef] [Green Version]
- Altesha, M.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol. 2018, 234, 5588–5600. [Google Scholar] [CrossRef]
- Jeck, W.; Sharpless, N. Detecting and characterizing circular RNAs. Nat. Biotechnol. 2014, 32, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2012, 19, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Glažar, P.; Papavasileiou, P.; Rajewsky, N. circBase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [Google Scholar] [CrossRef] [Green Version]
- Dong, R.; Ma, X.K.; Li, G.W.; Yang, L. Circpedia v2, An updated database for comprehensive circular rna annotation and ex-pression comparison. Genom. Proteom. Bioinform. 2018, 16, 226–233. [Google Scholar] [CrossRef]
- Zheng, L.-L.; Ling-Ling, Z.; Wu, J.; Sun, W.-J.; Liu, S.; Wang, Z.-L.; Zhou, H.; Yang, J.-H.; Qu, L.-H. deepBase v2.0: Identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Res. 2015, 44, D196–D202. [Google Scholar] [CrossRef]
- Tang, Z.; Li, X.; Zhao, J.; Qian, F.; Feng, C.; Li, Y.; Zhang, J.; Jiang, Y.; Yang, Y.; Wang, Q.; et al. TRCirc: A resource for transcriptional regulation information of circRNAs. Brief. Bioinform. 2018, 20, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-M.; Liu, H.; Huang, P.-J.; Chang, I.; Lee, C.-C.; Yang, C.-Y.; Tsai, W.-S.; Tan, B.C.-M. circlncRNAnet: An integrated web-based resource for mapping functional networks of long or circular forms of non-coding RNAs. GigaScience 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Liu, S.; Zhou, H.; Qu, L.H.; Yang, J.H. Starbase v2.0, Decoding mirna-cerna, mirna-ncrna and protein-rna interaction net-works from large-scale clip-seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudekula, D.; Panda, A.; Grammatikakis, I.; De, S.; Abdelmohsen, K.; Gorospe, M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2015, 13, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol. 2019, 16, 899–905. [Google Scholar] [CrossRef]
- Chen, X.; Han, P.; Zhou, T.; Guo, X.; Song, X.; Li, Y. Circrnadb: A comprehensive database for human circular rnas with pro-tein-coding annotations. Sci. Rep. 2016, 6, 34985. [Google Scholar] [CrossRef]
- Xia, S.; Feng, J.; Chen, K.; Ma, Y.; Gong, J.; Cai, F.; Jin, Y.; Gao, Y.; Xia, L.; Chang, H.; et al. Cscd: A database for can-cer-specific circular rnas. Nucleic Acids Res. 2018, 46, D925–D929. [Google Scholar] [CrossRef] [Green Version]
- Hancock JMGhosal, S.; Das, S.; Sen, R.; Basak, P.; Chakrabarti, J. Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Front. Genet. 2013, 4, 283. [Google Scholar]
- Zhao, Z.; Wang, K.; Wu, F.; Wang, W.; Zhang, K.; Hu, H.; Liu, Y.; Jiang, T. Circrna disease: A manually curated database of experi-mentally supported circrna-disease associations. Cell Death Dis. 2018, 9, 475. [Google Scholar] [CrossRef]
- Papatsirou, M.; Artemaki, P.; Karousi, P.; Scorilas, A.; Kontos, C. Circular RNAs: Emerging Regulators of the Major Signaling Pathways Involved in Cancer Progression. Cancers 2021, 13, 2744. [Google Scholar] [CrossRef]
- Yang, Z.-G.; Awan, F.M.; Du, W.W.; Zeng, Y.; Lyu, J.; Wu, D.; Gupta, S.; Yang, W.; Yang, B.B. The Circular RNA Interacts with STAT3, Increasing Its Nuclear Translocation and Wound Repair by Modulating Dnmt3a and miR-17 Function. Mol. Ther. 2017, 25, 2062–2074. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Zhong, Y.; Shang, R.; Zhang, X.; Song, W.; Kjems, J.; Li, H. The emerging landscape of circular RNA in life processes. RNA Biol. 2016, 14, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-J.; Shen, J. Circular RNA participates in the carcinogenesis and the malignant behavior of cancer. RNA Biol. 2016, 14, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Du, W.W.; Li, X.; Yee, A.J.; Yang, B.B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2015, 35, 3919–3931. [Google Scholar] [CrossRef]
- Zhu, K.-P.; Zhang, C.-L.; Ma, X.-L.; Hu, J.-P.; Cai, T.; Zhang, L. Analyzing the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous RNA Networks in Osteosarcoma Chemo-Resistance. Mol. Ther. 2019, 27, 518–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. Circrna biogenesis competes with pre-mrna splicing. Mol. Cell. 2014, 56, 55–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesselhoeft, R.A.; Kowalski, P.; Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018, 37, 1805–1814. [Google Scholar] [CrossRef]
- Li, F.; Yang, Q.; He, A.T.; Yang, B.B. Circular RNAs in cancer: Limitations in functional studies and diagnostic potential. Semin. Cancer Biol. 2020, in press. [Google Scholar] [CrossRef]
- Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Paffenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic role of fusion-circrnas derived from cancer-associated chromosomal translocations. Cell 2016, 166, 1055–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Liao, X.; Gong, Y.; He, J.; Zhou, J.K.; Tan, S.; Pu, W.; Huang, C.; Wei, Y.Q.; Peng, Y. Circular rna f-circsr derived from slc34a2-ros1 fusion gene promotes cell migration in non-small cell lung cancer. Mol. Cancer 2019, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xia, X.; Li, F.; Zhang, M.; Zhou, H.; Wu, X.; Zhong, J.; Zhao, Z.; Zhao, K.; Liu, D.; et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nature 2021, 23, 278–291. [Google Scholar] [CrossRef]
