Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility
2.2. Baseline Studies
2.2.1. Anthropomorphic Measures and Body Composition
2.2.2. Cardiopulmonary Fitness Testing-Peak Oxygen Consumption (VO2peak)
2.3. Behavioral Weight Loss Intervention
2.4. Diet
2.5. Physical Activity Escalation and Measurements
2.6. Systemic Biomarkers
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Adherence and Adverse Events
3.3. Change in MVPA and Cardiorespiratory Fitness and Quality of Life Assessment
3.4. Change in Diet
3.5. Change in Weight and Body Composition
3.6. Association of Change in Fitness and Body Composition with Achieved MVPA
3.7. Change in Systemic Biomarkers
3.8. Association of VAT Loss with Improvement in Adipokines and Fitness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pizot, C.; Boniol, M.; Mullie, P.; Koechlin, A.; Boniol, M.; Boyle, P.; Autier, P. Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies. Eur. J. Cancer 2016, 52, 138–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardefeldt, P.J.; Penninkilampi, R.; Edirimanne, S.; Eslick, G.D. Physical activity and weight loss reduce the risk of breast cancer: A meta-analysis of 139 prospective and retrospective studies. Clin. Breast Cancer 2018, 18, e601–e612. [Google Scholar] [CrossRef] [PubMed]
- Eliassen, A.H.; Hankinson, S.E.; Rosner, B.; Holmes, M.D.; Willett, W.C. Physical activity and risk of breast cancer among postmenopausal women. Arch Intern. Med. 2010, 170, 1758–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, A.; Dos Santos, G.; Guillas, G.; Bertsch, J.; Duclos, M.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Mesrine, S. Recent recreational physical activity and breast cancer risk in postmenopausal women in the E3N cohort. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1893–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehoff, N.M.; Nichols, H.B.; Zhao, S.; White, A.J.; Sandler, D.P. Adult physical activity and breast cancer risk in women with a family history of breast cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Lahart, I.M.; Metsios, G.S.; Nevill, A.M.; Carmichael, A.R. Physical activity, risk of death and recurrence in breast cancer survivors: A systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015, 54, 635–654. [Google Scholar] [CrossRef]
- Spei, M.E.; Samoli, E.; Bravi, F.; La Vecchia, C.; Bamia, C.; Benetou, V. Physical activity in breast cancer survivors: A systematic review and meta-analysis on overall and breast cancer survival. Breast 2019, 44, 144–152. [Google Scholar] [CrossRef]
- Cannioto, R.A.; Hutson, A.; Dighe, S.; McCann, W.; McCann, S.E.; Zirpoli, G.R.; Barlow, W.; Kelly, K.M.; DeNysschen, C.A.; Hershman, D.L.; et al. Physical activity before, during, and after chemotherapy for high-risk breast cancer: Relationships with survival. J. Natl. Cancer Inst. 2021, 113, 54–63. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Shaw, E.; Neilson, H.K.; Brenner, D.R. Epidemiology and biology of physical activity and cancer recurrence. J. Mol. Med. 2017, 95, 1029–1041. [Google Scholar] [CrossRef] [Green Version]
- USDHHS. 2018 Physical Activity Guidelines for Americans; Office of Disease Prevention and Health Promotion: Washington, DC, USA, 2018. [Google Scholar]
- Campbell, K.L.; Winters-Stone, K.M.; Wiskemann, J.; May, A.M.; Schwartz, A.L.; Cournea, K.; Zucker, D.S.; Mathews, C.E.; Ligabel, J.A.; Gerber, L.H.; et al. Exercise guidelines for cancer survivors: Consensus statement from international multidisciplinary roundtable. Med. Sci. Sports Exerc. 2019, 51, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.M.; Courneya, K.S.; Stein, K. American Cancer Society’s SCS-II. Cancer survivors’ adherence to lifestyle behavior recommendations and associations with health-related quality of life: Results from the American Cancer Society’s SCS-II. J. Clin. Oncol. 2008, 26, 2198–2204. [Google Scholar] [CrossRef]
