Targeted Sequencing Revealed Distinct Mutational Profiles of Ocular and Extraocular Sebaceous Carcinomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Specimens
2.2. DNA Extraction and NGS
2.3. Alignment of Reads and Variant Calling
2.4. Single Nucleotide Variant Detection
2.5. Immunohistochemistry (IHC) for Molecular Subtypes
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Genetic Alterations in SeC-Os and SeC-EOs
3.3. PPI in SeCs
3.4. Genomic Alterations according to the Molecular Subtypes
3.5. Alterations in MMR Genes and Lynch Syndrome
3.6. Comparison among Primary and Locally Recurrent or Metastatic Lesions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasgupta, T.; Wilson, L.D.; Yu, J. A retrospective review of 1349 cases of sebaceous carcinoma. Cancer 2009, 115, 158–165. [Google Scholar] [CrossRef]
- Kumar, R. Clinicopathologic study of malignant eyelid tumours. Clin. Exp. Optom. 2010, 93, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Searl, S.S.; Kuo, P.K.; Chu, F.R.; Chong, C.S.; Albert, D.M. Sebaceous cell carcinomas of the ocular adnexa. Int. Ophthalmol. Clin. 1982, 22, 23–61. [Google Scholar] [CrossRef] [PubMed]
- Requena, L.; Sangueza, O. Cutaneous Adenexal Neoplasms, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 755–764. [Google Scholar]
- Owen, J.L.; Kibbi, N.; Worley, B.; Kelm, R.C.; Wang, J.V.; Barker, C.A.; Behshad, R.; Bichakjian, C.K.; Bolotin, D.; Bordeaux, J.S.; et al. Sebaceous carcinoma: Evidence-based clinical practice guidelines. Lancet Oncol. 2019, 20, e699–e714. [Google Scholar] [CrossRef]
- Spencer, J.M.; Nossa, R.; Tse, D.T.; Sequeira, M. Sebaceous carcinoma of the eyelid treated with Mohs micrographic surgery. J. Am. Acad. Dermatol. 2001, 44, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Snow, S.N.; Larson, P.O.; Lucarelli, M.J.; Lemke, B.N.; Madjar, D.D. Sebaceous carcinoma of the eyelids treated by mohs micrographic surgery: Report of nine cases with review of the literature. Dermatol. Surg. 2002, 28, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Esmaeli, B.; Nasser, Q.J.; Cruz, H.; Fellman, M.; Warneke, C.L.; Ivan, D. American Joint Committee on Cancer T category for eyelid sebaceous carcinoma correlates with nodal metastasis and survival. Ophthalmology 2012, 119, 1078–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, N.A.; Hidayat, A.A.; McLean, L.C.I.W.; Zimmerman, L.E. Sebaceous carcinomas of the ocular adnexa: A clinicopathologic study of 104 cases, with five-year follow-up data. Hum. Pathol. 1982, 13, 113–122. [Google Scholar] [CrossRef]
- Shields, J.A.; Demirci, H.; Marr, B.P.; Eagle, R.C., Jr.; Shields, C.L. Sebaceous carcinoma of the eyelids: Personal experience with 60 cases. Ophthalmology 2004, 111, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Kyllo, R.L.; Brady, K.L.; Hurst, E.A. Sebaceous carcinoma: Review of the literature. Dermatol. Surg. 2015, 41, 1–15. [Google Scholar] [CrossRef]
- Panda, B.B.; Parija, S.; Pujahari, S.; Mallick, J. Sebaceous gland carcinoma of eyelid—A tarnished masquerade. J. Clin. Diagn. Res. 2016, 10, ND03–ND05. [Google Scholar] [CrossRef] [PubMed]
