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Simple Summary: The early treatment of skin cancer can effectively reduce mortality rates. Recently,
automatic melanoma diagnosis from skin images has gained attention, which was mainly encouraged
by the well-known challenge developed by the International Skin Imaging Collaboration project. The
majority of contestant submitted Convolutional Neural Network based solutions. However, this type
of model presents disadvantages. As a consequence, Dynamic Routing between Capsules has been
proposed to overcome such limitations. The aim of our proposal was to assess the advantages of
combining both architectures. An extensive experimental study showed the proposal significantly
outperformed state-of-the-art models, achieving 166% higher predictive performance compared to
ResNet in non-dermoscopic images. In addition, the pixels activated during prediction were shown,
which allows to assess the rationale to give such a conclusion. Finally, more research should be
conducted in order to demonstrate the potential of this neural network architecture in other areas.

Abstract: Skin cancer is one of the most common types of cancers in the world, with melanoma
being the most lethal form. Automatic melanoma diagnosis from skin images has recently gained
attention within the machine learning community, due to the complexity involved. In the past few
years, convolutional neural network models have been commonly used to approach this issue. This
type of model, however, presents disadvantages that sometimes hamper its application in real-world
situations, e.g., the construction of transformation-invariant models and their inability to consider
spatial hierarchies between entities within an image. Recently, Dynamic Routing between Capsules
architecture (CapsNet) has been proposed to overcome such limitations. This work is aimed at
proposing a new architecture which combines convolutional blocks with a customized CapsNet
architecture, allowing for the extraction of richer abstract features. This architecture uses high-quality
299× 299× 3 skin lesion images, and a hyper-tuning of the main parameters is performed in order
to ensure effective learning under limited training data. An extensive experimental study on eleven
image datasets was conducted where the proposal significantly outperformed several state-of-the-art
models. Finally, predictions made by the model were validated through the application of two
modern model-agnostic interpretation tools.

Keywords: melanoma diagnosis; CapsNet; convolutional neural network; interpretation tool

1. Introduction

Cutaneous malignant melanoma is on the rise and has the highest mortality rate
among the various types of skin cancer [1]. For example, in 2021, it is estimated that
106,110 new cases of melanoma will be diagnosed in the United States, resulting in
7180 deaths (https://www.cancer.org, accessed on 1 June 2021). Surgery is the primary
treatment for this type of cancer, but in its more advanced stages, treatment can also
include immunotherapy, targeted therapy drugs and radiation to extend survival. Accord-
ingly, the development of modern tools is critical for diagnosing melanoma at an earlier
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stage, thus easing the decision-making process for dermatologists and reducing invasive
treatments for patients, in addition to associated costs. The diagnosis of melanoma is,
however, a complex task even for expert dermatologists, mainly because of the complexity,
variability and ambiguity of symptoms [2]. Additionally, an extensive variety of morpholo-
gies exist even between samples from the same category, which greatly hampers diagnosis.
Several studies have shown that the early diagnosis of melanoma can greatly benefit from
computational methods [3], demonstrating that such techniques may even outperform
dermatologists in terms of diagnosis [4], due to various machine learning techniques and
learning of data-driven features for specific tasks [5]. The early proposed methods required
the previous extraction of handcrafted features, thus relying on the level of dermatologists’
expertise to extract high quality descriptors. This extraction process of informative and
discriminative sets of high-level features, however, remains as a complex and costly task
that is usually problem dependent [6], and it is noteworthy that sometime is impossible to
derive invariant features which are independent of the differences in the input images [7].
On the other hand, there is another type of computational method which can automatically
extract and learn high-level features [8], providing a higher robustness to the inter- and
intra-class variability present in melanoma images [8,9].

Deep learning models, specifically Convolutional Neural Network (CNN) models,
have the capacity of automatically learning high-level features from raw images [8,10,11].
The ImageNet Challenge (ILSVRC) takes place every year since 2010. In 2012 a CNN won
the contest for the first time, which increased the popularity of such models for image
processing [12]. CNN models learn automatically abstract features and enable the learning
for several tasks. For example, Pérez et al. [13] summarized the most popular techniques
used in CNN models for diagnosing skin images. Furthermore, this type of deep model
can extract sets of patterns ranging from single edges and curves to more complex patterns
such as a human face. On the other hand, the main downside of CNN models is that
the information regarding spatial relationships between extracted features is lost. For
example, CNN models could consider two images to be similar if they share the same
objects, even if the location within the image is relevant. However, convolution operation
is not translation-invariant.

To overcome the above main limitation of CNN models, a new type of deep learning
model, named Dynamic Routing Between Capsules (well-know as CapsNet), was pro-
posed in [14], where the authors designed a method closer to how human vision works.
The neurons in this architecture can represent properties of a object such as position, size
and texture. Moreover, CapsNet is able to preserve hierarchical spatial relationships, and in
theory it could be as effective as any CNN but using fewer samples for training [14].
Niyaz et al. [15] reviewed several deep learning methods for the prediction of different
types of cancer. In that time the authors did not find evidence of the application of CapsNet
in cancer diagnosis. However, the authors acknowledged CapsNet as a promising model
for diagnosing cancer and encouraged its application. Accordingly, CapsNet has been
applied in medical image analysis, demonstrating to be really effective for lung cancer
screening [16], blood cell image classification [17], and cervical image classification [18],
to list a few applications. Finally, CapsNet have been recently applied in skin cancer
classification. Cruz et al. [19] used CapsNet to classify skin lesions using images and
evaluated their proposal in only one recognized dataset, HAM10000 [20]. However, to our
understanding, the proposal has several issues. Firstly, although skin images are usually
high-quality (600× 450× 3 in HAM10000), the authors resized images to 28× 28× 1, losing
a considerable amount of pixels and even ignoring colors in the images, which is important
for the diagnosis of melanoma [21]. Secondly, the authors highlighted their performance
relying mainly on overall precision. However, it is well-known that skin images datasets
are unbalanced. Looking closely, the authors achieved only a precision of 28% and 41%
in melanoma and basal cell carcinoma categories, respectively, leaving open a big margin
of improvement.
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Consequently, this work focuses on assessing the effectiveness of a new architecture
for the diagnosis of melanoma. The architecture uses high-quality 299× 299× 3 skin lesion
images and achieves an acceptable performance in both normal and malignant categories.
The proposed architecture combines features from convolutional blocks and CapsNet. First,
we selected a more sophisticated convolutional computational block, allowing for the
extraction of more useful initial features. Second, we replaced the first convolutional block
from CapsNet with the above computational block. As a result, we are able to extract more
significant features from earlier stages. Next, primary caps extract geometric and color
properties present in the images, such as asymmetry, border irregularity, color variegation
and the positions of various zones. These have all proven to be very useful attributes to
consider when diagnosing melanoma [21]. In this manner, we can maintain the hierarchical
spatial relationships of patterns which yields great benefit. To take full advantage of
the architecture, we proposes a hyper-tuning of the main parameters to ensure effective
training and learning under limited training data. In addition, the architecture applies data
augmentation to enhance the diagnosis of melanoma, significantly increasing the validity of
the proposal. The new architecture enables the construction of a transformation-invariant
model and the detection of spatial hierarchies between entities within an image. As such, it
is more suitable for solving certain real-world situations than convolutional models. To
evaluate the suitability of the proposal, an extensive experimental study was conducted on
eleven public skin image datasets, allowing for a better analysis of the model’s effectiveness.
The results showed that the proposed approach achieved very promising results and was
competitive with respect to state-of-the-art CNN models which have previously been
used in the diagnosis of melanoma. Finally, Shapley Additive Explanations method
(SHAP (https://github.com/slundberg/shap, accessed on 1 September 2019)) [22] and
Local Interpretable Model-agnostic Explanations (LIME) [23] were used to show the most
important features and give a prediction with a high confidence level. This work, to the
best of our knowledge, is the first attempt to thoroughly assess a new architecture based on
convolutional blocks and CapsNet for the automatic recognition of melanoma. The hyper-
parameters were specifically tuned for the selected task, achieving significantly better
performance compared to the state-of-the-art models.