- Coletta, A.M.; Marquez, G.; Thomas, P.; Thoman, W.; Bevers, T.; Brewster, A.M.; Hawk, E.; Basen-Engquist, K.; Gilchrist, S.C. Clinical factors associated with adherence to aerobic and resistance physical activity guidelines among cancer prevention patients and survivors. PLoS ONE 2019, 14, e0220814. [Google Scholar] [CrossRef] [Green Version]
- Himbert, C.; Delphan, M.; Scherer, D.; Bowers, L.W.; Hursting, S.; Ulrich, C.M. Signals from the adipose microenvironment and the obesity-cancer link—A systematic review. Cancer Prev. Res. 2017, 10, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.W.; Park, C.Y.; Lee, E.S.; Yoon, Y.S.; Lee, E.S.; Park, S.S.; Kim, Y.; Sung, N.J.; Yun, Y.H.; Lee, K.S.; et al. Adipokines, insulin resistance, metabolic syndrome, and breast cancer recurrence: A cohort study. Breast Cancer Res. 2011, 13, R34. [Google Scholar] [CrossRef] [Green Version]
- Duggan, C.; Irwin, M.L.; Xiao, L.; Henderson, K.D.; Smith, A.W.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Ballard-Barbash, R.; McTiernan, A. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. J. Clin. Oncol. 2011, 29, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, P.J.; Ennis, M.; Pritchard, K.I.; Trudeau, M.E.; Koo, J.; Taylor, S.K.; Hood, N. Insulin- and obesity-related variables in early-stage breast cancer correlations and time course of prognostic associations. J. Clin. Oncol. 2017, 30, 164–171. [Google Scholar] [CrossRef]
- Bardia, A.; Arieas, E.T.; Zhang, Z.; Defilippis, A.; Tarpinian, K.; Jeter, S.; Nguyen, A.; Henry, N.L.; Flockhart, D.A.; Hayes, D.F.; et al. Comparison of breast cancer recurrence risk and cardiovascular disease incidence risk among postmenopausal women with breast cancer. Breast Cancer Res. Treat. 2012, 131, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K.; American College of Sports Medicine. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foright, R.M.; Presby, D.M.; Sherk, V.D.; Kahn, D.; Checkley, L.A.; Giles, E.D.; Bergouignan, A.; Higgins, J.A.; Jackman, M.R.; Hill, J.O.; et al. Is regular exercise an effective strategy for weight loss maintenance? Physiol. Behav. 2018, 188, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Jakicic, J.M.; Marcus, B.H.; Lang, W.; Janney, C. Effect of exercise on 24-month weight loss maintenance in overweight women. Arch Intern. Med. 2008, 168, 1550–1559. [Google Scholar] [CrossRef]
- Wadden, T.A.; Neiberg, R.H.; Wing, R.R.; Clark, J.M.; Delahanty, L.M.; Hill, J.O.; Krakoff, J.; Otto, A.; Ryan, D.H.; Vitolins, M.Z. Four-year weight losses in the Look AHEAD study: Factors associated with long-term success. Obesity 2011, 19, 1987–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, R.W.; Wing, R.R.; Sherwood, N.E.; Tate, D.F. Physical activity and weight loss: Does prescribing higher physical activity goals improve outcome? Am. J. Clin. Nutr. 2003, 78, 684–689. [Google Scholar] [CrossRef]
- Pavlou, K.N.; Krey, S.; Steffee, W.P. Exercise as an adjunct to weight loss and maintenance in moderately obese subjects. Am. J. Clin. Nutr. 1989, 49, 1115–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, M.L. Physical activity interventions for cancer survivors. Br. J. Sports Med. 2009, 43, 32–83. [Google Scholar] [CrossRef]