- Ma, J.; Du, W.W.; Zeng, K.; Wu, N.; Fang, L.; Lyu, J.; Yee, A.J.; Yang, B.B. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 2021, 29, 2754–2768. [Google Scholar] [CrossRef]
- Li, F.; Yang, B.B. Non-coding rnas in invadopodia: New insights into cancer metastasis. Front. Oncol. 2021, 11, 681576. [Google Scholar] [CrossRef]
- Fang, L.; Du, W.W.; Awan, F.M.; Dong, J.; Yang, B.B. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 2019, 459, 216–226. [Google Scholar] [CrossRef]
- Wu, N.; Xu, J.; Du, W.W.; Li, X.; Awan, F.M.; Li, F.; Misir, S.; Eshaghi, E.; Lyu, J.; Zhou, L.; et al. YAP Circular RNA, circYap, Attenuates Cardiac Fibrosis via Binding with Tropomyosin-4 and Gamma-Actin Decreasing Actin Polymerization. Mol. Ther. 2021, 29, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Du, W.W.; Wu, Y.; Yang, Z.; Awan, F.M.; Li, X.; Yang, W.; Zhang, C.; Yang, Q.; Yee, A.J.; et al. A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics 2017, 7, 3842–3855. [Google Scholar] [CrossRef]
- Zhang, C.; Huo, S.T.; Wu, Z.; Chen, L.; Wen, C.; Chen, H.; Du, W.W.; Wu, N.; Guan, D.; Lian, S.; et al. Rapid Development of Targeting circRNAs in Cardiovascular Diseases. Mol. Ther. Nucleic Acids 2020, 21, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, B.; Zhang, Z.; Wang, S.; Bai, Y.; Zhang, Y.; Tang, Y.; Du, L.; Xu, L.; Wu, F.; et al. Extracellular Vesicle–Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020, 142, 556–574. [Google Scholar] [CrossRef]
- Wu, F.; Han, B.; Wu, S.; Yang, L.; Leng, S.; Li, M.; Liao, J.; Wang, G.; Ye, Q.; Zhang, Y.; et al. Circular RNA TLK1 Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. J. Neurosci. 2019, 39, 7369–7393. [Google Scholar] [CrossRef]
- Yang, L.; Han, B.; Zhang, Y.; Bai, Y.; Chao, J.; Hu, G.; Yao, H. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 2018, 14, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Diling, C.; Longkai, Q.; Yinrui, G.; Yadi, L.; Xiaocui, T.; Xiangxiang, Z.; Miao, Z.; Ran, L.; Ou, S.; Dongdong, W.; et al. CircNF1-419 improves the gut microbiome structure and function in AD-like mice. Aging 2020, 12, 260–287. [Google Scholar] [CrossRef]
- Awan, F.M.; Yang, B.B.; Naz, A.; Hanif, A.; Ikram, A.; Obaid, A.; Malik, A.; Janjua, H.A.; Ali, A.; Sharif, S. The emerging role and signif-icance of circular rnas in viral infections and antiviral immune responses: Possible implication as theranostic agents. RNA Biol. 2021, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Li, F.; He, A.T.; Yang, B.B. Circular rnas: Expression, localization, and therapeutic potentials. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 1683–1702. [Google Scholar] [CrossRef]
- Du, W.W.; Yang, W.; Liu, E.; Yang, Z.; Dhaliwal, P.; Yang, B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016, 44, 2846–2858. [Google Scholar] [CrossRef] [Green Version]
- Diling, C.; Yinrui, G.; Longkai, Q.; Xiaocui, T.; Yadi, L.; Xin, Y.; Guoyan, H.; Ou, S.; Tianqiao, Y.; Dongdong, W.; et al. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging 2019, 11, 12002–12031. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Yuan, Z.; Du, K.Y.; Fang, L.; Lyu, J.; Zhang, C.; He, A.; Eshaghi, E.; Zeng, K.; Ma, J.; et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 2019, 26, 2758–2773. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-B.; Huang, G.-X.; Fu, Q.; Han, B.; Lu, J.-J.; Chen, A.-M.; Zhu, L. circRNA.33186 Contributes to the Pathogenesis of Osteoarthritis by Sponging miR-127-5p. Mol. Ther. 2019, 27, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Sun, Z.; Zhou, J.; Cao, Y.; Ma, W.; Xie, K.; Yan, X. Comprehensive circular RNA profiling reveals the regulatory role of the hsa_circ_0137606/miR-1231 pathway in bladder cancer progression. Int. J. Mol. Med. 2019, 44, 1719–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Zhao, Y.; Chen, X. Microarray expression profile analysis of circular RNAs and their potential regulatory role in bladder carcinoma. Oncol. Rep. 2020, 45, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, Q.; Chen, X.; Zhang, Z.; Mou, Z.; Ye, F.; Jin, S.; Jun, X.; Tang, F.; Jiang, H. Circular RNA circRGNEF promotes bladder cancer progression via miR-548/KIF2C axis regulation. Aging 2020, 12, 6865–6879. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Feng, W.; Shi, J.; Chen, L.; Huang, J.; Lin, T. Circrip2 accelerates bladder cancer progression via mir-1305/tgf-beta2/smad3 pathway. Mol. Cancer 2020, 19, 23. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Huang, X.; Wang, L.; Zhang, Z.; Liu, M.; Li, Y.; Luo, M.; Yao, X.; Fan, J.; Geng, J. Circular RNA hsa_circ_0068871 regulates FGFR3 expression and activates STAT3 by targeting miR-181a-5p to promote bladder cancer progression. J. Exp. Clin. Cancer Res. 2019, 38, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, W.; Wang, X.; Wang, T.; Chen, Y.; Chen, B.; Liu, R.; Bai, P.; Xing, J. Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11. Mol. Med. 2018, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, X.; Guo, X.; Chen, J.; Li, C.; Chen, M.; Liu, L.; Zhang, X.; Zu, X. Circular rna dock1 promotes bladder carcinoma progression via modulating circdock1/hsa-mir-132-3p/sox5 signalling pathway. Cell Prolif. 