Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Automation
2.1. Principle of Automation: Identifying Cell Nucleus Position Using the Nucleus ‘Microlens-Effect’
2.2. Global Automation Process
3. Materials and Methods
3.1. Sample Preparation
3.1.1. HeLa Cell Culture for Fluorescence vs. White-Spot Comparison
3.1.2. Bladder Cancer Cell Lines for Automated Raman Cytology
3.2. Fluorescence Microscopy
3.3. Automated Raman Optical System
3.4. Spectral Acquisition
3.5. Pre-Processing of Raman Spectra
3.6. Multivariate Statistical Classification
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Raman Automation Scheme
References
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchings, J.; Kendall, C.; Smith, B.; Shepherd, N.; Barr, H.; Stone, N. The potential for histological screening using a combination of rapid Raman mapping and principal component analysis. J. Biophotonics 2009, 2, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Clemens, G.; Hands, J.R.; Dorling, K.M.; Baker, M.J. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2014, 139, 4411–4444. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.; Gofrit, O.N.; Pizov, G.; Cohen, J.K.; Maier, J. Raman molecular imaging: A novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. Eur. Urol. 2011, 59, 106–112. [Google Scholar] [CrossRef]
- Kerr, L.T.; Lynn, T.M.; Cullen, I.M.; Daly, P.J.; Shah, N.; O’Dea, S.; Malkin, A.; Hennelly, B.M. Methodologies for bladder cancer detection with Raman based urine cytology. Anal. Methods 2016, 8, 4991–5000. [Google Scholar] [CrossRef]
- Kerr, L.T.; Domijan, K.; Cullen, I.; Hennelly, B.M. Applications of Raman spectroscopy to the urinary bladder for cancer diagnostics. Photonics Lasers Med. 2014, 3, 193–224. [Google Scholar] [CrossRef]
- Bonnier, F.; Traynor, D.; Kearney, P.; Clarke, C.; Knief, P.; Martin, C.; O’Leary, J.J.; Byrne, H.J.; Lyng, F. Processing ThinPrep cervical cytological samples for Raman spectroscopic analysis. Anal. Methods 2014, 6, 7831–7841. [Google Scholar] [CrossRef]
- Carvalho, L.F.C.; Bonnier, F.; O’Callaghan, K.; O’Sullivan, J.; Flint, S.; Byrne, H.J.; Lyng, F.M. Raman micro-spectroscopy for rapid screening of oral squamous cell carcinoma. Exp. Mol. Pathol. 2015, 98, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palonpon, A.F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 2013, 8, 677–692. [Google Scholar] [CrossRef]
- Padmavathi, G.; Bordoloi, D.; Banik, K.; Kunnumakkara, A.B. Cancer biomarkers: Important tools for cancer diagnosis and prognosis. In Next Generation Point-of-Care Biomedical Sensors Technologies for Cancer Diagnosis; Springer: Berlin, Germany, 2017; pp. 1–29. [Google Scholar]
- Lyng, F.M.; Traynor, D.; Ramos, I.R.; Bonnier, F.; Byrne, H.J. Raman spectroscopy for screening and diagnosis of cervical cancer. Anal. Bioanal. Chem. 2015, 407, 8279–8289. [Google Scholar] [CrossRef] [Green Version]
- Traynor, D.; Duraipandian, S.; Martin, C.M.; O’Leary, J.J.; Lyng, F.M. Improved removal of blood contamination from ThinPrep cervical cytology samples for Raman spectroscopic analysis. J. Biomed. Opt. 2018, 23, 055001. [Google Scholar] [CrossRef] [PubMed]
- Traynor, D.; Duraipandian, S.; Bhatia, R.; Cuschieri, K.; Martin, C.M.; O’Leary, J.J.; Lyng, F.M. The potential of biobanked liquid based cytology samples for cervical cancer screening using Raman spectroscopy. J. Biophotonics 2019, 12, e201800377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behl, I.; Calado, G.; Malkin, A.; Flint, S.; Galvin, S.; Healy, C.M.; Pimentel, M.L.; Byrne, H.J.; Lyng, F.M. A pilot study for early detection of oral premalignant diseases using oral cytology and Raman micro-spectroscopy: Assessment of confounding factors. J. Biophotonics 2020, 13, e202000079. [Google Scholar] [CrossRef]
- Schie, I.W.; Rüger, J.; Mondol, A.S.; Ramoji, A.; Neugebauer, U.; Krafft, C.; Popp, J. High-throughput screening Raman spectroscopy platform for label-free cellomics. Anal. Chem. 2018, 90, 2023–2030. [Google Scholar] [CrossRef] [PubMed]
- Schie, I.W.; Rüger, J.; Mondol, S.; Ramoji, A.; Neugebauer, U.; Krafft, C.; Popp, J. High-throughput screening Raman spectroscopy (HTS-RS) platform for label-free single cell analysis. In Proceedings of the Optical Molecular Probes, Imaging and Drug Delivery, Tucson, AZ, USA, 14–17 April 2019. [Google Scholar]