- Dieli-Conwright, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Sami, N.; Lee, K.; Buchanan, T.A.; Spicer, D.V.; Tripathy, D.; Bernstein, L.; Mortimer, J.E. Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: A randomized controlled trial. J. Clin. Oncol. 2018, 36, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.Q.; Courneya, K.S.; Anton, P.M.; Hopkins-Price, P.; Verhulst, S.; Vicari, S.K.; Robbs, R.S.; Mocharnuk, R.; McAuley, E. Effects of the BEAT Cancer physical activity behavior change intervention on physical activity, aerobic fitness, and quality of life in breast cancer survivors: A multicenter randomized controlled trial. Breast Cancer Res. Treat. 2015, 149, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Neeland, I.J.; Ross, R.; Després, J.P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Bradshaw, P.T.; Monda, K.L.; Stevens, J. Metabolic syndrome in healthy obese, overweight, and normal weight individuals: The Atherosclerosis Risk in Communities Study. Obesity 2013, 21, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Britton, K.A.; Massaro, J.M.; Murabito, J.M.; Kreger, B.E.; Hoffmann, U.; Fox, C.S. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 921–925. [Google Scholar] [CrossRef] [Green Version]
- Verheggen, R.J.; Maessen, M.F.; Green, D.J.; Hermus, A.R.; Hopman, M.T.; Thijssen, D.H. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: Distinct effects on body weight and visceral adipose tissue. Obes. Rev. 2016, 17, 664–690. [Google Scholar] [CrossRef]
- Vissers, D.; Hens, W.; Taeymans, J.; Baeyens, J.P.; Poortmans, J.; Van Gaal, L. The effect of exercise on visceral adipose tissue in overweight adults: A systematic review and meta-analysis. PLoS ONE 2013, 8, e56415. [Google Scholar] [CrossRef] [Green Version]
- Keating, S.E.; Hackett, D.A.; Parker, H.M.; O’Connor, H.T.; Gerofi, J.A.; Sainsbury, A.; Baker, M.K.; Chuter, V.H.; Caterson, I.D.; George, J.; et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J. Hepatol. 2015, 63, 174–182. [Google Scholar] [CrossRef]
- You, T.; Murphy, K.M.; Lyles, M.F.; Demons, J.L.; Lenchik, L.; Nicklas, B.J. Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. Int. J. Obes. 2006, 30, 1211–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front. Physiol. 2019, 10, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camell, C.D.; Sander, J.; Spadaro, O.; Lee, A.; Nguyen, K.Y.; Wing, A.; Goldberg, E.L.; Youm, Y.H.; Brown, C.W.; Elsworth, J.; et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 2017, 550, 119–123. [Google Scholar] [CrossRef]
- Murabito, J.M.; Pedley, A.; Massaro, J.M.; Vasan, R.S.; Esliger, D.; Blease, S.J.; Hoffman, U.; Fox, C.S. Moderate-to-vigorous physical activity with accelerometry is associated with decreased visceral adipose tissue in adults. J. Am. Heart Assoc. 2015, 3, 4. [Google Scholar]
- Brochu, M.; Tchernof, A.; Turner, A.N.; Ades, P.A.; Poehlman, E.T. Is there a threshold of visceral fat loss that improves the metabolic profile in obese postmenopausal women? Metabolism 2003, 52, 599–604. [Google Scholar] [CrossRef]
- Fabian, C.J.; Kimler, B.F.; Donnelly, J.E.; Sullivan, D.K.; Klemp, J.R.; Petroff, B.K.; Phillips, T.A.; Metheny, T.; Aversman, S.; Yeh, H.W.; et al. Favorable modulation of benign breast tissue and serum risk biomarkers is associated with >10% weight loss in postmenopausal women. Breast Cancer Res. Treat. 2013, 142, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Teras, L.R.; Patel, A.V.; Wang, M.; Yaun, S.S.; Anderson, K.; Brathwaite, R.; Caan, B.J.; Chen, Y.; Connor, A.E.; Eliassen, A.H.; et al. Sustained weight loss and risk of breast cancer in women 50 years and older: A pooled analysis of prospective data. J. Natl. Cancer Inst. 2020, 112, 929–937. [Google Scholar] [CrossRef]