2019, 52, e12614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Yin, Q.; Mao, Y.; Zhang, Z.; Wu, S.; Cheng, Z.; Chen, X.; Xu, H.; Jin, S.; Jiang, H.; et al. Hsa_circ_0068307 mediates bladder cancer stem cell-like properties via miR-147/c-Myc axis regulation. Cancer Cell Int. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Zhao, J.; Xiong, M.; Almaraihah, R.; Chen, Z.; Hou, T. Circ_0008532 promotes bladder cancer progression by regulation of the miR-155-5p/miR-330-5p/MTGR1 axis. J. Exp. Clin. Cancer Res. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Qiao, L.; Zang, Y.; Ni, W.; Xu, Z. Circular RNA FOXO3 Suppresses Bladder Cancer Progression and Metastasis by Regulating MiR-9-5p/TGFBR2. Cancer Manag. Res. 2020, 12, 5049–5056. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tao, W.; Ni, S.; Chen, Q. Circular RNA circ-Foxo3 induced cell apoptosis in urothelial carcinoma via interaction with miR-191-5p. OncoTargets Ther. 2019, 12, 8085–8094. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Li, Y.; Wang, M.; Huang, C.; Tao, D.; Zheng, F.; Zhang, H.; Zeng, F.; Xiao, X.; Jiang, G. Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol. Cancer 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Li, P.; Yang, X.; Yuan, W.; Yang, C.; Zhang, X.; Han, J.; Wang, J.; Deng, X.; Yang, H.; Li, P.; et al. Circrna-cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microrna-135a. Cell Physiol. Biochem. 2018, 46, 1606–1616. [Google Scholar] [CrossRef]
- Zheng, F.; Wang, M.; Li, Y.; Huang, C.; Tao, D.; Xie, F.; Zhang, H.; Sun, J.; Zhang, C.; Gu, C.; et al. Circnr3c1 inhibits pro-liferation of bladder cancer cells by sponging mir-27a-3p and downregulating cyclin d1 expression. Cancer Lett. 2019, 460, 139–151. [Google Scholar] [CrossRef]
- He, Q.; Huang, L.; Yan, D.; Bi, J.; Yang, M.; Huang, J.; Lin, T. CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9. Aging 2019, 11, 11314–11328. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liu, T.; Feng, H.; Yang, R.; Zhao, X.; Chen, W.; Jiang, B.; Qin, H.; Guo, X.; Liu, M.; et al. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 2019, 18, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Yuan, W.; Yang, X.; Li, P.; Wang, J.; Han, J.; Tao, J.; Li, P.; Yang, H.; Lv, Q.; et al. Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol. Cancer 2018, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xie, F.; Zheng, F.X.; Jiang, G.S.; Zeng, F.Q.; Xiao, X.Y. Overexpression of circrna bcrc4 regulates cell apoptosis and mi-crorna-101/ezh2 signaling in bladder cancer. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017, 37, 886–890. [Google Scholar]
- Yang, D.; Qian, H.; Fang, Z.; Xu, A.; Zhao, S.; Liu, B.; Li, D. Silencing circular RNA VANGL1 inhibits progression of bladder cancer by regulating miR-1184/IGFBP2 axis. Cancer Med. 2019, 9, 700–710. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhou, W.; Duan, L.; Zhang, J.; Lu, X.; Jin, L.; Yu, Y. Circular RNA circ-VANGL1 as a competing endogenous RNA contributes to bladder cancer progression by regulating miR-605-3p/VANGL1 pathway. J. Cell. Physiol. 2018, 234, 3887–3896. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, W.; Chen, Z.; Li, M.; Li, S.; Wu, B.; Bu, R. Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/ Myd88 via MAPK signaling pathway. Int. J. Cancer 2019, 145, 2170–2181. [Google Scholar] [CrossRef]
- Sun, M.; Zhao, W.; Chen, Z.; Li, M.; Li, S.; Wu, B.; Bu, R. Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p. J. Cell. Physiol. 2018, 234, 4812–4824. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Huang, H.; Li, Y.; Lu, Y.; Ye, T. CircRNA_0058063 functions as a ceRNA in bladder cancer progression via targeting miR-486-3p/FOXP4 axis. Biosci. Rep. 2020, 40. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Lv, M.; Chen, J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci. Rep. 2016, 6, 30919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Tao, T.; Yang, Z.; Kang, X.; Zhang, X.; Kang, D.; Wu, S.; Li, C. Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Mol. Cancer 2019, 18, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, X.; Jing, Z.; Bi, J.; Li, Z.; Liu, X.; Li, J.; Li, Z.; Zhang, Z.; Kong, C. The circints4/mir-146b/carma3 axis promotes tumor-igenesis in bladder cancer. Cancer Gene Ther. 2020, 27, 189–202. [Google Scholar] [CrossRef]
- Shi, Y.R.; Wu, Z.; Xiong, K.; Liao, Q.J.; Ye, X.; Yang, P.; Zu, X.B. Circular rna circkif4a sponges mir-375/1231 to promote bladder cancer progression by upregulating notch2 expression. Front. Pharmacol. 2020, 11, 605. [Google Scholar] [CrossRef] [PubMed]
- Abulizi, R.; Li, B.; Zhang, C.G. Circ_0071662, a novel tumor biomarker, suppresses bladder cancer cell proliferation and invasion by sponging mir-146b-3p. Oncol. Res. 2019. [Google Scholar] [CrossRef]
- Liu, T.; Lu, Q.; Liu, J.; Xie, S.; Feng, B.; Zhu, W.; Liu, M.; Liu, Y.; Zhou, X.; Sun, W.; et al. Circular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762. Cell Death Dis. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Xia, H.-B.; Zhao, C.-Y.; Shi, L.; Ren, X.-L. Cyclic RNA hsa_circ_0091017 inhibits proliferation, migration and invasiveness of bladder cancer cells by binding to microRNA-589-5p. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 86–96. [Google Scholar] [PubMed]