- Rüger, J.; Mondol, A.S.; Schie, I.W.; Popp, J.; Krafft, C. High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells. Analyst 2019, 144, 4488–4492. [Google Scholar] [CrossRef] [Green Version]
- Mondol, A.S.; Töpfer, N.; Rüger, J.; Neugebauer, U.; Popp, J.; Schie, I.W. New perspectives for viability studies with high-content analysis Raman spectroscopy (HCA-RS). Sci. Rep. 2019, 9, 12653. [Google Scholar] [CrossRef] [Green Version]
- Arend, N.; Pittner, A.; Ramoji, A.; Mondol, A.S.; Dahms, M.; Rüger, J.; Kurzai, O.; Schie, I.W.; Bauer, M.; Popp, J.; et al. Detection and differentiation of bacterial and fungal infection of neutrophils from peripheral blood using Raman spectroscopy. Anal. Chem. 2020, 92, 10560–10568. [Google Scholar] [CrossRef]
- Mondol, A.S.; El-Mashtoly, S.F.; Frick, T.; Gerwert, K.; Popp, J.; Schie, I.W. High-content screening Raman spectroscopy (HCS-RS) of panitumumab-exposed colorectal cancer cells. Analyst 2019, 144, 6098–6107. [Google Scholar] [CrossRef]
- Mondol, A.S.; Patel, M.D.; Rüger, J.; Stiebing, C.; Kleiber, A.; Henkel, T.; Popp, J.; Schie, I.W. Application of high-throughput screening Raman spectroscopy (HTS-RS) for label-free identification and molecular characterization of Pollen. Sensors 2019, 19, 4428. [Google Scholar] [CrossRef] [Green Version]
- Douet, A.; Josso, Q.; Marchant, A.; Dutertre, B.; Filiputti, D.; Novelli-Rousseau, A.; Espagnon, I.; Kloster-Landsberg, M.; Mallard, F.; Perraut, F. Fast Raman single bacteria identification: Toward a routine in-vitro diagnostic. Biophotonics 2016, 9887, 98871W. [Google Scholar]
- Molony, K.M.; Hennelly, B.M.; Kelly, D.P.; Naughton, T.J. Reconstruction algorithms applied to in-line Gabor digital holographic microscopy. Opt. Commun. 2010, 283, 903–909. [Google Scholar] [CrossRef] [Green Version]
- Kerr, L.; Hennelly, B. A multivariate statistical investigation of background subtraction algorithms for Raman spectra of cytology samples recorded on glass slides. Chemom. Intell. Lab. Syst. 2016, 158, 61–68. [Google Scholar] [CrossRef]
- Edelstein, A.D.; Tsuchida, M.A.; Amodaj, N.; Pinkard, H.; Vale, R.D.; Stuurman, N. Advanced methods of microscope control using μManager software. J. Biol. Methods 2014, 1, e10. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://github.com/bryanhennelly/Automated-Raman-Cytology—Micro-Manager-Scripts (accessed on 6 April 2021).
- Krause, M.; Rösch, P.; Radt, B.; Popp, J. Localizing and identifying living bacteria in an abiotic environment by a combination of Raman and fluorescence microscopy. Anal. Chem. 2008, 80, 8568–8575. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.; Simpson, H.M.; Duberman, J.; Hill, G.C.; Ogawa, M.; Regino, C.; Kobayashi, H.; Choyke, P.L. Toxicity of organic fluorophores used in molecular imaging: Literature review. Mol. Imaging 2009, 8, 7290-2009. [Google Scholar] [CrossRef] [Green Version]
- Drey, L.L.; Graber, M.C.; Bieschke, J. Counting unstained, confluent cells by modified bright-field microscopy. Biotechniques 2013, 55, 28–33. [Google Scholar] [CrossRef]
- Duraipandian, S.; Traynor, D.; Kearney, P.; Martin, C.; O’Leary, J.J.; Lyng, F.M. Raman spectroscopic detection of high-grade cervical cytology: Using morphologically normal appearing cells. Sci. Rep. 2018, 8, 15048. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Rueden, C.T.; Hiner, M.C.; Eliceiri, K.W. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. 2015, 82, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Byrne, H.J.; O’Neill, L.; Hennelly, B. Investigation of wavenumber calibration for Raman spectroscopy using a polymer reference. Opt. Sens. Detect. Int. Soc. Opt. Photonics 2018, 10680, 1068027. [Google Scholar]
- Barton, S.J.; Hennelly, B.M. An Algorithm for the Removal of Cosmic Ray Artifacts in Spectral Data Sets. Appl. Spectrosc. 2019, 73, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Hashimoto, S.; Harada, I. Simple and efficient method to eliminate spike noise from spectra recorded on charge-coupled device detectors. Appl. Spectrosc. 1993, 47, 129–131. [Google Scholar] [CrossRef]
- Skogholt, J.; Liland, K.H.; Indahl, U.G. Preprocessing of spectral data in the extended multiplicative signal correction framework using multiple reference spectra. J. Raman Spectrosc. 2019, 50, 407–417. [Google Scholar] [CrossRef]