The rest of this work is arranged as follows: Section 2 briefly presents the state-of-the-
art in solving the melanoma diagnosis problem mainly by using CNN models; Section 3
presents the proposed architecture; Section 4 presents the experimental study carried
out, showing the results and a discussion of them; finally, some concluding remarks are
presented in Section 5.

2. Related Works

CNN models have proven to be a powerful classification method for melanoma diag-
nosis [8]. This type of models presents a higher suitability compared to classic methods
which depend on hand-crafted features. In addition, sophisticated techniques can be ap-
plied to even improve the performance of CNN models in the task of melanoma diagnosis,
e.g., by applying data augmentation [24] and transfer learning techniques [8].

Data augmentation is a common technique applied to reduce overfitting on CNN
models [25]. It is commonly performed by means of applying random transformations
on the source images [26]. In addition, this technique can be used to tackle imbalance
problems [27,28]. For example, Hossain and Muhammad [29] proposed an emotion recog-
nition system using a CNN approach from emotional Big Data. The models trained with
augmented data obtained better performance compared to its non-use. In addition, Es-
teva et al. [8] applied extensive data augmentation techniques during training; the authors
increased the number of images by a factor of 720. Each image was randomly rotated,
flipped and cropped. The results achieved a performance comparable to a committee of
21 dermatologists. On the other hand, more advanced techniques such as GANs are being
applied to augment data [30]. GANs can augment a dataset by training simultaneously
two models, a generator that creates new samples by randomly selecting points from the

https://github.com/slundberg/shap
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latent space, and a discriminator that determines whether a sample is a fake or not. Frid-
Adar et al. [31] proposed methods based on GANs for generating synthetic medical images;
their proposal was evaluated on a limited dataset of high quality liver lesion computed
tomography. The results showed that the model increased both sensitivity and specificity
by using augmented data.

Transfer learning is a technique widely used to increase performance when the number
of training examples is limited [32,33]. This method transfers and reuses knowledge that
was learned from a source task, where a lot of data is commonly available, e.g., the
ImageNet dataset with more than one million of images. For instance, Esteva et al. [8]
transferred the knowledge learned by InceptionV3 on ImageNet and applied it to melanoma
diagnosis. Moreover, Nasr-Esfahani et al. [34] applied a pre-trained CNN to distinguishes
between melanoma and nevus cases. The results showed that the proposed method is
superior in terms of diagnostic accuracy in comparison with the state-of-the-art methods.
Finally, Saba et al. [35] proposed an automated approach for skin lesion detection and
recognition using Laplacian filtering, lesion boundary extraction and CNN. The results
outperformed several existing methods and attained a high accuracy value.

On the other hand, CapsNet represents a completely novel type of deep learning
architectures which attempt to overcome the limits and drawbacks of CNN models.
Since CapsNet was recently proposed, only a few studies have explored its applications.
Zhang et al. [18] applied CapsNet to classify the images of cervical lesions. The results
showed better performance compared to other classification methods. Mobiny et al. [16]
proposed an improvement on CapsNet that speedup the results compared to the original
architecture. After evaluating the performance on computed tomography chest scans,
the results showed that CapsNet is a promising alternative to CNN. Zhang et al. [36]
combined CapsNet and fully CNN models in image scene classification, such as VGG16
and InceptionV3. The authors achieved better output compared to state-of-the-art meth-
ods. However, it is said that the use of a full CNN model could hamper the main aim
behind CapsNet, which is the extraction of spatial hierarchies between entities. In addition,
the number of trainable parameters significantly increases by combining such architectures.
By demonstrating the benefits of CapsNet in medical imaging in this work, we may be
encouraging its wider use. Considering the above, it would be interesting to design a deep
learning architecture that combines and leverages features from different approaches such
as data augmentation, transfer learning, convolutional blocks and CapsNet. After analyz-
ing CapsNet, we strongly believe that specific blocks could be improved while maintaining
their behavior. To augment data, it is important to perform a data augmentation both on
training and test phases [24]. Next, the proposal for melanoma diagnosis, which follows
the mentioned approximation, is described.

3. Materials and Methods

This section firstly describes the related works regarding the automatic diagnosis of
melanoma from image data and the well-known state-of-the-art techniques, and then it
presents the proposed architecture, which also uses the most proven techniques to date.

3.1. Proposed Architecture for the Diagnosis of Melanoma

Invariance and equivariance are two important concepts in image recognition area.
To make a CNN transformation-invariant, a data augmentation of training samples is
commonly performed. However, equivariance is a more general concept (invariance is a
special case of equivariance) that allows a model detect the rotation or proportion change
and adapt itself in a way that the spatial positioning inside an image is not lost [14]. This
last requirement motivated the apparition of CapsNet networks.

