RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Tissue Samples
2.2. Tissue Microarray Construction
2.3. Immunohistochemistry
2.4. Survival and Statistical Analysis
3. Results
3.1. Patient and Treatment Characteristics
3.2. Expression of RBMX in T-Cell Lymphomas
3.3. Association between RBMX Expression and Clinicopathological Characteristics
3.4. Predictive Value of RBMX Expression to Anthracycline-Containing First-Line Treatment
3.5. RBMX Expression Predicts OS and PFS in T-Cell Lymphomas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, J.R.; Armitage, J.O.; Weisenburger, D.D. Epidemiology of the non-Hodgkin’s lymphomas: Distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann. Oncol. 1998, 9, 717–720. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; World Health Organization. International Agency for Research on Cancer. WHO Classification of Tumours of Haematopoietic And Lymphoid Tissues, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2017. [Google Scholar]
- D’Amore, F.; Gaulard, P.; Trumper, L.; Corradini, P.; Kim, W.S.; Specht, L.; Bjerregaard Pedersen, M.; Ladetto, M.; ESMO Guidelines Committee. Peripheral T-cell lymphomas: ESMO Clinical Prac-tice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v108–v115. [Google Scholar] [CrossRef] [Green Version]
- Vose, J.; Armitage, J.; Weisenburger, D. International TCLP. International peripheral T-cell and natural killer/T-cell lymphoma study: Pathology findings and clinical outcomes. J. Clin. Oncol. 2008, 26, 4124–4130. [Google Scholar]
- Bellei, M.; Federico, M. The outcome of peripheral T-cell lymphoma patients failing first-line therapy: A report from the prospec-tive International T-Cell Project. Haematologica 2019, 104, e178. [Google Scholar] [CrossRef]
- Mak, V.; Hamm, J.; Chhanabhai, M.; Shenkier, T.; Klasa, R.; Sehn, L.H.; Villa, D.; Gascoyne, R.D.; Connors, J.M.; Savage, K.J. Survival of Patients with Peripheral T-Cell Lymphoma After First Relapse or Progression: Spectrum of Disease and Rare Long-Term Survivors. J. Clin. Oncol. 2013, 31, 1970–1976. [Google Scholar] [CrossRef]
- Song, Y.; He, S.; Ma, X.; Zhang, M.; Zhuang, J.; Wang, G.; Ye, Y.; Xia, W. RBMX contributes to hepatocellular carcinoma progression and sorafenib resistance by specifically binding and stabilizing BLACAT1. Am. J. Cancer Res. 2020, 10, 3644–3665. [Google Scholar]
- Shin, K.-H.; Kang, M.K.; Kim, R.H.; Christensen, R.; Park, N.-H. Heterogeneous Nuclear Ribonucleoprotein G Shows Tumor Suppressive Effect against Oral Squamous Cell Carcinoma Cells. Clin. Cancer Res. 2006, 12, 3222–3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrich, B.; Zhang, Z.; Raitskin, O.; Hiller, M.; Benderska, N.; Hartmann, A.M.; Bracco, L.; Elliott, D.; Ben-Ari, S.; Soreq, H.; et al. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J. Biol. Chem. 2009, 284, 14303–14315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Contreras, R.; Cloutier, P.; Shkreta, L.; Fisette, J.-F.; Revil, T.; Chabot, B. hnRNP Proteins and Splicing Control. Cancer Biol. Nucl. Envel. 2007, 623, 123–147. [Google Scholar] [CrossRef]
- Matsunaga, S.; Takata, H.; Morimoto, A.; Hayashihara, K.; Higashi, T.; Akatsuchi, K.; Mizusawa, E.; Yamakawa, M.; Ashida, M.; Matsunaga, T.M.; et al. RBMX: A Regulator for Maintenance and Centromeric Protection of Sister Chromatid Cohesion. Cell Rep. 2012, 1, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, T.; Zhou, H.; Li, X.; Peng, D.; Yang, Y.; Zeng, Y.; Liu, H.; Ren, J.; Zhao, Y. RBMX is required for activation of ATR on repetitive DNAs to main-tain genome stability. Cell Death Differ. 2020, 27, 3162–3176. [Google Scholar] [CrossRef] [PubMed]
- Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; et al. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature 2018, 561, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, K.H.; Kim, R.H.; Yu, B.; Kang, M.K.; Elashoff, D.; Christensen, R.; Pucar, A.; Park, N.-H. Expression and mutation analysis of heterogeneous nu-clear ribonucleoprotein G in human oral cancer. Oral Oncol. 2011, 47, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.-H.; Kim, R.H.; Kim, R.H.; Kang, M.K.; Park, N.-H. hnRNP G elicits tumor-suppressive activity in part by upregulating the expression of Txnip. Biochem. Biophys. Res. Commun. 2008, 372, 880–885. [Google Scholar] [CrossRef] [Green Version]
- Renieri, A.; Mencarelli, M.A.; Cetta, F.; Baldassarri, M.; Mari, F.; Furini, S.; Piu, P.; Ariani, F.; Dragani, T.; Frullanti, E. Oligogenic germline mutations identified in early non-smokers lung adenocarcinoma patients. Lung Cancer 2014, 85, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.Q.; Hausen, A.Z.; Orlowska-Volk, M.; Jäger, M.; Bettendorf, H.; Hirschfeld, M.; Tong, X.W.; Stickeler, E. Expression levels of hnRNP G and hTra2-beta1 correlate with opposite outcomes in endometrial cancer biology. Int. J. Cancer 2010, 128, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, M.; Ouyang, Y.Q.; Jaeger, M.; Erbes, T.; Orlowska-Volk, M.; Zur Hausen, A.; Stickeler, E. HNRNP G and HTRA2-BETA1 regu-late estrogen receptor alpha expression with potential impact on endometrial cancer. BMC Cancer 2015, 15, 86. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Zeng, P.; Zhou, X.; Zhao, X.; Chen, R.; Qiao, J.; Feng, L.; Zhu, Z.; Zhang, G.; Chen, C. RBMX suppresses tumorigenicity and progression of bladder cancer by interacting with the hnRNP A1 protein to regulate PKM alternative splicing. Oncogene 2021, 40, 2635–2650. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Jia, J.; Jia, R. Underexpression of SRSF3 and its target gene RBMX predicts good prognosis in patients with head and neck cancer. J. Oral Sci. 2020, 62, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Prieto, C.; Nguyen, D.T.T.; Liu, Z.; Wheat, J.; Perez, A.; Gourkanti, S.; Chou, T.; Barin, E.; Velleca, A.; Rohwetter, T.; et al. Transcriptional control of CBX5 by the RNA-binding pro-teins RBMX and RBMXL1 maintains chromatin state in myeloid leukemia. Nat. Cancer 2021, 2, 741–757. [Google Scholar] [CrossRef]
- Antonello, Z.A.; Hsu, N.; Bhasin, M.; Roti, G.; Joshi, M.; Van Hummelen, P.; Ye, E.; Lo, A.S.; Ananth Karumanchi, S.; Bryke, C.R.; et al. Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAF(V600E). Oncotarget 2017, 8, 84743–84760. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tu-mours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Detre, S.; Saclani Jotti, G.; Dowsett, M. A “quickscore” method for immunohistochemical semiquantitation: Validation for oestro-gen receptor in breast carcinomas. J. Clin. Pathol. 1995, 48, 876–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, B.; Smogorzewska, A.; Sigoillot, F.D.; King, R.W.; Elledge, S.J. A genome-wide homologous recombination screen identi-fies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. 2012, 14, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | T-NHL n = 43 | Nodal T-NHL n = 34 | |
---|---|---|---|
n (%) | n (%) | ||
Sex | Female | 14 (33) | 12 (35) |
Male | 29 (67) | 22 (65) | |
Age (years) | <65 | 18 (42) | 14 (41) |
≥65 | 25 (58) | 20 (59) | |
B Symptoms | Absent | 24 (56) | 20 (59) |
Present | 19 (44) | 14 (41) | |
Bone marrow involvement | Absent | 29 (67) | 25 (74) |
Present | 10 (23) | 7 (21) | |
Not evaluable | 4 (9) | 2 (6) | |
Ann Arbor stage | Stages I and II | 8 (19) | 6 (18) |
Stages II and IV | 28 (65) | 25 (74) | |
Not evaluable | 7 (16) | 3 (9) | |
IPI | 0–2 | 18 (42) | 15 (44) |
2–4 | 19 (44) | 17 (50) | |
Not evaluable | 6 (14) | 2 (6) | |
ECOG | 0–1 | 19 (44) | 16 (47) |
2–5 | 5 (12) | 5 (15) | |
Not evaluable | 19 (44) | 13 (38) | |
WBC | Normal | 12 (28) | 8 (24) |
Upper limit of normal | 11 (26) | 7 (21) | |
Not evaluable | 20 (47) | 19 (56) | |