- Jiang, Y.; Wei, T.; Li, W.; Zhang, R.; Chen, M. Circular RNA hsa_circ_0002024 suppresses cell proliferation, migration, and invasion in bladder cancer by sponging miR-197-3p. Am. J. Transl. Res. 2019, 11, 1644–1652. [Google Scholar]
- Liu, H.; Chen, D.; Bi, J.; Han, J.; Yang, M.; Dong, W.; Lin, T.; Huang, J. Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer. Aging 2018, 10, 2606–2623. [Google Scholar] [CrossRef]
- Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer 2018, 17, 1–19. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, M.; Qi, L.; Zu, X.; Li, Y.; Liu, L.; Chen, M.; Li, Y.; He, W.; Hu, X.; et al. Eralpha-mediated alterations in circ_0023642 and mir-490-5p signaling suppress bladder cancer invasion. Cell Death Dis. 2019, 10, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, F.; Huang, C.; Liu, F.; Zhang, H.; Xiao, X.; Sun, J.; Zhang, X.; Jiang, G. CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol. Cancer 2021, 20, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, Y.; Liu, J.; Li, W.; Li, N.; Xue, D.; Zhang, X.; Wang, P. Circ_0006332 promotes growth and progression of bladder cancer by modulating MYBL2 expression via miR-143. Aging 2019, 11, 10626–10643. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, R.X.; Wei, W.S.; Li, Y.H.; Feng, Z.H.; Tan, L.; Chen, J.W.; Yuan, G.J.; Chen, S.L.; Guo, S.J.; et al. Prmt5 circular rna promotes metastasis of urothelial carcinoma of the bladder through sponging mir-30c to induce epithe-lial-mesenchymal transition. Clin. Cancer Res. 2018, 24, 6319–6330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Huang, M.; Lv, M.; He, Y.; Duan, C.; Zhang, L.; Chen, J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett. 2017, 403, 305–317. [Google Scholar] [CrossRef]
- Tong, L.; Yang, H.; Xiong, W.; Tang, G.; Zu, X.; Qi, L. Circ_100984-mir-432-3p axis regulated c-jun/ybx-1/beta-catenin feedback loop promotes bladder cancer progression. Cancer Sci. 2021, 112, 1429–1442. [Google Scholar] [CrossRef]
- Yang, C.; Mou, Z.; Zhang, Z.; Wu, S.; Zhou, Q.; Chen, Y.; Gong, J.; Xu, C.; Ou, Y.; Chen, X.; et al. Circular RNA RBPMS inhibits bladder cancer progression via miR-330-3p/RAI2 regulation. Mol. Ther. Nucleic Acids 2021, 23, 872–886. [Google Scholar] [CrossRef]
- Tan, S.; Kang, Y.; Li, H.; He, H.-Q.; Zheng, L.; Wu, S.-Q.; Ai, K.; Zhang, L.; Xu, R.; Zhang, X.-Z.; et al. circST6GALNAC6 suppresses bladder cancer metastasis by sponging miR-200a-3p to modulate the STMN1/EMT axis. Cell Death Dis. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Luo, J.; Wu, X.; Gao, Z. Circular RNA_0000629 Suppresses Bladder Cancer Progression Mediating MicroRNA-1290/CDC73. Cancer Manag. Res. 2021, 13, 2701–2715. [Google Scholar] [CrossRef]
- Yan, D.; Dong, W.; He, Q.; Yang, M.; Huang, L.; Kong, J.; Qin, H.; Lin, T.; Huang, J. Circular RNA circPICALM sponges miR-1265 to inhibit bladder cancer metastasis and influence FAK phosphorylation. EBioMedicine 2019, 48, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Bi, J.; Dong, W.; Yang, M.; Shi, J.; Jiang, N.; Lin, T.; Huang, J. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer 2018, 17, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Rodriguez-Aznar, E.; Wiesmuller, L.; Sainz, B., Jr.; Hermann, P.C. Emt and stemness-key players in pancreatic cancer stem cells. Cancers 2019, 11, 1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.Y.; Hu, M.; Zhao, L.; Guo, W.S. Mir-451a suppresses cell proliferation, metastasis and emt via targeting ywhaz in hepato-cellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 5158–5167. [Google Scholar] [PubMed]
- Rodriguez, R.H.M.; Rueda, O.B.; Ibarz, L. Bladder cancer: Present and future. Med. Clin. 2017, 149, 449–455. [Google Scholar] [CrossRef]
- Papatsirou, M.; Artemaki, P.I.; Scorilas, A.; Kontos, C.K. The role of circular RNAs in therapy resistance of patients with solid tumors. Pers. Med. 2020, 17, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, M.; Jiang, L.; Ma, L.; Wan, L.; Chen, Q.; Wei, C.; Wang, Z. CircRNAs in anticancer drug resistance: Recent advances and future potential. Mol. Cancer 2020, 19, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Kong, S.; Wang, F.; Ju, S. CircRNAs: Biogenesis, functions, and role in drug-resistant Tumours. Mol. Cancer 2020, 19, 1–19. [Google Scholar] [CrossRef]
- He, A.T.; Liu, J.; Li, F.; Yang, B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021, 6, 1–14. [Google Scholar] [CrossRef]
- Santer, L.; Bär, C.; Thum, T. Circular RNAs: A Novel Class of Functional RNA Molecules with a Therapeutic Perspective. Mol. Ther. 2019, 27, 1350–1363. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Zhou, R.; Wang, J.; Han, J.; Yang, X.; Yu, H.; Lu, H.; Zhang, X.; Li, P.; Tao, J.; et al. Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition. Mol. Oncol. 2019, 13, 1559–1576. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Zhao, N.; Zhang, H.; Xie, D. Circular RNA CircHIPK3 Promotes Gemcitabine Sensitivity in Bladder Cancer. J. Cancer 2020, 11, 1907–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Yang, W.; Jiang, N.; Shi, J.; Chen, L.; Zhong, G.; Bi, J.; Dong, W.; Wang, Q.; Wang, C.; et al. Hypoxia-elevated circELP3 contributes to bladder cancer progression and cisplatin resistance. Int. J. Biol. Sci. 2019, 15, 441–452. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Ou, Z.; Yeh, S.; Huang, C.P.; You, B.; Tsai, Y.C.; Sheu, T.J.; Zu, X.; Chang, C. Androgen receptor-regulated circfnta ac-tivates kras signaling to promote bladder cancer invasion. EMBO Rep. 2020, 21, e48467. [Google Scholar] [CrossRef]