CapsNet introduced the concept of capsule, where a capsule is a group of neurons
or nested set of neural layers, and the state of the neurons inside a capsule can capture
the properties of one entity inside an image. A capsule outputs a vector representing the
instantiation parameters of a specific type of entity such as an object or a part of a object.
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In the other words, the output vector represents the probability of existence. Consequently,
similar to the human vision process, these capsules are specialized at handling different
types of stimulus and encoding things such as position, size, orientation, deformation, hue,
texture, and other spatial information. The output vector can be calculated as

vj =
||sj||2

1 + ||sj||2
sj

||sj||
, (1)

where vj and sj are the vector output of capsule j and its total output, respectively. The input
to a capsule sj is a weighted sum over the vectors ûj|i in the layer below and is obtained as

sj = ∑
i

cijûj|i, û = Wijui (2)

where Wij is a weight matrix and cij are coefficients between capsule i and the rest of
capsules in the layer above. The coefficients can be calculated as

cij =
exp(bij)

∑k exp(bik)
, (3)

where bij are the log probabilities that capsule i should engage capsule j. Finally, CapsNet
uses a separate margin loss, which can be calculated as

Lk = Tk max(0, m+ − ||vk||)2 + λ(1− Tk) max(0, ||vk|| −m−)2, (4)

where Tk = 1 iff a sample of class k is present and m+ = 0.9 and m− = 0.1. The total loss is
the sum of the losses of nevus and melanoma capsules.

The baseline CapsNet architecture is composed by a simplistic Conv2D (256 filters,
kernel 9× 9, stride 1, ReLU activation function [37]), located at the beginning of the network,
for extracting primary features which are subsequently passed to Primary and Class
Caps layers. However, we hypothesized that CapsNet would attain a better performance
if the first convolutional layer is replaced by a more sophisticated convolution-based
computational block that was able to extract higher-level features before passing them to
capsule layers. By this way, we leverage the benefits from both CNN and CapsNet for a
better melanoma diagnosis.

Figure 1 shows the proposed architecture for the diagnosis of melanoma dubbed as
MEL-CAP. The proposal was composed as follows: Input (299× 299× 3)→ Customized
convolutional block → Primary Caps (9× 9, channels 32, capsule 16D) → Class Caps
(2 capsules 64D, routing iteration 1). In addition, Table 1 shows a detailed description of
every layer. After several phases of an experimental study, the above configuration was
the most suitable for diagnosing melanoma. First, Inception architecture was considered
given the effectiveness already demonstrated in the diagnosis of melanoma. Inception
relies in independent convolutional blocks with filters that are powered the same input,
which enables the extraction of more information over the same space. This architecture
has been improved through the years, from V1 to V4 [38–40]. The latest updates showed
that high performance could be also achieved by using aggressive dimension reductions,
which allows to keep low hardware requirements.
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Figure 1. The proposed architecture was designed and hypertuned specifically for the diagnosis
of melanoma. Primary caps are able to identify features such as position, size, orientation and
deformation. Class caps represent the classes (nevus or melanoma) and resume the predictive
features in order to perform the final classification. It was found that each class capsule should select
64 features to perform an accurate prediction. The convolutional block used by the proposed model
is shown in the bottom.

Table 1. Proposed network architecture for the diagnosis of melanoma.

Name Layer Input Output

input_1 InputLayer - (None, 299, 299, 3)
conv2d_1 Conv2D (None, 299, 299, 3) (None, 149, 149, 32)
batch_normalization_1 BatchNormalization (None, 149, 149, 32) (None, 149, 149, 32)
activation_1 Activation (None, 149, 149, 32) (None, 149, 149, 32)
conv2d_2 Conv2D (None, 149, 149, 32) (None, 147, 147, 32)
batch_normalization_2 BatchNormalization (None, 147, 147, 32) (None, 147, 147, 32)
activation_2 Activation (None, 147, 147, 32) (None, 147, 147, 32)
conv2d_3 Conv2D (None, 147, 147, 32) (None, 147, 147, 64)
batch_normalization_3 BatchNormalization (None, 147, 147, 64) (None, 147, 147, 64)
activation_3 Activation (None, 147, 147, 64) (None, 147, 147, 64)
max_pooling2d_1 MaxPooling2D (None, 147, 147, 64) (None, 73, 73, 64)
conv2d_4 Conv2D (None, 73, 73, 64) (None, 73, 73, 80)
batch_normalization_4 BatchNormalization (None, 73, 73, 80) (None, 73, 73, 80)
activation_4 Activation (None, 73, 73, 80) (None, 73, 73, 80)
conv2d_5 Conv2D (None, 73, 73, 80) (None, 71, 71, 192)
batch_normalization_5 BatchNormalization (None, 71, 71, 192) (None, 71, 71, 192)
activation_5 Activation (None, 71, 71, 192) (None, 71, 71, 192)
max_pooling2d_2 MaxPooling2D (None, 71, 71, 192) (None, 35, 35, 192)
conv2d_6 Conv2D (None, 35, 35, 192) (None, 14, 14, 512)
primary_capsule_reshape Reshape (None, 14, 14, 512) (None, 6272, 16)
primary_capsule_squash Lambda (None, 6272, 16) (None, 6272, 16)
digit_capsule CapsuleLayer (None, 6272, 16) (None, 2, 64)
output_capsule LengthLayer (None, 2, 64) (None, 2)

By this way, we aimed a balance between the computational cost and the extraction of
more high-level features before passing them to the capsule layers. Accordingly, Figure 1
also shows the convolutional block that replaced the first convolutional layer of Cap-
sNet. The first block was composed as follows: Conv2D (32 filters, kernel 3× 3, stride 2)
→ Conv2D (32 filters, kernel 3× 3) → Conv2D (64 filters, kernel 3× 3) → MaxPool2D
(3× 3, stride 2)→ Conv2D (80 filters, kernel 1×1)→ Conv2D (192 filters, kernel 3×3)→
MaxPool2D (3× 3, stride 2). The use of a convolutional block will not only allow more
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reduction of the input space, but also focusing on more important features from early stages.
On the other hand, capsule layers, will not only learn richer patterns, but also paying more
attention on learning their corresponding properties, such as location and orientation.

These abstract features learned by the first block are then passed as input to a con-
volutional capsule layer, named as primary caps, which is composed by 32 channels of
convolutional 8D capsules with a 9 × 9 kernel and stride 2; i.e., in this case, each primary
capsule comprises 8 convolutional units. These 8D capsules can identify features such as
position, size, orientation, deformation, etc. The last layer, named as class caps, has two
capsules 16D that represent the classes (nevus or melanoma), and these capsules receive
input from all the capsules in the layer below. Moreover, as proposed in Sabour et al. [14],
CapsNet uses a decoder block that influences the learning process, where this decoder
intends to reconstruct an original image from the Class Caps layer representation. Finally,
it is worth noting that CapsNet implements the routing mechanism mentioned earlier
between two consecutive capsule layers (in our example between the layers primary caps
and class caps), and this dynamic process can be viewed as a parallel attention mechanism
that allows each capsule to attend to some active capsules at the level below and to ignore
others [14].