- Look AHEAD Research Group; Gregg, E.W.; Jakicic, J.M.; Blackburn, G.; Bloomquist, P.; Bray, G.A.; Clark, J.M.; Coday, M.; Curtis, J.M.; Egan, C.; et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: A post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016, 4, 913–921. [Google Scholar] [PubMed] [Green Version]
- Neeland, I.J.; Grundy, S.M.; Li, X.; Adams-Huet, B.; Vega, G.L. Comparison of visceral fat mass measurement by dual-X-ray absorptiometry and magnetic resonance imaging in a multiethnic cohort: The Dallas Heart Study. Nutr. Diabetes 2015, 6, e221. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Seabolt, L.; Shibao, C.; Buchowski, M.; Kang, H.; Keil, C.D.; Tyree, R.; Silver, H.J. DXA-measured visceral adipose tissue predicts impaired glucose tolerance and metabolic syndrome in obese Caucasian and African-American women. Eur. J. Clin. Nutr. 2015, 69, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cespedes Feliciano, E.M.; Chen, W.Y.; Bradshaw, P.T.; Prado, C.M.; Alexeeff, S.; Albers, K.B.; Castillo, A.L.; Caan, B.J. Adipose tissue distribution and cardiovascular disease risk among breast cancer survivors. J. Clin. Oncol. 2019, 37, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Poirier, P.; Després, J.P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef] [PubMed]
- Mason, C.; Katzmarzyk, P.T. Waist circumference thresholds for the prediction of cardiometabolic risk: Is measurement site important? Eur. J. Clin. Nutr. 2010, 64, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Mellis, M.G.; Oldroyd, B.; Hind, K. In vivo precision of the GE Lunar iDXA for the measurement of visceral adipose tissue in adults: The influence of body mass index. Eur. J. Clin. Nutr. 2014, 68, 1365–1367. [Google Scholar] [CrossRef]
- The Physical Fitness Specialist Certification Manual, The Cooper Institute for Aerobics Research, Dallas TX, revised 1997 printed. In Advance Fitness Assessment & Exercise Prescription, 3rd ed.; Heyward, V.H. (Ed.) Human Kinetics: Champaign, IL, USA, 1998; p. 48. [Google Scholar]
- Mendoza, T.R.; Wang, X.S.; Cleeland, C.S.; Morrissey, M.; Johnson, B.A.; Wendt, J.K.; Huber, S.L. The rapid assessment of fatigue severity in cancer patients: Use of the Brief Fatigue Inventory. Cancer 1999, 85, 1186–1196. [Google Scholar] [CrossRef]
- National Task Force on the Prevention and Treatment of Obesity. Dieting and the development of eating disorders in overweight and obese adults. Arch Intern. Med. 2000, 160, 2581–2589. [Google Scholar] [CrossRef]
- Vidoni, E.D.; Van Sciver, A.; Johnson, D.K.; He, J.; Honea, R.; Haines, B.; Goodwin, J.; Laubinger, M.P.; Anderson, H.S.; Kluding, P.M.; et al. A community-based approach to trials of aerobic exercise in aging and Alzheimer’s disease. Contemp. Clin. Trials 2012, 33, 1105–1116. [Google Scholar] [CrossRef] [Green Version]
- Schrack, J.A.; Leroux, A.; Fleg, J.L.; Zipunnikov, V.; Simonsick, E.M.; Studenski, S.A.; Crainiceanu, C.; Ferrucci, L. Using heart rate and accelerometry to define quantity and intensity of physical activity in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, S.; Sica, M.; Ancillao, A.; Timmons, S.; Barton, J.; O’Flynn, B. Validity evaluation of the Fitbit Charge2 and the Garmin Vivosmart HR+ in free-living environments in an older adult cohort. JMIR mHealth uHealth 2019, 7, e13084. [Google Scholar] [CrossRef]