- Kibbi, N.; Worley, B.; Owen, J.L.; Kelm, R.C.; Bichakjian, C.K.; Chandra, S.; Demirci, H.; Kim, J.; Nehal, K.S.; Thomas, J.R.; et al. Sebaceous carcinoma: Controversies and their evidence for clinical practice. Arch. Dermatol. Res. 2019, 312, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Xu, Y. Unusual presentation of metastatic sebaceous carcinoma and its response to chemotherapy: Is genotyping a right answer for guiding chemotherapy in rare tumours? Curr. Oncol. 2015, 22, 316–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliki, S.; Ayyar, A.; Nair, A.G.; Mishra, D.K.; Reddy, V.A.P.; Naik, M.N. Neoadjuvant systemic chemotherapy in the management of extensive eyelid sebaceous gland carcinoma: A study of 10 cases. Ophthalmic Plast. Reconstr. Surg. 2016, 32, 35–39. [Google Scholar] [CrossRef]
- Joshi, P.; Joshi, A.; Norohna, V.; Prabhash, K.; Kane, S.; D’Cruz, A.K. Sebaceous carcinoma and systemic chemotherapy. Indian J. Med. Paediatr. Oncol. 2012, 33, 239–241. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Shahsavari, M.; Stevens, G.; Liskanich, R.; Horowitz, D. Isotretinoin as monotherapy for sebaceous hyperplasia. J. Drugs Dermatol. 2010, 9, 699–701. [Google Scholar]
- Mulay, K.; Shah, S.J.; Aggarwal, E.; White, V.A.; Honavar, S.G. Periocular sebaceous gland carcinoma: Do androgen receptor (NR3C4) and nuclear survivin (BIRC5) have a prognostic significance? Acta Ophthalmol. 2014, 92, e681–e687. [Google Scholar] [CrossRef] [PubMed]
- Ivan, D.; Prieto, V.G.; Esmaeli, B.; Wistuba, I.I.; Tang, X.; Lazar, A.J.F. Epidermal growth factor receptor (EGFR) expression in periocular and extraocular sebaceous carcinoma. J. Cutan. Pathol. 2010, 37, 231–238. [Google Scholar] [CrossRef]
- North, J.P.; Golovato, J.; Vaske, C.J.; Sanborn, J.Z.; Nguyen, A.; Wu, W.; Goode, B.; Stevers, M.; McMullen, K.; White, B.E.P.; et al. Cell of origin and mutation pattern define three clinically distinct classes of sebaceous carcinoma. Nat. Commun. 2018, 9, 1894. [Google Scholar] [CrossRef]
- Tetzlaff, M.T.; Singh, R.R.; Seviour, E.G.; Curry, J.L.; Hudgens, C.W.; Bell, D.; Wimmer, D.A.; Ning, J.; Czerniak, B.A.; Zhang, L.; et al. Next-generation sequencing identifies high frequency of mutations in potentially clinically actionable genes in sebaceous carcinoma. J. Pathol. 2016, 240, 84–95. [Google Scholar] [CrossRef]
- Xu, S.; Moss, T.J.; Rubin, M.L.; Ning, J.; Eterovic, K.; Yu, H.; Jia, R.; Fan, X.; Tetzlaff, M.T.; Esmaeli, B. Whole-exome sequencing for ocular adnexal sebaceous carcinoma suggests PCDH15 as a novel mutation associated with metastasis. Mod. Pathol. 2020, 33, 1256–1263. [Google Scholar] [CrossRef]
- Oftedal, O.T. The mammary gland and its origin during synapsid evolution. J. Mammary Gland. Biol. Neoplasia 2002, 7, 225–252. [Google Scholar] [CrossRef]
- Na, H.Y.; Choe, J.-Y.; Shin, S.A.; Choung, H.-K.; Oh, S.; Chung, J.-H.; Park, M.; Kim, J.E. Proposal of a provisional classification of sebaceous carcinoma based on hormone receptor expression and HER2 status. Am. J. Surg. Pathol. 2016, 40, 1622–1630. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997v2. [Google Scholar]
- Li, H.; Handsaker, R.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.B.; Sougnez, C.; Gabriel, S.B.; Meyerson, M.L.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, C.; Li, C.; Boerwinkle, E. dbNSFP v3.0: A one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum. Mutat. 2015, 37, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.; Ware, J.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2017, 46, D1062–D1067. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018, 47, D941–D947. [Google Scholar] [CrossRef] [Green Version]