3.2. Datasets

Table 2 shows a summary of the characteristics of the eleven datasets considered in this
study, where all the images are labeled as nevus or melanoma. All the datasets were down-
loaded from The International Skin Imaging Collaboration (https://www.isic-archive.com,
accessed on 1 September 2019) (ISIC) repository, except PH2 (https://bit.ly/39YEdmN,
accessed on 1 September 2019) and MED-NODE (https://bit.ly/3DkCMvN, accessed
on 1 September 2019) datasets. The MED-NODE dataset contains low resolution non-
dermoscopic images taken with mobile phones. Nowadays, technological devices enables
the collection of an enormous amount of data, which is essential for training models. On
the other hand, PH2 dataset comprises high-quality dermoscopic images, where manual
segmentation, clinical diagnosis and the identification of several dermoscopic structures
were performed by expert dermatologists. The rest of datasets share the common char-
acteristics of dermoscopic images. HAM10000 is the largest dataset in this work, which
has been widely used in skin cancer diagnosis, e.g., Miglani and Bhatia [41] achieved 0.95
averaged AUC values for the overall classification. It can be observed that some datasets
present a moderate imbalance ratio (ImbR), indicating that the number of nevus samples is
several orders of magnitude higher than the number of melanoma samples, and this feature
can commonly hamper the learning process of the machine learning models, e.g., MSK-3
and HAM10000. All the 16,601 images were resized to a resolution of h = 299, w = 299,
and c = 3, where h is the height, w is the width, and c is the number of channels of
an image.

Table 2 also shows other insights about the data. For example, intra-class, inter-
class distances and their ratio (DistR) indicate an important degree of similarity between
categories. In addition, the silhouette score [42] indicated how much an image shares
the same characteristics of its class compared to other classes. The above corroborated
that even images from different classes are similar. Finally, in next Section the proposed
architecture is evaluated and compared to state-of-the-art CNN models.

https://www.isic-archive.com
https://bit.ly/39YEdmN
https://bit.ly/3DkCMvN
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Table 2. Skin image datasets used in the experimental study; “ImbR”, “IntraC”, “InterC” and “DistR”
represent the imbalance ratio between the normal and melanoma classes, the average distance
between images of the same category, the average distance between images of different categories
and the ratio between the two previous metrics, respectively; “Silho” means the silhouette score.

Dataset Source # Img ImbR IntraC InterC DistR Silho

HAM10000 [20] 7818 6.024 8705 9770 0.891 0.213
ISBI2016 [43] 1273 4.092 10,553 10,992 0.960 0.101
ISBI2017 [44] 2745 4.259 9280 9674 0.959 0.089

MED-NODE [45] 170 1.429 9029 9513 0.949 0.068
MSK-1 [44] 1088 2.615 11,753 14,068 0.835 0.173
MSK-2 [44] 1522 3.299 9288 9418 0.986 0.062
MSK-3 [44] 225 10.842 8075 8074 1.000 0.112
MSK-4 [44] 943 3.366 6930 7162 0.968 0.065

PH2 [46] 200 4.000 12,688 14,928 0.850 0.210
UDA-1 [43] 557 2.503 11,730 12,243 0.958 0.083
UDA-2 [43] 60 1.609 11,297 11,601 0.974 0.020

4. Analysing the Effectiveness of the Proposal in Melanoma Diagnosis

This section summarizes the experimental study conducted, aiming to analyze the
effectiveness of the original CapsNet and our proposal in melanoma diagnosis. First, the ex-
perimental protocol and settings used throughout the analysis are described, and finally
the experimental results and a discussion of them are presented. Additional material can be
found at the available web page (https://www.uco.es/kdis/melanoma-capsnet/, accessed
on 25 September 2021).

4.1. Experimental Settings

To test our hypothesis, firstly, three optimization algorithms were used for training
the base line CapsNet model: Stochastic Gradient Descend (SGD) [27], Root Mean Square
Propagation (RMSProp) [47] and Adaptive Moment Estimation (ADAM) [48]. In this
manner, we analyzed what is more convenient for the model: Non-adaptive methods or
adaptive gradient descent algorithms. In addition, a binary cross entropy was applied,
since the data are comprised of two categories.

Secondly, a hyper-tuning of the two main components of base-line CapsNet was
conducted: The dimensions of the primary caps and the activity vector in the class caps.
Table 3 shows the hyper-tuning configuration, four dimensions for the primary caps and
class caps features were considered. In total 16 combinations were tested with a high
computational cost. The best setting obtained is the one that was used in the rest of
the experiments.

Table 3. Configuration used in the experimental study.

Parameter Value

Primary caps {8, 16, 24, 32}
Class caps features {16, 32, 48, 64}
Number of epochs 150

Mini-batch size 8
Learning rate (α) ADAM = 0.001, RMSprop = 0.001, SGD = 0.01

Decay rate first moment average (β1) ADAM = 0.9, RMSprop = 0.9
Decay rate second moment average (β2) ADAM = 0.999

Thirdly, a data augmentation process was performed both on training and testing
phases by means of applying and combining rotation-based, flip-based and crop-based
transformations over the original images. The datasets were balanced by creating new
images until the number of melanoma images was approximately equal to normal ones.
Perez et al. [24] previously demonstrated the benefit of data augmentation process on the

https://www.uco.es/kdis/melanoma-capsnet/
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melanoma diagnosis problem for constructing more robust CNN models. Consequently,
this part of the experimental study aimed at analyzing whether the architectures can be
benefited when applying data augmentation as occur with CNN models.

Finally, the performance of our proposal was compared against the following CNN
models that have previously been applied in melanoma diagnosis: InceptionV3 [39],
DenseNet [49], VGG [50], MobileNet [51], ResNet [52] and EfficientNet [41].

Table 3 shows the basic configuration used for training all the models along the
experiments; α, β1, β2 were set to the values recommended in the original papers; a batch
of size 8 was used due the medium size of the datasets; Xavier method [53] was used
to initiate the models; and for non-adaptive optimization methods the learning rate was
reduced by a factor of 0.2 when the performance reaches a plateau. Training data were
augmented by using random data augmentation techniques, such as rotation, flip and crop
transformations. In addition, test data were increased in a different manner. Each test
image is augmented 10 times, and the remaining image is linked to the original one. Then,
the final prediction is achieved by using a soft-voting strategy.