- Baker, H.A.; Fabian, C.J.; Hastings, R.C.; Dixon, D.A.; Nydegger, J.L.; Phillips, T.A.; Powers, K.R.; Kimler, B.F. Circulating adipose stromal cells as a response biomarker in phase II energy balance trials of obese breast cancer survivors and high-risk women. Breast Cancer Res. Treat. 2019, 176, 387–394. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Westphal, T.; Rinnerthaler, G.; Gampenrieder, S.P.; Niebauer, J.; Thaler, J.; Pfob, M.; Fuchs, D.; Riedmann, M.; Mayr, B.; Reich, B.; et al. Supervised versus autonomous exercise training in breast cancer patients: A multicenter randomized clinical trial. Cancer Med. 2018, 7, 5962–5972. [Google Scholar] [CrossRef]
- Gallagher, D.; Kovera, A.J.; Clay-Williams, G.; Agin, D.; Leone, P.; Albu, J.; Matthews, D.E.; Heymsfield, S.B. Weight loss in postmenopausal obesity: No adverse alterations in body composition and protein metabolism. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E124–E131. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Sturgeon, K.; DeMichele, A.M.; Denlinger, C.S.; Schmitz, K.H. Randomized trial of exercise and diet on body composition in survivors of breast cancer with overweight or obesity. Breast Cancer Res. Treat. 2021, 89, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Winkels, R.M.; Sturgeon, K.M.; Kallan, M.J.; Dean, L.T.; Zhang, Z.; Evangelisti, M.; Brown, J.C.; Sarwer, D.B.; Troxel, A.B.; Denlinger, C.; et al. The women in steady exercise research (WISER) survivor trial: The innovative transdisciplinary design of a randomized controlled trial of exercise and weight-loss interventions among breast cancer survivors with lymphedema. Contemp. Clin. Trials 2017, 61, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabia, B.; Andrade, S.; Carreira, M.C.; Casanueva, F.F.; Crujeiras, A.B. A role for novel adipose tissue-secreted factors in obesity-related carcinogenesis. Obes. Rev. 2016, 17, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, M.E.; Cleary, M.P. The balance between leptin and adiponectin in the control of carcinogenesis—Focus on mammary tumorigenesis. Biochimie 2012, 94, 2164–2171. [Google Scholar] [CrossRef] [Green Version]
- Christodoulatos, G.S.; Spyrou, N.; Kadillari, J.; Psallida, S.; Dalamaga, M. The role of adipokines in breast cancer: Current evidence and perspectives. Curr. Obes. Rep. 2019, 8, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Akyol, M.; Alacacioglu, A.; Demir, L.; Kucukzeybek, Y.; Yildiz, Y.; Gumus, Z.; Kara, M.; Salman, T.; Varol, U.; Taskaynatan, H.; et al. The alterations of serum FGF-21 levels, metabolic and body composition in early breast cancer patients receiving adjuvant endocrine therapy. Cancer Biomark. 2017, 18, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Strong, A.L.; Ohlstein, J.F.; Biagas, B.A.; Rhodes, L.V.; Pei, D.T.; Tucker, H.A.; Llamas, C.; Bowles, A.C.; Dutreil, M.F.; Zhang, S.; et al. Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res. 2015, 17, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.A.; Isaksen, V.T.; Moen, O.S.; Wilsgaard, L.; Remijn, M.; Paulssen, E.J.; Florholmen, J.; Goll, R. Leptin to adiponectin ratio—A surrogate biomarker for early detection of metabolic disturbances in obesity. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [PubMed]
- Wilms, B.; Ernst, B.; Gerig, R.; Schultes, B. Plasma omentin-1 levels are related to exercise performance in obese women and increase upon aerobic endurance training. Exp. Clin. Endocrinol. Diabetes 2015, 123, 187–192. [Google Scholar] [CrossRef]
- Figueroa, V.; Rodríguez, M.S.; Lanari, C.; Lamb, C.A. Nuclear action of FGF members in endocrine-related tissues and cancer: Interplay with steroid receptor pathways. Steroids 2019, 152, 108492. [Google Scholar] [CrossRef]