- Gong, P.; Xu, R.; Zhuang, Q.; He, X. A novel circular RNA (hsa_circRNA_102336), a plausible biomarker, promotes the tumorigenesis by sponging miR-515-5p in human bladder cancer. Biomed. Pharmacother. 2020, 126, 110059. [Google Scholar] [CrossRef] [PubMed]
- Chi, B.J.; Zhao, D.M.; Liu, L.; Yin, X.Z.; Wang, F.F.; Bi, S.; Gui, S.L.; Zhou, S.; Qin, W.B.; Wu, D.M.; et al. Downregulation of hsa_circ_0000285 serves as a prognostic biomarker for bladder cancer and is involved in cisplatin resistance. Neoplasma 2019, 66, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Lu, Y.; Wang, F.; Huang, X.; Yu, Z. Circular RNA circRNA_103809 Accelerates Bladder Cancer Progression and Enhances Chemo-Resistance by Activation of miR-516a-5p/FBXL18 Axis. Cancer Manag. Res. 2020, 12, 7561–7568. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Q.; Zhong, P. Circ_0067934 increases bladder cancer cell proliferation, migration and invasion through sup-pressing mir-1304 expression and increasing myc expression levels. Exp. Ther. Med. 2020, 19, 3751–3759. [Google Scholar]
- Tang, G.; Xie, W.; Qin, C.; Zhen, Y.; Wang, Y.; Chen, F.; Du, Z.; Wu, Z.; Zhang, B.; Shen, Z.; et al. Expression of circular RNA circASXL1 correlates with TNM classification and predicts overall survival in bladder cancer. Int. J. Clin. Exp. Pathol. 2017, 10, 8495–8502. [Google Scholar]
- Gu, C.; Zhou, N.; Wang, Z.; Li, G.; Kou, Y.; Yu, S.; Feng, Y.; Chen, L.; Yang, J.; Tian, F. circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide. Mol. Ther. Nucleic Acids 2018, 13, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, H.; Xie, F.; Tao, D.; Xiao, X.; Huang, C.; Wang, M.; Gu, C.; Zhang, X.; Jiang, G. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis. Oncogene 2019, 39, 1696–1709. [Google Scholar] [CrossRef]
- Li, Y.; Wan, B.; Liu, L.; Zhou, L.; Zeng, Q. Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition. Biochem. Biophys. Res. Commun. 2018, 508, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Sheng, H.; Xie, H.; Zheng, Q.; Shen, Y.; Shi, G.; Ye, D. circLPAR1 is a novel biomarker of prognosis for muscle-invasive bladder cancer with invasion and metastasis by miR-762. Oncol. Lett. 2019, 17, 3537–3547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, W.; Bi, J.; Liu, H.; Yan, D.; He, Q.; Zhou, Q.; Wang, Q.; Xie, R.; Su, Y.; Yang, M.; et al. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol. Cancer 2019, 18, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.-Y.; Liu, Q.-H.; Wang, T.-J.; Zhao, J.; Cheng, X.-H.; Wang, J.-S. CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef]
- He, Q.; Yan, D.; Dong, W.; Bi, J.; Huang, L.; Yang, M.; Huang, J.; Qin, H.; Lin, T. circRNA circFUT8 Upregulates Krüpple-like Factor 10 to Inhibit the Metastasis of Bladder Cancer via Sponging miR-570-3p. Mol. Ther. Oncolytics 2020, 16, 172–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, J.; Liu, H.; Dong, W.; Xie, W.; He, Q.; Cai, Z.; Huang, J.; Lin, T. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wang, Y.; Liu, Y.; Zhang, X.; Liu, J.; Wang, P. Low Expression of hsa_circ_0018069 in Human Bladder Cancer and Its Clinical Significance. BioMed Res. Int. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Niu, X.; Mao, F.; Liu, X.; Zhong, B.; Jiang, H.; Fu, G. Hsa_circRNA_100146 Acts as a Sponge of miR-149-5p in Promoting Bladder Cancer Progression via Regulating RNF2. OncoTargets Ther. 2020, 13, 11007–11017. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Du, W.W.; Wu, N.; Yang, W.; Awan, F.M.; Fang, L.; Ma, J.; Li, X.; Zeng, Y.; Yang, Z.; et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017, 24, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhang, Q.; Zhu, J.; Yin, G.; Lin, L.; Liang, C. Identification of urinary hsa_circ_0137439 as a potential biomarker and tumor regulator of bladder cancer. Neoplasma 2020, 67, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Liu, H.; Cai, Z.; Dong, W.; Jiang, N.; Yang, M.; Huang, J.; Lin, T. Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis. Aging 2018, 10, 1964–1976. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Y.; Yang, Z.; Xia, S.; Lin, D.; Xiao, B.; Xiu, Y. Novel circrna_0071196/mirna19b3p/cit axis is associated with proliferation and migration of bladder cancer. Int. J. Oncol. 2020, 57, 767–779. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, M.; Liu, H.; Su, C. Circular RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and migration of bladder cancer cells. J. Cell. Biochem. 2017, 119, 3317–3325. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Qiao, Q.; Ge, Y.; Ma, L.; Wang, Q. Circular RNA circSEMA5A promotes bladder cancer progression by upregulating ENO1 and SEMA5A expression. Aging 2020, 12, 21674–21686. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Feng, W.; Zhong, G.; Ya, Y.; Du, Z.; Shi, J.; Chen, L.; Dong, W.; Lin, T. ciRs-6 upregulates March1 to suppress bladder cancer growth by sponging miR-653. Aging 2019, 11, 11202–11223. [Google Scholar] [CrossRef]