4.2. Evaluation Process

Regarding the evaluation metrics, Matthews Correlation Coefficient (MCC) and the
area under the curve (AUC) values for receiver operator characteristic (ROC) were used
to measure the predictive performance of the models, which are commonly applied in
Bioinformatics [54,55]. AUC has been recommended in preference to overall accuracy
for “single number” evaluation of machine learning algorithms [56]. In addition, MCC
and AUC are not biased against the minority class and are commonly used as evaluation
metrics to assess the average performance of classifiers on data with imbalanced class
distribution [57,58], such as those found in melanoma diagnosis. Both metrics summarize
the overall classification performance in a single value for each CNN model. MCC is in the
range [−1, 1], where 1 represents a perfect prediction, 0 indicates a performance similar
to a random prediction, and −1 an inverse prediction. On the other hand, AUC ranges
within [0, 1], where 1 represents a perfect model, 0 the opposite, and 0.5 indicates a random
prediction. Nevertheless, it is noteworthy that MCC was used as main metric to measure
the predictive performance of the models for melanoma diagnosis in this work, which has
been considered before in Alzahrani et al. [59] and Pérez et al. [13].

The results of performing a 3-times 10-fold cross validation were averaged. Finally,
significant differences were detected by conducting non-parametric statistical tests with
95% confidence. Friedman’s test [60–64] was carried out when a multiple comparison was
needed. After that, Hommel’s test [65] was applied to detect significant differences with a
control algorithm. On the other hand, Wilcoxon Signed-Rank [66] was performed when
only two methods were compared.

4.3. Software and Hardware

As for the baseline CapsNet, we used the source code by Xifeng Guo at GitHub
(https://bit.ly/3isOBYx, accessed on 1 September 2019). Moreover, the source code to re-
produce our work uses Keras v2.2 and TensorFlow v1.12 [67], and can be found at Github
(https://bit.ly/3iKOc47, accessed on 25 September 2021). The experimental study was per-
formed in four GPUs Geforce GTX 1080-Ti and four GPUs NVIDIA Geforce RTX 2080-Ti,
Intel Core i7-8700K Processor and 64 GB DDR4 RAM.

4.4. Experimental Results

In this section, the most remarkable results of the extensive experimental study are
shown; the rest of the experimental study can be consulted at the available web page.
Table 4 shows the performance regarding the three diferent optimization algorithms. Re-
sults indicated that no significant differences were encountered, showing that CapsNet is
not so sensitive regarding the optimization algorithm used; Friedman’s test was conducted
with two degree of freedom, resulting in a Friedman’s statistic equal to 4.136 and p-value

https://bit.ly/3isOBYx
https://bit.ly/3iKOc47
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equal to 0.126. However, it is worth noting that SGD optimizer occupied the first position of
the ranking computed by Friedman’s test, meaning that in average CapsNet attained better
results when using this optimizer. Consequently, SGD was used as the default optimizer in
the rest of experiments.

Table 4. Average MMC values obtained by base-line CapsNet and the three optimization algorithms.
The last row shows the average ranking computed by Friedman’s test. No significant differences
were encountered. The best MCC values and the best ranking were highlighted in bold typeface.

Dataset ADAM RMSPROP SGD

HAM10000 0.065 0.066 0.242
ISBI2016 0.000 0.000 0.000
ISBI2017 0.000 0.000 0.000

MED-NODE 0.142 0.182 0.308
MSK-1 0.015 0.016 0.026
MSK-2 0.072 0.024 0.029
MSK-3 0.000 0.000 0.000
MSK-4 0.014 0.014 0.017

PH2 0.116 0.159 0.458
UDA-1 0.042 0.089 0.214
UDA-2 0.132 0.148 0.123

Ranking 2.409 2.045 1.545

The second part of the experimental study aimed to found the best dimension to
primary caps and the number of features for class caps. Table 5 shows the hyper-tuning
process on CapsNet architecture. The settings with 16 units in primary caps and 64 features
in class caps obtained the first position 8 times, and its closest rival achieved it only 4 times.
However, the results indicated that no significant differences were encountered; Friedman’s
test was conducted with fifteen degree of freedom, resulting in a Friedman’s statistic equal
to 17.944 and p-value equal to 2.656 × 10−1. The average ranking showed that the best
performance was achieved with 16 units for primary caps and 64 features for each class
cap. Furthermore, in this work, the Borda’s method [68] was used to compute the average
rankings of the individual hyper-parameters. This method is the simplest ranking aggrega-
tion method that assigns a score to an element in correspondence to the position in which
this element appears in each ranking. Borda’s method obtained the ranking for primary
caps, being 16, 32, 24 and 8, with 16 as the best and 8 the worst; whereas for class caps was
64, 32, 48 and 16, being 64 the best and 16 the worst. Again, Borda’s method obtained that
16 units is the best value for primary caps and 64 for class caps, confirming that a large
number of features in class caps means a better predictive performance. Consequently,
the best configuration (16 units in primary Caps and 64 features for each class cap) were
applied in the rest of the experimental study.

The third part of the experimental study aimed to compare the best configuration for
CapsNet model with the proposal. Table 6 shows the average MCC values on test data by
using the two models. Firstly, it was observed that the proposed architecture outperformed
the base-line CapsNet in all datasets, except in UDA-1 and MSK-3 datasets. In some
datasets the differences in performances are remarkable, e.g., in MSK-1 the predictive
performance attained by our proposal was 995% higher than CapsNet, in MSK-4 and
MSK-2 our proposal was 511% and 485% higher than the base line CapsNet, respectively.
In UDA-1 was the only case where our proposal ended 17% behind the base line. In MSK-3
dataset, however, both models presented a performance similar to a classifier making
random predictions. In this first comparison, significant differences in performance were
encountered, indicating the superiority of our proposal; Wilcoxon’ test rejected the null
hypothesis with a p-value equal to 3.346 × 10−3. Secondly, CapsNet and the proposal
were also compared by conducting a data augmentation process both on training and test
data (as described in Section 4.1). In this case, the results showed that the proposed model
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outperformed CapsNet in all the datasets applying data augmentation. The differences
between our proposal and the base line model were smaller, but still significant; in MSK-3,
ISBI2016 and MSK-1 were about 49%, 48% and 39%, respectively. Our proposal achieved
7% better performance than the base line in UDA-1 by applying data augmentation, making
our proposal undoubtedly superior in the benchmarks employed. Furthermore, the new
architecture obtained a significantly better performance; Wilcoxon’s test rejected the null
hypothesis with a p-value equal to 1.673 × 10−3.