- Benham, V.; Chakraborty, D.; Bullard, B.; Bernard, J.J. A role for FGF2 in visceral adiposity-associated mammary epithelial transformation. Adipocyte 2018, 7, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Mao, F.; Wu, Y.; Fu, X.; Zhu, X.; Zhou, S.; Zhang, W.; Sun, Q.; Zhao, Y. Prognostic role of C-reactive protein in breast cancer: A systematic review and meta-analysis. Int. J. Biol. Markers 2011, 26, 209–215. [Google Scholar] [CrossRef]
- Sturgeon, K.M.; Foo, W.; Heroux, M.; Schmitz, K. Change in inflammatory biomarkers and adipose tissue in BRCA1/2+ breast cancer survivors following a yearlong lifestyle modification program. Cancer Prev. Res. 2018, 11, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef] [Green Version]
- Haley, J.S.; Hibler, E.A.; Zhou, S.; Schmitz, K.H.; Sturgeon, K.M. Dose-dependent effect of aerobic exercise on inflammatory biomarkers in a randomized controlled trial of women at high risk of breast cancer. Cancer 2020, 26, 329–336. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, Y.; Yan, X.; Yan, F.; Sun, Y.; Zeng, J.; Waigel, S.; Yin, Y.; Fraig, M.M.; Egilmez, N.K.; et al. Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metab. 2018, 28, 689–705. [Google Scholar] [CrossRef] [Green Version]
- Prentice, K.J.; Saksi, J.; Hotamisligil, G.S. Adipokine FABP4 integrates energy stores and counterregulatory metabolic responses. J. Lipid. Res. 2019, 60, 734–740. [Google Scholar] [CrossRef] [Green Version]
- Krskova, K.; Eckertova, M.; Kukan, M.; Kuba, D.; Kebis, A.; Olszanecki, R.; Suski, M.; Gajdosechova, L.; Zorad, S. Aerobic training lasting for 10 weeks elevates the adipose tissue FABP4, Giα, and adiponectin expression associated by a reduced protein oxidation. Endocr. Regul. 2012, 46, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Aguirre, L.; Gurney, A.B.; Waters, D.L.; Sinacore, D.R.; Colombo, E.; Armamento-Villareal, R.; Qualls, C. Aerobic or resistance exercise, or both, in dieting obese older adults. N. Engl. J. Med. 2017, 376, 1943–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitka, M. Do flawed data on caloric intake from NHANES present problems for researchers and policy makers? JAMA 2013, 310, 2137–2138. [Google Scholar] [CrossRef] [PubMed]
- Shook, R.P.; Hand, G.A.; O’Connor, D.P.; Thomas, D.M.; Hurley, T.G.; Hébert, J.R.; Drenowatz, C.; Welk, G.J.; Carriquiry, A.L.; Blair, S.N. Energy intake derived from an energy balance equation, validated activity monitors, and dual x-ray absorptiometry can provide acceptable caloric intake data among young adults. J. Nutr. 2018, 148, 490–496. [Google Scholar] [CrossRef] [Green Version]
Variable | Median (Range) or n (%) | ||
---|---|---|---|
Survivors n = 18 | High Risk n = 4 | Total n = 22 | |
Age, y | 60 (40−70) | 57 (55−60) | 60 (40−70) |
Race | 4 (100%) | ||
Caucasian | 16 (89%) | 20 (91%) | |
African American | 2 (11%) | 2 (9%) | |
Time since diagnosis, months | 27.5 (12−125) | NA | 27.5 (12−125) |
Prior chemotherapy | 12 (67%) | NA | 12 (55%) |
Current anti-hormone use | 12 (67%) | 0 (0%) | 12 (55%) |
Current statin use | 4 (22%) | 0 (0%) | 4 (18%) |
Current aspirin use | 7 (39%) | 3 (75%) | 10 (45%) |
Current ACE inhibitor use | 5 (28%) | 0 (0%) | 5 (23%) |
Height, cm | 164 (158−178) | 159 (157−161) | 163 (157−178) |
Weight, kg | 96 (77−126) | 91 (79−107) | 96.0 (76.5−125.7) |
BMI, kg/m2 | 37.0 (30.8−43.3) | 35.8 (31.7−41.1) | 37.0 (30.8−43.3) |
Waist circumference, cm | 107 (94−135) | 106 (91−110) | 107 (91−135) |
VO2peak, mL/kg/min | 18.7 (13.7−25.3) | 19.9 (18.0−21.0) | 18.9 (13.7−25.3) |