- Wolff, A.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Mayakonda, A.; Koeffler, H.P. Maftools: Efficient analysis, visualization and summarization of MAF files from large-scale cohort based cancer studies. bioRxiv 2016. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, J.-S.; Kim, M.-Y.; Han, S.-O.; Kim, I.-S.; Ann, E.-J.; Lee, K.S.; Seo, M.-S.; Kim, J.-Y.; Lee, S.-C.; Park, J.-W.; et al. Integrin-linked kinase controls Notch1 signaling by down-regulation of protein stability through Fbw7 ubiquitin ligase. Mol. Cell. Biol. 2007, 27, 5565–5574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelman, J.A.; Luo, J.; Cantley, L. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.-H.; Kim, I.-J.; Wu, D.; Climent, J.; Kang, H.C.; DelRosario, R.; Balmain, A. FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science 2008, 321, 1499–1502. [Google Scholar] [CrossRef] [Green Version]
- Nathan, N.; Keppler-Noreuil, K.M.; Biesecker, L.G.; Moss, J.; Darling, T.N. Mosaic disorders of the PI3K/PTEN/AKT/TSC/mTORC1 signaling pathway. Dermatol. Clin. 2016, 35, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Raphael, J.; Desautels, D.; Pritchard, K.I.; Petkova, E.; Shah, P.S. Phosphoinositide 3-kinase inhibitors in advanced breast cancer: A systematic review and meta-analysis. Eur. J. Cancer 2018, 91, 38–46. [Google Scholar] [CrossRef]
- Aziz, A.U.R.; Farid, S.; Qin, K.; Wang, H.; Liu, B. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer. Biomolecules 2018, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Serra, V.; Markman, B.; Scaltriti, M.; Eichhorn, P.; Valero, V.; Guzman, M.; Botero, M.L.; Llonch, E.; Atzori, F.; Di Cosimo, S.; et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008, 68, 8022–8030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boxer, L.; Barajas, B.; Tao, S.; Zhang, J.; Khavari, P.A. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 2014, 28, 2013–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, G.L.; Boxer, L.; Webster, D.; Bussat, R.T.; Qu, K.; Zarnegar, B.J.; Johnston, D.; Siprashvili, Z.; Khavari, P.A. ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev. Cell 2012, 22, 669–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, C.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.; et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- South, A.P.; Purdie, K.J.; Watt, S.A.; Haldenby, S.; Breems, N.Y.D.; Dimon, M.; Arron, S.; Kluk, M.J.; Aster, J.C.; McHugh, A.; et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J. Investig. Dermatol. 2014, 134, 2630–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, B.; Chin, S.-F.; Rueda, O.M.; Vollan, H.-K.M.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.-J.; et al. The somatic mutation profiles of 2433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, Q.; Li, D.; Ching, K.; Zhang, C.; Zheng, X.; Ozeck, M.; Shi, S.; Li, X.; Wang, H.; et al. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a gamma-secretase inhibitor. Clin. Cancer Res. 2015, 21, 1487–1496. [Google Scholar] [CrossRef] [Green Version]
- Su, J.-L.; Yang, P.-C.; Shih, J.-Y.; Yang, C.-Y.; Wei, L.-H.; Hsieh, C.-Y.; Chou, C.-H.; Jeng, Y.-M.; Wang, M.-Y.; Chang, K.-J.; et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006, 9, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.M.; Grillone, K.; Mignogna, C.; De Falco, V.; Laudanna, C.; Biamonte, F.; Locane, R.; Corcione, F.; Fabozzi, M.; Sacco, R.; et al. Next-generation sequencing analysis of receptor-type tyrosine kinase genes in surgically resected colon cancer: Identification of gain-of-function mutations in the RET proto-oncogene. J. Exp. Clin. Cancer Res. 2018, 37, 84. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008, 455, 1069–1075. [Google Scholar] [CrossRef]