The four part of the experimental study focused on comparing the proposal with vari-
ous CNN models that have previously been used in melanoma diagnosis. We analyzed the
MCC and the AUC values in two scenarios: Applying data augmentation and combining
data augmentation and transfer learning. Firstly, we analyzed EfficientNet from B0 to B7
in order to select best version. The Friedman’s test did not reject the null hypothesis with
a p-value equal to 0.841; Friedman’s statistic was equal to 3.447 with seven degrees of
freedom. However, EfficientNet-B1 obtained the first position in the ranking, followed by
EfficientNet-B0. These results are showed at the available web page.

Table 7 shows the average MCC values on test data attained by each model; in this
case, a data augmentation process was conducted for all the models. It was observed
that the proposal attained the best resultsthe 73% of the time. In addition, the individual
percentage improvement of MEL-CAP compared to the state-of-the-arts CNN models are
shown. In MSK-3 our architecture achieve a performance 244% and 194% higher than
VGG19 and ResNet50, respectively. In UDA-2, the proposal’s performance was higher than
the rest of the models in at least 17%, and going up to 56% compared with EfficientNet-B1.
The biggest differences were located in ISBI2017 and MED-NODE, where our proposal
achieved 719% and 511% higher performance than ResNet50. The best performance in
the experimental study was achieved in PH2, where all the models obtained above 58.7%
of MCC, but even there our proposal was 55% higher than VGG19. The Friedman’s test
rejected the null hypothesis with a p-value equal to 6.461 × 10−6; Friedman’s statistic was
equal to 34.091 with six degrees of freedom. The ranking row of the table shows the average
ranking computed by Friedman’s test, and this ranking shows that the new model obtained
the first position, indicating that this model in average achieved a better performance than
the rest of models. Afterwards, the Hommel’s post-hoc test was conducted by considering
the proposal as the control method, and the results showed the proposal significantly
outperformed the rest of the state-of-the-art CNN models.

Table 8 shows the average AUC values on test data attained by each model. The
proposed architecture achieved the best average performance in all cases. In MSK-1 our
architecture achieve a performance 50% higher than EfficientNet-B1 and ResNet50. In
UDA-2, the proposal’s performance was higher than the rest of the models in at least 11%.
The biggest differences were located in ISBI2017, where our proposal achieved 93% higher
performance than ResNet50. The best performance in the experimental study was achieved
in PH2, where all the models obtained above 87% of AUC values. The Friedman’s test
rejected the null hypothesis with a p-value equal to 3.829 × 10−8; Friedman’s statistic was
equal to 45.438 with six degrees of freedom. The ranking row of the table shows the average
ranking computed by Friedman’s test, and this ranking shows that the new model obtained
the first position, indicating that this model in average achieved a better performance than
the rest of models. Afterwards, the Hommel’s post-hoc test was conducted by considering
the proposal as the control method, and the results showed the proposal significantly
outperformed the rest of the state-of-the-art CNN models.
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Table 5. Average MCC values on test data applying the hyper-tuning process on CapsNet architecture. The columns are named with two numbers: First the number of units in primary
caps and second the number of features in class caps. The last row shows the average ranking computed by Friedman’s test. The best MCC values and the best ranking were highlighted in
bold typeface. No significant differences were encountered.

Dataset 8-16 8-32 8-48 8-64 16-16 16-32 16-48 16-64 24-16 24-32 24-48 24-64 32-16 32-32 32-48 32-64

HAM10000 0.242 0.250 0.255 0.257 0.240 0.240 0.246 0.277 0.230 0.233 0.239 0.242 0.237 0.244 0.240 0.236
ISBI2016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ISBI2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MED-NODE 0.308 0.322 0.376 0.336 0.313 0.342 0.336 0.412 0.344 0.361 0.369 0.355 0.346 0.346 0.347 0.347
MSK-1 0.026 0.036 0.030 0.045 0.032 0.042 0.054 0.045 0.046 0.046 0.050 0.029 0.051 0.035 0.031 0.028
MSK-2 0.029 0.027 0.029 0.054 0.029 0.029 0.037 0.047 0.036 0.036 0.050 0.027 0.050 0.036 0.017 0.026
MSK-3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSK-4 0.017 0.002 0.021 0.029 0.021 0.036 0.021 0.044 0.043 0.021 0.017 0.021 0.033 0.033 0.021 0.021

PH2 0.458 0.428 0.412 0.432 0.437 0.455 0.434 0.516 0.455 0.455 0.455 0.455 0.455 0.451 0.451 0.437
UDA-1 0.214 0.210 0.225 0.225 0.218 0.201 0.236 0.377 0.200 0.207 0.187 0.199 0.199 0.206 0.201 0.191
UDA-2 0.123 0.187 0.122 0.096 0.168 0.251 0.140 0.236 0.201 0.201 0.201 0.264 0.201 0.207 0.201 0.264

Ranking 10.182 10.455 8.955 7.909 10.045 7.909 7.909 4.091 8.227 7.955 8.182 8.727 7.545 7.727 9.818 10.364
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Table 6. Average MCC values on test data by using the hyper-tuned CapsNet architecture; CAP
represents the base-line CapsNet and MEL-CAP represents the proposal; the last three columns show
a comparison between the same architecture but only applying data augmentation both in train and
test data. Moreover, we showed the percent improvement of the proposal compared to base-line
CapsNet, e.g., MEL-CAP achieved 78% higher performance than CAP in HAM10000. The best MCC
values were highlighted in bold typeface. The labels “Inf” represent those cases where a base-line
model obtained an average MCC value equal to zero.

Dataset CAP MEL-CAP % CAP MEL-CAP %

HAM10000 0.277 0.493 78.0 0.698 0.896 28.4
ISBI2016 0.000 0.234 Inf 0.499 0.740 48.3
ISBI2017 0.000 0.184 Inf 0.640 0.819 28.0

MED-NODE 0.412 0.485 17.7 0.608 0.671 10.4
MSK-1 0.045 0.493 995.6 0.575 0.801 39.3
MSK-2 0.047 0.275 485.1 0.600 0.694 15.7
MSK-3 0.000 0.000 0.0 0.525 0.782 49.0
MSK-4 0.044 0.269 511.4 0.694 0.752 8.4

PH2 0.516 0.644 24.8 0.849 0.909 7.1
UDA-1 0.377 0.310 −17.8 0.503 0.542 7.8
UDA-2 0.236 0.559 136.9 0.531 0.601 13.2

p-value 3.346 × 10−3 1.673 × 10−3

Table 7. Average MCC values on test data obtained by the proposal and state-of-the-art CNN models when applying
data augmentation. The best MCC value attained in each dataset is highlighted in bold typeface. The percentage means
the difference between MEL-CAP versus the other CNN models, e.g., MEL-CAP attained 20% percent of improvement
compared to EfficientNet-B1 in HAM10000 dataset. In addition, it is shown the overall average and the ranking computed
by Friedman’s test. Last row shows multiple comparisons between the new architecture (control model) and state-of-the-art
CNN models through Hommel’s post-hoc test.