- Shen, C.; Wu, Z.; Wang, Y.; Gao, S.; Da, L.; Xie, L.; Hu, H. Downregulated hsa_circ_0077837 and hsa_circ_0004826, facilitate bladder cancer progression and predict poor prognosis for bladder cancer patients. Cancer Med. 2020, 9, 3885–3903. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, H.; Tao, D.; Xie, F.; Liu, F.; Gu, C.; Wang, M.; Wang, L.; Jiang, G.; Wang, Z.; et al. CircCDYL inhibits the expression of C-MYC to suppress cell growth and migration in bladder cancer. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; De, S.; Grammatikakis, I.; Munk, R.; Yang, X.; Piao, Y.; Dudekula, D.B.; Abdelmohsen, K.; Gorospe, M. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 2017, 45, e116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, L.S.; Hansen, T.; Venø, M.T.; Kjems, J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene 2017, 37, 555–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Rigatti, R.; Jia, J.-H.; Samani, N.J.; Eperon, I.C. Exon repetition: A major pathway for processing mRNA of some genes is allele-specific. Nucleic Acids Res. 2004, 32, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhao, Y. Circular RNAs: Characteristics, function, and role in human cancer. Histol. Histopathol. 2018, 33, 887–893. [Google Scholar]
- Han, B.; Chao, J.; Yao, H. Circular RNA and its mechanisms in disease: From the bench to the clinic. Pharmacol. Ther. 2018, 187, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.U.; Agarwal, V.; Guo, H.; Bartel, D.P. Expanded identification and characterization of mammalian circular rnas. Genome Biol. 2014, 15, 409. [Google Scholar] [CrossRef]
- Mármol, I.; Sánchez-De-Diego, C.; Dieste, A.P.; Cerrada, E.; Yoldi, M.J.R. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 197. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.C.; Li, J.R.; Sun, C.H.; Andrews, E.; Chao, R.F.; Lin, F.M.; Weng, S.L.; Hsu, S.D.; Huang, C.C.; Cheng, C.; et al. Circnet: A database of circular rnas derived from transcriptome sequencing data. Nucleic Acids Res. 2016, 44, D209–D215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiss, G.K.; Bumgarner, R.; Birditt, B.; Dahl, T.; Dowidar, N.; Dunaway, D.L.; Fell, H.P.; Ferree, S.; George, R.D.; Grogan, T.; et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008, 26, 317–325. [Google Scholar] [CrossRef] [PubMed]
CircRNA | Circbase ID | Gene Symbol | Expression | Function | Molecular Mechanism | Target Gene/Pathway | Reference |
---|---|---|---|---|---|---|---|
CircUVRAG | Hsa_circ_0023642 | UVRAG | Upregulated | Promoting cell proliferation and migration | Sponging for miR-223 | FGFR2 | [67] |
CircRGNEF | Hsa_circ_0072995 | RGNEF | Upregulated | Promoting cell proliferation and invasion | Sponging for miR-548 | KIF2C | [104] |
CircRIP2 | Has_circ_0005777 | RIP2 | Upregulated | Promoting cell proliferation and metastasis | Sponging for miR-1305 | Tgf-β2/smad3 | [105] |
Circ_0068871 | Hsa_circ_0068871 | - | Upregulated | Promoting cell proliferation and migration | Sponging for miR-181a-5p | FGFR/STAT3 | [106] |
CircCEP128 | Hsa_circ_0102722 | - | Upregulated | Promoting cell proliferation and inhibiting cell apoptosis | Sponging for miR-145-5p | SOX11 | [107] |
CircDOCK1 | Hsa_circ_0020394 | - | Upregulated | Promoting cell proliferation and migration | Sponging for miR-132-3p | SOX5 | [108] |
Circ_0068307 | Hsa_circ_0068307 | - | Upregulated | Promoting cell proliferation and migration | Sponging for miR-147 | c-Myc | [109] |
Circ_0008532 | Hsa_circ_0008532 | - | Upregulated | Promoting cell migration, invasion, and angiogenesis | Sponging for miR-155-5p/miR-330-5p | MTGR1 | [110] |
CircFOXO3 | Hsa_circ_0006404 | FOXO3 | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-9-5p | TGFBR2 | [111] |
CircFOXO3 | Hsa_circ_0006404 | FOXO3 | Downregulated | Promoting promoted cell apoptosis | Sponging for miR-191-5p | - | [112] |
CircBCRC-3 | Hsa_circ_0001110 | BCRC-3 | Downregulated | Inhibiting cell proliferation, and promoting cell cycle arrest | Sponging for miR-182-5p | P27 | [113] |
CircCdr1as | Hsa_circ_0001946 | CDR | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-135a | P21 | [114] |
CircNR3C1 | Hsa_circ_0001543 | NR3C1 | Downregulated | Inhibiting cell proliferation and cell cycle progression | Sponging for miR-27a-3p | Cyclin D1 | [115] |
CircPTPRA | Hsa_circ_0006117 | PTPRA | Downregulated | Inhibiting cell proliferation | Sponging for miR-636 | KLF9 | [116] |
CircSLC8A1 | Hsa_circ_0000994 | SLC8A1 | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-130b/miR-494 | PTEN | [117] |
CircITCH | Hsa_circ_0001141 | ITCH | Downregulated | Inhibiting cells proliferation, migration, invasion and metastasis | Sponging for miR-17/miR-224 | P21/PTEN | [118] |
CircBCRC4 | Hsa_circ_0001577 | RANBP9 | Downregulated | Inhibiting cell viability and promoting cell apoptosis | Sponging for miR-101 | EZH2 | [119] |
CircVANGL1 | Hsa_circ_0002623 | VANGL1 | Upregulated | Promoting cell proliferation, migration and invasion | Sponging for miR-1184 | IGFBP2 | [120] |
CircVANGL1 | Hsa_circ_0002623 | VANGL1 | Upregulated | Promoting cell proliferation, migration, and invasion | Sponging for miR-605-3p | VANGL1 | [121] |