- Andre, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- Audeh, M.W.; Carmichael, J.; Penson, R.T.; Friedlander, M.; Powell, B.; Bell-McGuinn, K.M.; Scott, C.; Weitzel, J.N.; Oaknin, A.; Loman, N.; et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: A proof-of-concept trial. Lancet 2010, 376, 245–251. [Google Scholar] [CrossRef]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Rodrigues, D.N.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef] [PubMed]
- Hyman, D.M.; Piha-Paul, S.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Bracht, J.W.P.; Karachaliou, N.; Bivona, T.; Lanman, R.B.; Faull, I.; Nagy, R.J.; Drozdowskyj, A.; Berenguer, J.; Fernandez-Bruno, M.; Molina-Vila, M.A.; et al. BRAF mutations classes I, II, and III in NSCLC patients included in the SLLIP trial: The need for a new pre-clinical treatment rationale. Cancers 2019, 11, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.C.-H.; Wu, Y.-L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.-P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res. 2019, 25, 3753–3758. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N.; Hossain, F.; Wirtschafter, E.; Fathizadeh, P. Pembrolizumab in the treatment of microsatellite instability—High sebaceous carcinoma: A case report with review of the literature. JCO Precis. Oncol. 2020, 4, 61–65. [Google Scholar] [CrossRef]
- Mendler, J.; Maharry, K.; Radmacher, M.D.; Mrózek, K.; Becker, H.; Metzeler, K.; Schwind, S.; Whitman, S.P.; Khalife, J.; Kohlschmidt, J.; et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J. Clin. Oncol. 2012, 30, 3109–3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haferlach, T.; Stengel, A.; Eckstein, S.; Perglerová, K.; Alpermann, T.; Kern, W.; Meggendorfer, M. The new provisional WHO entity ‘RUNX1 mutated AML’ shows specific genetics but no prognostic influence of dysplasia. Leukemia 2016, 30, 2109–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, M.J.; Ding, L.; Shen, D.; Luo, J.; Suman, V.J.; Wallis, J.W.; Van Tine, B.A.; Hoog, J.; Goiffon, R.; Goldstein, T.C.; et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012, 486, 353–360. [Google Scholar] [CrossRef]
- Banerji, S.; Cibulskis, K.; Rangel-Escareno, C.; Brown, K.; Carter, S.L.; Frederick, A.M.; Lawrence, M.S.; Sivachenko, A.Y.; Sougnez, C.; Zou, L.; et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 2012, 486, 405–409. [Google Scholar] [CrossRef]
- Wang, L.; Brugge, J.S.; Janes, K.A. Intersection of FOXO- and RUNX1-mediated gene expression programs in single breast epithelial cells during morphogenesis and tumor progression. Proc. Natl. Acad. Sci. USA 2011, 108, E803–E812. [Google Scholar] [CrossRef] [Green Version]
- Chimge, N.-O.; Little, G.H.; Baniwal, S.K.; Adisetiyo, H.; Xie, Y.; Zhang, T.; O’Laughlin, A.; Liu, Z.Y.; Ulrich, P.; Martin, A.; et al. RUNX1 prevents oestrogen-mediated AXIN1 suppression and beta-catenin activation in ER-positive breast cancer. Nat. Commun. 2016, 7, 10751. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, H.; Dean, M.; E Wilson, H.; Kornaga, E.; Enwere, E.K.; Tang, P.; Paterson, A.; Lees-Miller, S.P.; Magliocco, A.M.; et al. Low ATM protein expression in malignant tumor as well as cancer-associated stroma are independent prognostic factors in a retrospective study of early-stage hormone-negative breast cancer. Breast Cancer Res. 2015, 17, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.; Kornaga, E.; Klimowicz, A.; Enwere, E.; Dean, M.; Bebb, G.; Phan, T.; Ghatage, P.; Magliocco, A.; Lees-Miller, S.; et al. Expression of DNA damage response proteins in cervical cancer patients treated with radical chemoradiotherapy. Gynecol. Oncol. 2017, 145, 176–184. [Google Scholar] [CrossRef]