Dataset InceptionV3 DenseNet201 VGG19 MobileNet ResNet50 EfficientNet-B1 MEL-CAP

HAM10000 0.873 (+3%) 0.753 (+19%) 0.649 (+38%) 0.760 (+18%) 0.510 (76%) 0.746 (20%) 0.896
ISBI2016 0.655 (+13%) 0.656 (+13%) 0.511 (+45%) 0.575 (+29%) 0.403 (+84%) 0.798 (−7%) 0.740
ISBI2017 0.749 (+9%) 0.715 (+15%) 0.575 (+42%) 0.744 (+10%) 0.100 (+719%) 0.800 (2%) 0.819

MED-NODE 0.618 (+9%) 0.514 (+31%) 0.540 (+24%) 0.660 (+2%) 0.100 (+571%) 0.502 (34%) 0.671
MSK-1 0.754 (+6%) 0.792 (+1%) 0.610 (+31%) 0.785 (+2%) 0.466 (+72%) 0.481 (67%) 0.801
MSK-2 0.518 (+34%) 0.631 (+10%) 0.428 (+62%) 0.531 (+31%) 0.358 (+94%) 0.635 (9%) 0.694
MSK-3 0.565 (+38%) 0.588 (+33%) 0.227 (+244%) 0.532 (+47%) 0.266 (+194%) 0.903 (−13%) 0.782
MSK-4 0.693 (+9%) 0.696 (+8%) 0.467 (+61%) 0.596 (+26%) 0.370 (+103%) 0.573 (31%) 0.752

PH2 0.840 (+8%) 0.778 (+17%) 0.587 (+55%) 0.902 (+1%) 0.819 (+11%) 0.862 (5%) 0.909
UDA-1 0.489 (+11%) 0.501 (+8%) 0.555 (−2%) 0.535 (+1%) 0.430 (+26%) 0.430 (12%) 0.542
UDA-2 0.471 (+28%) 0.408 (+47%) 0.412 (+46%) 0.403 (+49%) 0.514 (+17%) 0.386 (56%) 0.601

Ranking 3.636 3.818 5.273 3.727 6.273 4.000 1.273

p-values 1.029 × 10−2 1.029 × 10−2 7.044 × 10−5 1.029 × 10−2 3.417 × 10−7 1.027 × 10−2 -
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Table 8. Average AUC values on test data obtained by the proposal and state-of-the-art CNN models when applying
data augmentation. The best AUC values and the best ranking were highlighted in bold typeface.

Dataset InceptionV3 DenseNet201 VGG19 MobileNet ResNet50 EfficientNet-B1 MEL-CAP

HAM10000 0.876 (+2%) 0.875 (+2%) 0.778 (+15%) 0.875 (+2%) 0.869 (+3%) 0.862 (+4%) 0.895
ISBI2016 0.849 (+6%) 0.842 (+6%) 0.771 (+16%) 0.855 (+5%) 0.646 (+39%) 0.878 (+2%) 0.896
ISBI2017 0.862 (+6%) 0.878 (+4%) 0.820 (+12%) 0.858 (+7%) 0.474 (+93%) 0.863 (+6%) 0.915

MED-NODE 0.767 (+7%) 0.780 (+5%) 0.652 (+26%) 0.765 (+7%) 0.420 (+96%) 0.678 (+21%) 0.822
MSK-1 0.821 (+8%) 0.862 (+3%) 0.776 (+14%) 0.844 (+5%) 0.590 (+50%) 0.591 (+50%) 0.886
MSK-2 0.831 (+5%) 0.841 (+3%) 0.727 (+20%) 0.829 (+5%) 0.582 (+49%) 0.703 (+24%) 0.869
MSK-3 0.921 (+3%) 0.920 (+3%) 0.896 (+6%) 0.880 (+8%) 0.758 (+25%) 0.927 (+2%) 0.946
MSK-4 0.845 (+10%) 0.886 (+5%) 0.842 (+10%) 0.882 (+5%) 0.687 (+35%) 0.764 (+21%) 0.926

PH2 0.882 (+6%) 0.909 (+3%) 0.905 (+3%) 0.922 (+2%) 0.871 (+7%) 0.880 (+6%) 0.936
UDA-1 0.770 (+6%) 0.780 (+4%) 0.723 (+13%) 0.809 (+1%) 0.649 (+25%) 0.673 (+21%) 0.814
UDA-2 0.638 (+18%) 0.630 (+20%) 0.650 (+16%) 0.678 (+12%) 0.637 (+19%) 0.679 (+11%) 0.756

Ranking 3.727 3.227 5.273 3.500 6.727 4.545 1.000

p-values 9.206 × 10−3 1.561 × 10−2 1.754 × 10−5 1.329 × 10−2 3.028 × 10−9 4.744 × 10−4 -

Table 9 shows the average MCC on test data attained by each model when applying
data augmentation and transfer learning. The proposed architecture achieved the best aver-
age performance in all cases, except in ISBI2016, ISBI2017 and PH2. The biggest differences
were located in MED-NODE, where our proposal achieved 166% higher performance than
ResNet50. In UDA-2, the proposal’s performance was higher than the rest of the models in
at least 15%. The best performance in the experimental study was achieved in PH2, where
all the models obtained above 84% of MCC values. The Friedman’s test rejected the null hy-
pothesis with a p-value equal to 3.189 × 10−8; Friedman’s statistic was equal to 45.838 with
six degrees of freedom. The ranking row of the table shows the average ranking computed
by Friedman’s test, and this ranking shows that the new model obtained the first position,
indicating that this model in average achieved a better performance than the rest of models.
Afterwards, the Hommel’s post-hoc test was conducted by considering the proposal as the
control method, and the results showed the proposal significantly outperformed the rest of
the state-of-the-art CNN models, except MobileNet and DenseNet.