DXA Total Mass, kg | 95.0 (75.9−125.3) | 89.9 (77.5−104.9) | 97.5 (75.9−125.3) |
Lean Mass, kg | 47.6 (39.2−57.0) | 43.9 (36.6−46.7) | 46.7 (36.6−57.0 |
Fat Mass, kg | 47.6 (33.8−65.9) | 44.5 (38.7−56.5) | 47.6 (33.8−65.9) |
Fat Mass Index, kg/m2 | 17.6 (13.2−23.0) | 17.5 (15.6−21.8) | 17.6 (13.2−23.0) |
Visceral Adipose Tissue, kg | 1.74 (0.98−2.95) | 2.13 (1.42−2.92) | 1.78 (0.98−2.95) |
Variable or Category | Baseline | 12 Weeks | Change | Relative Change, % | p-Value for Change |
---|---|---|---|---|---|
VO2peak, mL/kg/min | 18.9 (13.7–25.3) | 22.0 (17.1–31.4) | 2.7 (−1.0–9.6) | 13 (−5–44) | <0.0001 |
Energy intake (2-day food recall), Kcal (cohort 2 only) | 1522 (1092–3383) | 1321 (851–1913) | −348 (−2369–308) | −25 (−70–28) | 0.041 |
MVPA min/week (Zone 3–5 recorded Garmin Connect); median for weeks 9–12 | 55 (week 1) (0–226) | 219 (56–353) | 0.0001 | ||
BMI, kg/m2 | 37.0 (30.8–43.3) | 32.5 (29.5–41.3) | −2.7 (−7.2–0.2) | −7 (−20–1) | <0.0001 |
Waist Circumference, cm | 106.5 (91–135) | 99.5 (89–124) | −6 (−22–6) | −5 (−18–0) | <0.0001 |
DXA Total Mass, kg | 95.0 (75.9–125.3) | 94.0 (73.0–118.9) | −7.7 (−20.5–0.4) | −8 (−20–0) | <0.0001 |
Lean Mass, kg | 46.5 (36.6–57.0) | 44.8 (37.3–56.5) | −1.6 (−4.7–1.6) | −3 (−9–3) | 0.0019 |
Fat Mass, kg | 47.6 (33.8–65.9) | 39.2 (32.1–59.3) | −6.2 (−15.6–−1.2) | −13 (−33–−2) | <0.0001 |
Fat Mass Index, kg/m2 | 17.6 (13.2–23.0) | 14.9 (11.8–20.5) | −2.3 (−5.7–−0.4) | −13 (−33–−2) | <0.0001 |
Visceral Fat Tissue, kg | 1.74 (0.98–2.95) | 1.36 (0.77–2.50) | −0.37 (−0.95–−0.01) | −19 (−41–−1) | <0.0001 |
Variable or Category | Baseline | 12 Weeks | Change | Relative Change, % | p-Value for Change |
---|---|---|---|---|---|
VO2peak, mL/kg/min | 18.7 (13.7–25.3) | 21.1 (17.1–31.4) | 2.3 (−1.0–9.6) | 12 (−5–44) | 0.0003 |
Energy intake (2-day food recall), Kcal (cohort 2 only) | 1522 (1092–3383) | 1381 (851–1913) | −233 (−2369–308) | −14 (−70–28) | 0.24 |
BMI, kg/m2 | 37.0 (30.8–43.3) | 32.5 (29.5–41.3) | −2.4 (−7.2–0.2) | −7 (−20–1) | 0.0002 |
Waist Circumference, cm | 106.5 (94–135) | 99.5 (89–124) | −6 (−22–−1) | −5 (−18–−1) | 0.0002 |
DXA Total Mass, kg | 95.0 (75.9–125.3) | 84.0 (74.1–118.9) | −7.4 (−20.5–0.4) | −7 (−20–0) | 0.0002 |
Lean Mass, kg | 47.6 (39.2–57.0) | 45.3 (37.3–56.5) | −1.8 (−4.7–1.6) | −3 (−9–3) | 0.0050 |
Fat Mass, kg | 47.6 (33.8–65.9) | 39.2 (32.1–59.3) | −6.2 (−15.6–−1.2) | −13 (−33–−2) | 0.0002 |
Fat Mass Index, kg/m2 | 17.6 (13.2–23.0) | 14.9 (11.8–20.5) | −2.2 (−5.7–−0.4) | −13 (−33–−2) | 0.0002 |
Visceral Fat Tissue, kg | 1.74 (0.98–2.95) | 1.36 (0.77–2.34) | −0.37 (−0.95–0.01) | −20 (−41–−1) | 0.0002 |
Variable or Category | Baseline | 12 Weeks | Relative Change, % 0–12 Weeks † | 24 Weeks | Change 0–24 Weeks | Relative Change, % 0–24 Weeks | p-value for Change 0–24 Weeks |
---|---|---|---|---|---|---|---|
VO2peak, mL/kg/min | 18.0 (13.7–25.3) | 21.7 (17.4–28.9) | 16 (7–28) | 22.9 (20.2–31.0) | 4.8 (3.5–10.0) | 26 (17–48) | 0.012 |
BMI, kg/m2 | 33.6 (31.7–42.8) | 31.7 (29.5–36.8) | −9 (−17–−3) | 30.9 (28.2–37.0) | −4.7 (−7.1–−1.0) | −12 (−17–−3) | 0.008 |
Waist Circumference, cm | 104 (91–120) | 103 (90–114) | −5 (−7–0) | 102 (89–109) | −7 (−15–−2) | −6 (−14–−2) | 0.007 |
DXA Total Mass, kg | 91.9 (77.5–116.1) | 81.8 (73.0–102.3) | −8 (−22–−2) | 81.5 (68.9–97.7) | −11.8 (−21.6–−2.2) | −12 (−19–−3) | 0.008 |
Lean Mass, kg | 43.1 (36.6–54.3) | 43.0 (37.6–55.5) | −3 (−5–3) | 43.6 (36.9–52.9) | −1.4 (−2.8–0.9) | −3 (−6–2) | 0.066 |
Fat Mass, kg | 49.3 (38.7–62.5) | 40.1 (32.5–53.9) | −14 (−19–−8) | 39.5 (29.3–47.8) | −9.6 (−14.8–−2.5) | −20 (−24–−6) | 0.008 |