- Lu, Y.; Lu, Y.; Gao, J. Downregulated Ku70 and ATM associated to poor prognosis in colorectal cancer among Chinese patients. OncoTargets Ther. 2014, 7, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Pazolli, E.; Alspach, E.; Milczarek, A.; Prior, J.; Piwnica-Worms, D.; Stewart, S.A. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res. 2012, 72, 2251–2261. [Google Scholar] [CrossRef] [Green Version]
- Stucci, S.; Tucci, M.; Passarelli, A.; Silvestris, F. Avβ3 integrin: Pathogenetic role in osteotropic tumors. Crit. Rev. Oncol. 2015, 96, 183–193. [Google Scholar] [CrossRef]
- Kang, Y.; Massagué, J. Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell 2004, 118, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Navarro, E.B.; López, E.V.; Quijano, Y.; Caruso, R.; Ferri, V.; Durand, H.; Cabrera, I.F.; Reques, E.D.; Ielpo, B.; Glagolieva, A.Y.; et al. Impact of BRCA1/2 gene mutations on survival of patients with pancreatic cancer: A case-series analysis. Ann. Hepatbiliary Pancreat. Surg. 2019, 23, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Nagle, C.M.; O’Mara, T.A.; Tan, Y.; Buchanan, D.D.; Obermair, A.; Blomfield, P.; Quinn, M.A.; Webb, P.M.; Spurdle, A.B. Endometrial cancer risk and survival by tumor MMR status. J. Gynecol. Oncol. 2018, 29, e39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.I.; Lee, M.; Kim, H.S.; Chung, H.H.; Kim, J.-W.; Park, N.H.; Song, Y.-S. Effect of BRCA mutational status on survival outcome in advanced-stage high-grade serous ovarian cancer. J. Ovarian Res. 2019, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.-T.; Zhao, L.-N.; Zhang, D.-J.; Lv, D.-Y.; He, W.-L.; Chen, B.; Li, H.-B.; Li, P.-R.; Chen, L.-Z.; Chen, X.-L. Prognostic value of mismatch repair genes for patients with colorectal cancer: Meta-analysis. Technol. Cancer Res. Treat. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Ocular SeC | Extraocular SeC | p-Value |
---|---|---|---|
Age (mean, range, years) (n = 26) | 64 (41–84) | 55 (42–70) | 0.663 |
Gender (n = 26) | 0.197 | ||
Male | 4 (22.2%) | 4 (50.0%) | |
Female | 14 (77.8%) | 4 (50.0%) | |
Lymphatic invasion (n = 29) | 3 (15.0%) | 1 (11.1%) | >0.999 |
Neural invasion (n = 29) | 3 (15.0%) | 0 (0.0%) | 0.532 |
pT (n = 28) | 0.273 | ||
pT1 and pT2 | 15 (53.6%) | 9 (100.0%) | |
pT3 and pT4 | 4 (14.3%) | 0 (0.0%) | |
pN (n = 28) | >0.999 | ||
pN0 | 17 (60.7%) | 9 (100.0%) | |
pN1 | 2 (7.1%) | 0 (0.0%) | |
pM (n = 28) | >0.999 | ||
pM0 | 18 (64.3%) | 9 (100.0%) | |
pM1 | 1 (3.6%) | 0 (0.0%) | |
Molecular classification (n = 22) | 0.067 | ||
Luminal 1 | 6 (42.9%) | 1 (14.3%) | |
Luminal 2 | 2 (14.3%) | 1 (14.3%) | |
HER2 | 2 (14.3%) | 2 (28.6%) | |
All-negative | 4 (28.6%) | 1 (14.3%) | |
Core basal | 0 (0.0%) | 3 (42.9%) | |
Local recur (n = 26) | 4 (15.4%) | 1 (12.5%) | >0.999 |
Distant metastasis during F/U (n = 26) | 6 (23.1%) | 0 (0.0%) | 0.132 |
Disease progression (n = 26) | 8 (30.8%) | 1 (12.5%) | 0.190 |
Progression-free survival (months) | 24 (2–114) | 24 (1–36) | 0.322 |
F/U duration (months) | 31 (2–132) | 26 (1–69) | 0.083 |
Gene | Ocular SeC (n = 20) | Gene | Extraocular SeC (n = 9) |
---|---|---|---|
TP53 | 13 (65.0%) | NOTCH1 | 5 (55.5%) |
PIK3CA | 4 (20.0%) | TP53 | 3 (33.3%) |