CircCEP128 | Hsa_circ_0102722 | - | Upregulated | Promoting cell proliferation and migration, inhibiting cell apoptosis and cell cycle arrest | Sponging for miR-145-5p | MAPK/MYD88 | [122] |
Circ_0058063 | Hsa_circ_0058063 | - | Upregulated | Promoting cell proliferation and migration, inhibiting cell apoptosis | Sponging for miR-145-5p | CDK6 | [123] |
Circ_0058063 | Hsa_circ_0058063 | - | Upregulated | Promoting cell proliferation and invasion, inhibiting apoptosis | Sponging for miR-486-3p | FOXP4 | [124] |
CircTCF25 | Hsa_circ_0041103 | - | Upregulated | Promoting cell proliferation and migration | Sponging for miR-107/miR-103-3p | CDK6 | [125] |
CircTFRC | Has_circ_0001445 | TFRC | Upregulated | Promoting cell proliferation and invasion | Sponging for miR-107 | TFRC | [126] |
CircINTS4 | Hsa_circ_0002476 | INTS4 | Upregulated | Promoting cell proliferation, migration, cell cycle and apoptosis | Sponging for miR-146b | CARMA3/NFκB/P38 MAPK | [127] |
CircKIF4A | Hsa_circ_0007255 | - | Upregulated | Promoting cell proliferation and colony-formation ability | Sponging for miR-375 and miR-1231 | NOTCH/PI3K/AKT | [128] |
Circ_0071662 | Hsa_circ_0071662 | TPPP1 | Downregulated | Inhibiting cell proliferation and invasion | Sponging for miR-146b-3p | HPGD/NF2 | [129] |
CircFAM114A2 | Hsa_circ_0001546 | FAM114A2 | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-762 | ΔNP63 | [130] |
Circ_0091017 | Hsa_circ_0091017 | - | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-589-5p | - | [131] |
Circ_0002024 | Hsa_circ_0002024 | - | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-197-3p | - | [132] |
CircUBXN7 | Hsa_circ_0001380 | UBXN7 | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-1247-3p | B4GALT3 | [133] |
CircFNDC3B | Hsa_circ_0006156 | FNDC3B | Downregulated | Inhibiting cell proliferation, migration and invasion | Sponging for miR-1178-3p | G3BP2/SRC/FAK | [134] |
Circ_0023642 | Hsa_circ_0023642 | UVRAG | Downregulated | Inhibiting cell invasion | Sponging for miR-490-5p | EGFR | [135] |
CircPTPRA | Hsa_circ_0006117 | PTPRA | Downregulated | Inhibiting cell invasion, metastasis and cell cycle | Interacting with IGF2BP1 | M6A-modified RNAs | [136] |
Circ_0006332 | Hsa_circ_0006332 | MYBL2 | Upregulated | Promoting cell proliferation, colony formation and invasion | Sponging for miR-143 | MYBL2/EMT | [137] |
CircRIMS1 | Hsa_circ_0132246 | - | Upregulated | Promoting cell proliferation, migration and invasion | Sponging for miR-433-3p | CCAR1/EMT | [32] |
CircPRMT5 | Hsa_circ_0031250 | PRMT5 | Upregulated | Promoting cell migration and invasion | Sponging for miR-30c | EMT | [138] |
CircMYLK | Hsa_circ_0002768 | MYLK | Upregulated | Promoting cell proliferation, migration and angiogenesis | Sponging for miR-29a | VEGFA/VEGFR2 and Ras/ERK, and EMT | [139] |
Circ_100984 | Hsa_circ_100984 | - | Upregulated | Promoting cell proliferation, migration and invasion | Sponging for miR-432-3p | c-Jun/YBX-1/β-catenin and EMT | [140] |
CircRBPMS | Hsa_circ_0006539 | RBPMS | Downregulated | Inhibiting cell proliferation and metastasis | Sponging for miR-330-3p | RAI2/ERK/EMT | [141] |
CircST6GALNAC6 | Hsa_circ_0088708 | ST6GALNAC6 | Downregulated | Inhibiting cell proliferation, migration, invasion | Sponging for miR-200a-3p | STMN1/EMT | [142] |
Circ_0000629 | Hsa_circ_0000629 | - | Downregulated | Inhibiting cell migration, invasion and growth | Sponging for miR-1290 | CDC73/EMT | [143] |
CircPICALM | Hsa_circ_0023919 | PICALM | Downregulated | Sponging for miR-1265 | STEAP4/pFAK-Y397/EMT | [144] |
CircRNA | CircBase ID | Gene Symbol | Expression | Clinical Value | Molecular Mechanism | Target Gene/Pathway | Reference |
---|---|---|---|---|---|---|---|
CircCdr1as | Hsa_circ_0001946 | CDR1 | Downregulated | Promoting cisplatin sensitivity | Sponging for miR-1270 | APAF1 | [155] |
CircHIPK3 | Hsa_circ_0000284 | HIPK3 | Downregulated | Promoting gemcitabine sensitivity | Sponging for miR-558 | HPSE, VEGF, MMP9 | [156] |
CircELP3 | Hsa_circ_0001785 | ELP3 | Upregulated | Promoting cisplatin resistance | Hypoxia-elevated | cancer stem-like cells | [157] |
CircFNTA | Hsa_circ_0084171 | FNTA | Upregulated | Promoting cisplatin resistance | Sponging for miR-370-3p | KRAS | [158] |
Circ_102336 | Hsa_circ_102336 | TAF4B | Upregulated | Promoting cisplatin resistance | Sponging for miR-515-5p | ATP-binding cassette (ABC) transporters and apoptosis pathways | [159] |
Circ_0000285 | Hsa_circ_0000285 | HIPK3 | Downregulated | Promoting cisplatin sensitivity | Unknown | Unknown | [160] |
Circ_103809 | Hsa_circ_0072088 | ZFR | Upregulated | Promoting chemo-resistance | Sponging for miR-516a-5p | FBXL18 | [161] |
CircRNA | CircBase ID | Gene Symbol | Expression | Clinical Value | Molecular Mechanism | Target Gene/Pathway | Reference |
---|---|---|---|---|---|---|---|
CircVANGL1 | Hsa_circ_0002623 | VANGL1 | Upregulated | Prognostic utility | Sponging for miR-605-3p | VANGL1 | [121] |
Circ_0067934 | Hsa_circ_0067934 | - | Upregulated | Prognostic utility | Sponging for miR-1304 | Myc | [162] |
CircASXL1 | Hsa_circ_0001136 | ASXL1 | Upregulated | Prognostic and diagnostic utility | Unknown | unknown | [163] |