- Liland, K.H.; Almöy, T.; Mevik, B.H. Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 2010, 64, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Kerr, L.T.; Byrne, H.J.; Hennelly, B.M. Optimal choice of sample substrate and laser wavelength for Raman spectroscopic analysis of biological specimen. Anal. Methods 2015, 7, 5041–5052. [Google Scholar] [CrossRef] [Green Version]
- Barton, S.J.; Ward, T.E.; Hennelly, B.M. Algorithm for optimal denoising of Raman spectra. Anal. Methods 2018, 10, 3759–3769. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V. Statistical Learning Theory; Wiley-Interscience: New York, NY, USA, 1998. [Google Scholar]
- Wold, H. Partial least squares. Encycl. Stat. Sci. 1985, 6, 581–591. [Google Scholar]
- Pearson, K. Principal components analysis. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 6, 559. [Google Scholar] [CrossRef] [Green Version]
- Dudoit, S.; Fridlyand, J.; Speed, T.P. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 2002, 97, 77–87. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Mevik, B.H.; Wehrens, R.; Liland, K.H. pls: Partial Least Squares and Principal Component Regression. R Package Version 2.6-0. 2016. Available online: http://mevik.net/work/software/pls.html (accessed on 3 September 2021).
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab—An S4 Package for Kernel Methods in R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Caputo, B.; Sim, K.; Furesjo, F.; Smola, A. Appearance-Based Object Recognition Using SVMs: Which Kernel Should I Use? In Proceedings of the Neural Information Processing Systems Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler, BC, Canada, 12 December 2002; Volume 2002.
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Caret: Classification and Regression Training. R Package Version 6.0-80. 2018. Available online: https://CRAN.R-project.org/package=caret (accessed on 16 July 2021).
- Domijan, K. BKPC: Bayesian Kernel Projection Classifier. R Package Version 1.0.1. 2018. Available online: https://cran.r-project.org/web/packages/BKPC/BKPC.pdf (accessed on 16 July 2021).
- Draga, R.O.; Grimbergen, M.C.; Vijverberg, P.L.; Swol, C.F.V.; Jonges, T.G.; Kummer, J.A.; Ruud Bosch, J. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal. Chem. 2010, 82, 5993–5999. [Google Scholar] [CrossRef] [PubMed]
- Movasaghi, Z.; Rehman, S.; Rehman, I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. [Google Scholar] [CrossRef]
- Farhane, Z.; Bonnier, F.; Casey, A.; Maguire, A.; O’Neill, L.; Byrne, H.J. Cellular discrimination using in vitro Raman micro spectroscopy: The role of the nucleolus. Analyst 2015, 140, 5908–5919. [Google Scholar] [CrossRef] [Green Version]
- Krafft, C.; Knetschke, T.; Funk, R.H.; Salzer, R. Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping. Anal. Chem. 2006, 78, 4424–4429. [Google Scholar] [CrossRef]
Accuracy | Sensitivity | Specificity | |
---|---|---|---|
SVM | 0.996 | 0.996 | 0.996 |
RF | 0.989 | 0.989 | 0.988 |
PLS | 0.994 | 0.995 | 0.994 |
PCA_LDA | 0.960 | 0.952 | 0.969 |
PCA_QDA | 0.964 | 0.962 | 0.966 |
PCA_kNN | 0.966 | 0.959 | 0.972 |
MR_LDA | 0.981 | 0.985 | 0.978 |
MR_QDA | 0.983 | 0.982 | 0.985 |
MR_kNN | 0.983 | 0.980 | 0.986 |
MR_RF | 0.982 | 0.984 | 0.980 |
MR_SVM | 0.984 | 0.986 | 0.983 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Dwyer, K.; Domijan, K.; Dignam, A.; Butler, M.; Hennelly, B.M. Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification. Cancers 2021, 13, 4767. https://doi.org/10.3390/cancers13194767
O’Dwyer K, Domijan K, Dignam A, Butler M, Hennelly BM. Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification. Cancers. 2021; 13(19):4767. https://doi.org/10.3390/cancers13194767
Chicago/Turabian StyleO’Dwyer, Kevin, Katarina Domijan, Adam Dignam, Marion Butler, and Bryan M. Hennelly. 2021. "Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification" Cancers 13, no. 19: 4767. https://doi.org/10.3390/cancers13194767
APA StyleO’Dwyer, K., Domijan, K., Dignam, A., Butler, M., & Hennelly, B. M. (2021). Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification. Cancers, 13(19), 4767. https://doi.org/10.3390/cancers13194767