SMARCA4 | 3 (15.0%) | MSH2 | 2 (22.2%) |
ATM | 3 (15.0%) | SMARCA4 | 2 (22.2%) |
FBXW7 | 3 (15.0%) | ATM | 1 (11.1%) |
RB1 | 3 (15.0%) | BAP1 | 1 (11.1%) |
BRAF | 2 (10.0%) | BRAF | 1 (11.1%) |
ERBB2 | 2 (10.0%) | BRCA1 | 1 (11.1%) |
MLH1 | 2 (10.0%) | CREBBP | 1 (11.1%) |
RUNX1 | 2 (10.0%) | DNMT3A | 1 (11.1%) |
VHL | 2 (10.0%) | ERBB2 | 1 (11.1%) |
MSH6 | 2 (10.0%) | FBXW7 | 1 (11.1%) |
RNF43 | 2 (10.0%) | FGFR2 | 1 (11.1%) |
KMT2A | 2 (10.0%) | HRAS | 1 (11.1%) |
NF1 | 2 (10.0%) | KMT2A | 1 (11.1%) |
APC | 1 (5.0%) | MLH1 | 1 (11.1%) |
BRCA1 | 1 (5.0%) | MSH6 | 1 (11.1%) |
BRCA2 | 1 (5.0%) | NF1 | 1 (11.1%) |
CREBBP | 1 (5.0%) | NOTCH2 | 1 (11.1%) |
EGFR | 1 (5.0%) | PIK3CA | 1 (11.1%) |
GNAS | 1 (5.0%) | PIK3R1 | 1 (11.1%) |
HRAS | 1 (5.0%) | SMAD4 | 1 (11.1%) |
IDH1 | 1 (5.0%) | VHL | 1 (11.1%) |
MSH2 | 1 (5.0%) | ||
NOTCH2 | 1 (5.0%) | ||
PTEN | 1 (5.0%) | ||
SMAD4 | 1 (5.0%) | ||
TSC1 | 1 (5.0%) | ||
WT1 | 1 (5.0%) |
Gene | Luminal 1 (n = 7) | Luminal 2 (n = 3) | HER2 (n = 4) | All-Negative (n = 5) | Core Basal (n = 3) |
---|---|---|---|---|---|
TP53 | 5 (38.5%) | 1 (7.7%) | 3 (23.1%) | 3 (23.1%) | 1 (7.7%) |
SMARCA4 | 3 (60%) | 0 (0%) | 1 (20%) | 0 (0%) | 1 (20%) |
FBXW7 | 4 (100%) * | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
NOTCH1 | 0 (0%) | 0 (0%) | 1 (25%) | 0 (0%) | 3 (75%) † |
ATM | 1 (33.3%) | 0 (0%) | 1 (33.3%) | 1 (33.3%) | 0 (0%) |
BRAF | 2 (66.7%) | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) |
PIK3CA | 2 (66.7%) | 0 (0%) | 1 (33.3%) | 0 (0%) | 0 (0%) |
BRCA1 | 1 (50%) | 0 (0%) | 0 (0%) | 1 (50%) | 0 (0%) |
ERBB2 | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
HRAS | 1 (50%) | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) |
MLH1 | 1 (50%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (50%) |
MSH2 | 0 (0%) | 0 (0%) | 1 (50%) | 1 (50%) | 0 (0%) |
MSH6 | 0 (0%) | 0 (0%) | 1 (50%) | 1 (50%) | 0 (0%) |
NOTCH2 | 1 (50%) | 0 (0%) | 1 (50%) | 0 (0%) | 0 (0%) |
VHL | 2 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Sample 29 SeC-O | Sample 12 SeC-EO | ||
---|---|---|---|
MLH1 mutation | VAF (%) | MLH1 mutation | VAF (%) |
p.M587Hfs * 6 | 45.5 | p.M587Hfs * 6 | 60.16 |
Other pathogenic mutations | Other pathogenic mutations | ||
FBXW7 | p.Q303 * | NOTCH1 | p.W745 * |
TP53 | p.R342P | ||
TP53 | p.R175H |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, H.Y.; Park, J.H.; Shin, S.A.; Lee, S.; Lee, H.; Chae, H.; Choung, H.; Kim, N.; Chung, J.-H.; Kim, J.E. Targeted Sequencing Revealed Distinct Mutational Profiles of Ocular and Extraocular Sebaceous Carcinomas. Cancers 2021, 13, 4810. https://doi.org/10.3390/cancers13194810
Na HY, Park JH, Shin SA, Lee S, Lee H, Chae H, Choung H, Kim N, Chung J-H, Kim JE. Targeted Sequencing Revealed Distinct Mutational Profiles of Ocular and Extraocular Sebaceous Carcinomas. Cancers. 2021; 13(19):4810. https://doi.org/10.3390/cancers13194810
Chicago/Turabian StyleNa, Hee Young, Jeong Hwan Park, Sun Ah Shin, Sejoon Lee, Heonyi Lee, Heejoon Chae, HoKyung Choung, Namju Kim, Jin-Haeng Chung, and Ji Eun Kim. 2021. "Targeted Sequencing Revealed Distinct Mutational Profiles of Ocular and Extraocular Sebaceous Carcinomas" Cancers 13, no. 19: 4810. https://doi.org/10.3390/cancers13194810
APA StyleNa, H. Y., Park, J. H., Shin, S. A., Lee, S., Lee, H., Chae, H., Choung, H., Kim, N., Chung, J. -H., & Kim, J. E. (2021). Targeted Sequencing Revealed Distinct Mutational Profiles of Ocular and Extraocular Sebaceous Carcinomas. Cancers, 13(19), 4810. https://doi.org/10.3390/cancers13194810