LDH | Normal | 6 (14) | 2 (6) |
Upper limit of normal | 18 (42) | 17 (50) | |
Not evaluable | 19 (44) | 15 (44) | |
Ki-67 expression | <65% | 15 (35) | 12 (35) |
≥65% | 13 (30) | 10 (29) | |
Not evaluable | 15 (35) | 12 (35) | |
Relapse | Absent | 21 (49) | 14 (41) |
Present | 22 (51) | 20 (59) | |
First-line treatment | R-CHO(E)P | 34 (79) | 33 (97) |
Others | 9 (21) | 1 (1) |
Characteristic | T-NHL | Nodal T-NHL | |||
---|---|---|---|---|---|
RBMX Expression (Mean) | p-Value | RBMX Expression (Mean) | p-Value | ||
Sex | Female | 131 | 0.524 | 132 | 0.544 |
Male | 146 | 146 | |||
Age (years) | <65 | 155 | 0.310 | 154 | 0.308 |
≥65 | 132 | 131 | |||
B Symptoms | Absent | 133 | 0.570 | 132 | 0.328 |
Present | 146 | 154 | |||
Bone marrow involvement | Absent | 152 | 0.090 | 153 | 0.034 |
Present | 107 | 94 | |||
Ann Arbor stage | Stages I and II | 153 | 0.402 | 158 | 0.494 |
Stages II and IV | 130 | 137 | |||
IPI | 0–2 | 140 | 0.433 | 154 | 0.295 |
2–4 | 122 | 129 | |||
ECOG | 0–1 | 140 | 0.726 | 145 | 0.634 |
2–5 | 128 | 128 | |||
WBC | Normal | 193 | 0.023 | 186 | 0.089 |
Upper limit of normal | 118 | 126 | |||
LDH | Normal | 126 | 0.741 | 195 | 0.304 |
Upper limit of normal | 137 | 144 | |||
Ki-67 expression | <65% | 130 | 0.375 | 154 | 0.493 |
≥65% | 155 | 135 | |||
Relapse | Absent | 145 | 0.762 | 148 | 0.603 |
Present | 139 | 136 | |||
Response to first-line treatment | Resistant | 178 | 0.029 | 167 | 0.119 |
Sensitive | 128 | 130 |
Multivariable Analysis | Overall Survival | Progression-Free Survival | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Categories | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
LL | UL | LL | UL | ||||||
T-NHL cohort (n = 39) | |||||||||
Sex | female vs. male | 1.996 | 0.618 | 6.445 | 0.248 | 1.329 | 0.536 | 3.295 | 0.539 |
Age in years | 1.046 | 0.986 | 1.110 | 0.138 | 1.002 | 0.956 | 1.051 | 0.924 | |
B Symptoms | absent vs. present | 0.592 | 0.179 | 1.957 | 0.390 | 0.466 | 0.194 | 1.118 | 0.087 |
Bone marrow involvement | absent vs. present | 0.623 | 0.192 | 2.020 | 0.431 | 0.243 | 0.094 | 0.628 | 0.004 |
RBMX expression | low vs. high | 0.204 | 0.064 | 0.646 | 0.007 | 0.235 | 0.083 | 0.666 | 0.006 |
Nodal T-NHL cohort (n = 34) | |||||||||
Sex | female vs. male | 1.777 | 0.376 | 8.402 | 0.469 | 0.796 | 0.258 | 2.455 | 0.691 |
Age in years | 1.026 | 0.964 | 1.093 | 0.416 | 0.989 | 0.937 | 1.043 | 0.68 | |
Ann Arbor stage | I-II vs. III-IV | 5.461 | 0.945 | 3.155 | 0.058 | 0.928 | 0.248 | 3.482 | 0.912 |
B Symptoms | absent vs. present | 0.365 | 0.056 | 2.371 | 0.291 | 0.606 | 0.180 | 2.038 | 0.419 |
Bone marrow involvement | absent vs. present | 0.497 | 0.072 | 3.414 | 0.477 | 0.248 | 0.080 | 0.771 | 0.016 |
RBMX expression | low vs. high | 0.149 | 0.025 | 0.898 | 0.038 | 0.361 | 0.107 | 1.221 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schümann, F.L.; Bauer, M.; Groß, E.; Terziev, D.; Wienke, A.; Wickenhauser, C.; Binder, M.; Weber, T. RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis. Cancers 2021, 13, 4788. https://doi.org/10.3390/cancers13194788
Schümann FL, Bauer M, Groß E, Terziev D, Wienke A, Wickenhauser C, Binder M, Weber T. RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis. Cancers. 2021; 13(19):4788. https://doi.org/10.3390/cancers13194788
Chicago/Turabian StyleSchümann, Franziska Lea, Marcus Bauer, Elisabeth Groß, Denis Terziev, Andreas Wienke, Claudia Wickenhauser, Mascha Binder, and Thomas Weber. 2021. "RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis" Cancers 13, no. 19: 4788. https://doi.org/10.3390/cancers13194788
APA StyleSchümann, F. L., Bauer, M., Groß, E., Terziev, D., Wienke, A., Wickenhauser, C., Binder, M., & Weber, T. (2021). RBMX Protein Expression in T-Cell Lymphomas Predicts Chemotherapy Response and Prognosis. Cancers, 13(19), 4788. https://doi.org/10.3390/cancers13194788