CircGprc5a | Hsa_circ_02838 | - | Upregulated | Prognostic utility | Unknown | Gprc5a protein | [164] |
Circ_0001361 | Hsa_circ_0001361 | FNDC3B | Upregulated | Prognostic utility | Sponging for miR-491-5p | MMP9 | [165] |
Circ_0000285 | Hsa_circ_0000285 | HIPK3 | Downregulated | Prognostic utility | Unknown | unknown | [160] |
CircMTO1 | Hsa_circ_0007874 | MTO1 | Downregulated | Prognostic utility | Sponging for miR-221 | unknown | [166] |
CircLPAR1 | Hsa_circ_0087960 | LPAR1 | Downregulated | Prognostic utility | Sponging for miR-762 | unknown | [167] |
CircACVR2A | Hsa_circ_0001073 | ACVR2A | Downregulated | Prognostic utility | Sponging for miR-626 | EYA4 | [168] |
CircZFR | Hsa_circ_0072088 | ZFR | Upregulated | Prognostic and diagnostic utility | Sponging for miR-377 | ZEB2 | [169] |
CircFUT8 | Hsa_circ_0003028 | FUT8 | Downregulated | Prognostic utility | Sponging for miR-570-3p | KLF10 | [170] |
CircZKSCAN1 | Hsa_circ_0001727 | ZKSCAN1 | Downregulated | Prognostic utility | Sponging for miR-1178-3p | P21 | [171] |
CircPICALM | Hsa_circ_0023919 | PICALM | Downregulated | Prognostic utility | Sponging for miR-1265 | STEAP4 | [144] |
Circ_0018069 | Hsa_circ_0018069 | - | Downregulated | Prognostic and diagnostic utility | Sponging for miR23c, miR-34a-5p, miR-181b-5p, miR-454-3p and miR-3666 | ErbB, Ras, Foxo, and the focal adhesion | [172] |
CircRNA | CircBase ID | Gene Symbol | Expression | Tumor Stage | Tumor Grade | Tumor Size | Tumor Recurrence | Tumor Number | Reference |
---|---|---|---|---|---|---|---|---|---|
CircRIP2 | Has_circ_0005777 | RIP2 | Upregulated | Yes | - | Yes | - | Yes | [105] |
Circ_100146 | Hsa_circ_100146 | - | Upregulated | Yes | Yes | Yes | - | Yes | [173] |
Circ_0006332 | Hsa_circ_0006332 | MYBL2 | Upregulated | Yes | Yes | Yes | - | - | [137] |
CircHIPK3 | Hsa_circ_0000284 | HIPK3 | Downregulated | Yes | - | Yes | - | - | [174] |
CircFNDC3B | Hsa_circ_0001361 | FNDC3B | Downregulated | Yes | Yes | - | Yes | - | [165] |
CircPICALM | Hsa_circ_0023919 | PICALM | Downregulated | Yes | Yes | Yes | - | Yes | [144] |
Circ_0137439 | Hsa_circ_0137439 | MDTH | Upregulated | Yes | Yes | - | - | - | [175] |
CircSLC8A1 | Hsa_circ_0000994 | SLC8A1 | Downregulated | Yes | Yes | Yes | - | - | [117] |
Circ_0058063 | Hsa_circ_0058063 | - | Upregulated | Yes | Yes | - | - | Yes | [124] |
CircZKSCAN1 | Hsa_circ_0001727 | ZKSCAN1 | Downregulated | Yes | Yes | - | - | Yes | [171] |
CircBPTF | Hsa_circ_0000799 | BPTF | Downregulated | Yes | - | Yes | Yes | - | [176] |
CircITCH | Hsa_circ_0001141 | ITCH | Downregulated | Yes | - | Yes | - | Yes | [118] |
Circ0071196 | Hsa_circ_0071196 | - | Upregulated | Yes | Yes | Yes | - | - | [177] |
CircRGNEF | Hsa_circ_0072995 | RGNEF | Upregulated | Yes | Yes | Yes | - | - | [104] |
CircZFR | Hsa_circ_0072088 | ZFR | Upregulated | Yes | Yes | Yes | Yes | - | [169] |
CircTFRC | Has_circ_0001445 | TFRC | Upregulated | Yes | Yes | Yes | - | - | [126] |
Circ_0068871 | Hsa_circ_0068871 | - | Upregulated | Yes | - | Yes | - | - | [106] |
Circ_0067934 | Hsa_circ_0067934 | - | Upregulated | Yes | - | Yes | - | - | [39] |
CircPTK2 | Hsa_circ_0003221 | PTK2 | Upregulated | Yes | Yes | Yes | - | - | [178] |
CircINTS4 | Hsa_circ_0002476 | INTS4 | Upregulated | Yes | Yes | Yes | - | - | [127] |
CircCEP128 | Hsa_circ_0102722 | - | Upregulated | Yes | - | Yes | - | - | [107] |
CircSEMA5A | Hsa_circ_0071820 | SEMA5A | Upregulated | Yes | Yes | Yes | - | Yes | [179] |
CircVANGL1 | Hsa_circ_0002623 | VANGL1 | Upregulated | Yes | Yes | Yes | - | - | [121] |
CircEHBP1 | Hsa_circ_0005552 | - | Upregulated | Yes | Yes | Yes | - | - | [31] |
CiRs_6 | Hsa_circ_0006260 | SLC41A2 | Downregulated | Yes | Yes | Yes | - | Yes | [180] |
Circ_0077837 | Hsa_circ_0077837 | - | Downregulated | Yes | Yes | Yes | - | Yes | [181] |
CircCDYL | Hsa_circ_0008285 | - | Downregulated | Yes | Yes | Yes | - | - | [182] |
CircFUT8 | Hsa_circ_0003028 | FUT8 | Downregulated | Yes | Yes | Yes | - | Yes | [170] |
CircPTPRA | Hsa_circ_0006117 | PTPRA | Downregulated | Yes | Yes | Yes | - | Yes | [116] |
Circ_0071662 | Hsa_circ_0071662 | TPPP1 | Circ_0071662 | Yes | Yes | Yes | - | - | [129] |
CircFOXO3 | Hsa_circ_0006404 | FOXO3 | Downregulated | Yes | Yes | Yes | - | - | [111] |
CircFAM114A2 | Hsa_circ_0001546 | FAM114A2 | Downregulated | Yes | Yes | Yes | - | - | [130] |
CircUBXN7 | Hsa_circ_0001380 | UBXN7 | Downregulated | Yes | Yes | Yes | - | - | [133] |
CircRBPMS | Hsa_circ_0006539 | RBPMS | Downregulated | Yes | Yes | Yes | - | - | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Wang, D.; Yang, B.B.; Ma, J. The Emerging Functions of Circular RNAs in Bladder Cancer. Cancers 2021, 13, 4618. https://doi.org/10.3390/cancers13184618
Sun K, Wang D, Yang BB, Ma J. The Emerging Functions of Circular RNAs in Bladder Cancer. Cancers. 2021; 13(18):4618. https://doi.org/10.3390/cancers13184618
Chicago/Turabian StyleSun, Kai, Di Wang, Burton B. Yang, and Jian Ma. 2021. "The Emerging Functions of Circular RNAs in Bladder Cancer" Cancers 13, no. 18: 4618. https://doi.org/10.3390/cancers13184618
APA StyleSun, K., Wang, D., Yang, B. B., & Ma, J. (2021). The Emerging Functions of Circular RNAs in Bladder Cancer. Cancers, 13(18), 4618. https://doi.org/10.3390/cancers13184618