Fat Mass Index, kg/m2 | 17.6 (15.5–23.0) | 14.6 (13.1–19.8) | −14 (−19–−8) | 14.8 (11.8–17.5) | −3.7 (−5.4–−1.0) | −20 (−24–−6) | 0.008 |
Visceral Fat Tissue, kg | 1.64 (0.98–2.92) | 1.32 (0.77–2.50) | −19 (−35–−1) | 1.26 (0.73–2.07) | −0.54 (−0.85–−0.16) | −29 (−43–−11) | 0.008 |
Biomarker | Baseline | 12 Weeks | Rel Change, % | p-Value |
---|---|---|---|---|
Adiponectin, μg/mL | 26 (6–218) | 28 (7–216) | 8 (−42–89) | 0.59 |
Leptin, ng/mL | 38 (17–60) | 24 (5–48) | −30 (−81–146) | 0.001 |
Adiponectin:Leptin Ratio, μg/mL:ng/mL | 0.8 (0.1–10.7) | 1.1 (0.2–15.7) | 55 (−28–699) | 0.001 |
Lipocalin-2, ng/mL (cohort 2 only) | 116 (42–132) | 116 (47–123) | −1 (−42–111) | 0.93 |
Resistin, ng/mL | 22 (11–32) | 24 (12–37) | 6 (−57–96) | 0.76 |
PAI-1, ng/mL | 78 (13–122) | 80 (12–101) | −10 (−40–124) | 0.31 |
IL-6, pg/mL | 3.0 (0.9–12.2) | 2.3 (0.9–22.0) | −7 (−61–194 | 0.36 |
Insulin, pg/mL | 341 (100–2196) | 314 (47–1480) | −17 (−60–266) | 0.012 |
HGF, pg/mL | 206 (42–641) | 221 (61–363) | −4 (−58–132) | 0.28 |
MCP-1, pg/mL | 322 (97–493) | 299 (142–675) | −3 (−30–158) | 0.86 |
TNFα, pg/mL | 4.2 (1.9–11.2) | 4.6 (1.8–11.8) | 5 (−39–70) | 0.31 |
CRP, μg/mL | 8.1 (1.2–87.4) | 6.3 (0.7–255.2) | −25 (−75–167) | 0.048 |
FGF-2, pg/mL | 2.0 (0.3–15.0) | 1.2 (0.3–4.0) | −28 (−89–323) | 0.23 |
FGF-21, pg/mL | 287 (45–894) | 259 (34–640) | −6 (−57–146) | 0.46 |
Lysyl oxidase, ng/mL (cohort 1 only) | 2.0 (0.8–3.7) | 2.3 (0.0–4.9) | −11 (−100–214) | 0.42 |
Visfatin, ng/mL | 51 (24–68) | 54 (27–64) | 2 (−14–40) | 0.32 |
Omentin, ng/mL | 2.8 (1.8–23.9) | 3.0 (1.9–21.3) | 7 (−10–113) | 0.033 |
FABP4, ng/mL | 54 (20–89) | 59 (16–131) | 19 (−26–93) | 0.062 |
Estradiol, pg/mL | 77 (33–138) | 69 (36–174) | 4 (−30–47) | 0.44 |
Estradiol, pmol/L | 0.3 (0.1–0.5) | 0.3 (0.1–0.7) | 4 (−30–47) | 0.46 |
Testosterone, ng/mL | 1.2 (0.3–4.9) | 1.1 (0.3–2.8) | 7 (−82–48) | 0.26 |
Testosterone, nmol/L | 4.1 (1.1–16.9) | 3.9 (1.2–9.7) | 7 (−82–48) | 0.26 |
SHBG, nmol/L | 36 (20–231) | 40 (22–208) | 10 (−12–80) | 0.044 |
Free Estradiol, pmol/L | 4.4 (0.6–9.7) | 3.9 (1.0–9.1) | −5 (−42–67) | 0.83 |
Free Testosterone, pmol/L | 79 (11–327) | 62 (17–166) | −5 (−83–53) | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabian, C.J.; Klemp, J.R.; Marchello, N.J.; Vidoni, E.D.; Sullivan, D.K.; Nydegger, J.L.; Phillips, T.A.; Kreutzjans, A.L.; Hendry, B.; Befort, C.A.; et al. Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors. Cancers 2021, 13, 4871. https://doi.org/10.3390/cancers13194871
Fabian CJ, Klemp JR, Marchello NJ, Vidoni ED, Sullivan DK, Nydegger JL, Phillips TA, Kreutzjans AL, Hendry B, Befort CA, et al. Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors. Cancers. 2021; 13(19):4871. https://doi.org/10.3390/cancers13194871
Chicago/Turabian StyleFabian, Carol J., Jennifer R. Klemp, Nicholas J. Marchello, Eric D. Vidoni, Debra K. Sullivan, Jennifer L. Nydegger, Teresa A. Phillips, Amy L. Kreutzjans, Bill Hendry, Christie A. Befort, and et al. 2021. "Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors" Cancers 13, no. 19: 4871. https://doi.org/10.3390/cancers13194871
APA StyleFabian, C. J., Klemp, J. R., Marchello, N. J., Vidoni, E. D., Sullivan, D. K., Nydegger, J. L., Phillips, T. A., Kreutzjans, A. L., Hendry, B., Befort, C. A., Nye, L., Powers, K. R., Hursting, S. D., Giles, E. D., Hamilton-Reeves, J. M., Li, B., & Kimler, B. F. (2021). Rapid Escalation of High-Volume Exercise during Caloric Restriction; Change in Visceral Adipose Tissue and Adipocytokines in Obese Sedentary Breast Cancer Survivors. Cancers, 13(19), 4871. https://doi.org/10.3390/cancers13194871