Table 9. Average MCC values on test data obtained by the proposal and state-of-the-art CNN models when applying data
augmentation and transfer learning. The best MCC values and the best ranking were highlighted in bold typeface.

Dataset InceptionV3 DenseNet201 VGG19 MobileNet ResNet50 EfficientNet-B1 MEL-CAP

HAM10000 0.940 (+4%) 0.954 (+3%) 0.601 (+63%) 0.945 (+3%) 0.870 (+12%) 0.809 (+21%) 0.978
ISBI2016 0.802 (+10%) 0.850 (+3%) 0.625 (+41%) 0.850 (+3%) 0.385 (+128%) 0.945 (−7%) 0.879
ISBI2017 0.829 (+8%) 0.854 (+5%) 0.738 (+22%) 0.875 (+3%) 0.414 (+117%) 0.929 (−3%) 0.899

MED-NODE 0.732 (+5%) 0.698 (+10%) 0.486 (+58%) 0.741 (+4%) 0.289 (+166%) 0.568 (+35%) 0.768
MSK-1 0.868 (+3%) 0.880 (+1%) 0.708 (+26%) 0.886 (+0%) 0.350 (+154%) 0.598 (+49%) 0.890
MSK-2 0.805 (+9%) 0.830 (+5%) 0.561 (+56%) 0.860 (+2%) 0.350 (+150%) 0.738 (+18%) 0.874
MSK-3 0.959 (+4%) 1.000 0.911 (+10%) 1.000 0.606 (+65%) 1.000 1.000
MSK-4 0.844 (+8%) 0.864 (+5%) 0.825 (+10%) 0.890 (+2%) 0.482 (+89%) 0.710 (+28%) 0.910

PH2 0.963 (+3%) 0.960 (+3%) 0.923 (+8%) 0.963 (+3%) 0.836 (+19%) 1.000 (−1%) 0.993
UDA-1 0.720 (+13%) 0.764 (+7%) 0.585 (+40%) 0.781 (+5%) 0.463 (+76%) 0.632 (+29%) 0.817
UDA-2 0.413 (+60%) 0.522 (+27%) 0.477 (+39%) 0.577 (+15%) 0.485 (+36%) 0.452 (+46%) 0.661

Ranking 4.409 3.273 5.818 2.500 6.545 4.045 1.409

p-values 4.506 × 10−3 8.610 × 10−2 8.482 × 10−6 2.363 × 10−1 1.475 × 10−7 1.263 × 10−2 -

Table 10 shows the average AUC values on test data attained by each model when
applying data augmentation and transfer learning. The proposed architecture achieved
the best average performance in all cases, except in ISBI2016 and PH2. The biggest differ-
ences were located in MSK-1, where our proposal achieved 40% higher performance than
ResNet50. The best performance in the experimental study was achieved in PH2, where all
the models obtained above 93% of AUC. The Friedman’s test rejected the null hypothesis
with a p-value equal to 3.518 × 10−8; Friedman’s statistic was equal to 45.623 with six
degrees of freedom. The ranking row of the table shows the average ranking computed
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by Friedman’s test, and this ranking shows that the new model obtained the first position,
indicating that this model in average achieved a better performance than the rest of models.
Afterwards, the Hommel’s post-hoc test was conducted by considering the proposal as the
control method, and the results showed the proposal significantly outperformed the rest of
the state-of-the-art CNN models, except MobileNet and DenseNet.

Table 10. Average top AUC values on test data obtained by the proposal and state-of-the-art CNN models when applying
data augmentation and transfer learning. The best AUC values and the best ranking were highlighted in bold typeface.

Dataset InceptionV3 DenseNet201 VGG19 MobileNet ResNet50 EfficientNet-B1 MEL-CAP

HAM10000 0.990 (+0%) 0.993 (+0%) 0.841 (+18%) 0.992 (+0%) 0.960 (+4%) 0.913 (+9%) 0.994
ISBI2016 0.936 (+3%) 0.946 (+2%) 0.843 (+14%) 0.950 (+1%) 0.728 (+32%) 0.990 (−3%) 0.961
ISBI2017 0.957 (+2%) 0.962 (+2%) 0.916 (+7%) 0.963 (+1%) 0.748 (+31%) 0.960 (+2%) 0.977

MED-NODE 0.868 (+3%) 0.844 (+5%) 0.734 (+21%) 0.864 (+3%) 0.640 (+39%) 0.763 (+17%) 0.890
MSK-1 0.941 (+2%) 0.957 (+1%) 0.864 (+12%) 0.950 (+1%) 0.687 (+40%) 0.697 (+38%) 0.964
MSK-2 0.935 (+3%) 0.943 (+2%) 0.802 (+20%) 0.945 (+2%) 0.702 (+37%) 0.843 (+14%) 0.961
MSK-3 0.995 (+1%) 1.000 0.986 (+1%) 1.000 0.850 (+18%) 1.000 1.000
MSK-4 0.954 (+3%) 0.960 (+2%) 0.927 (+6%) 0.967 (+1%) 0.778 (+26%) 0.858 (+14%) 0.979

PH2 0.991 (+1%) 0.991 (+1%) 0.981 (+2%) 0.991 (+1%) 0.934 (+7%) 1.000 (0%) 0.998
UDA-1 0.875 (+4%) 0.891 (+2%) 0.808 (+13%) 0.899 (+1%) 0.743 (+23%) 0.811 (+12%) 0.912
UDA-2 0.700 (+21%) 0.738 (+15%) 0.738 (+15%) 0.779 (+9%) 0.742 (+14%) 0.739 (+15%) 0.847

Ranking 4.364 3.273 5.864 2.591 6.455 4.136 1.318

p-values 3.783 × 10−3 6.769 × 10−2 4.015 × 10−6 1.671 × 10−1 1.475 × 10−7 6.652 × 10−3 -

4.5. Explanation of the Predictions

The results showed that our proposal was effective for solving the melanoma diagnosis
problem. In addition, we encourage the explanations of the individual predictions and as a
result, in this work the areas where the proposal paid more attention were showed. To do
this, SHAP and LIME were applied. The first one determines how much a pixel contributes
to the diagnosis in comparison with the overall result. On the other hand, LIME consists
in identifying an interpretable model over the interpretable representation that is locally
faithful to the classifier. As a result, the super-pixels with positive weight towards the
predicted class were highlighted, as they give intuition as to why the model would think
that class should be selected. Figure 2 shows how cluster of pixels were activated in the
proposed architecture. The first image was classified as nevus, meanwhile the another one
was classified as melanoma. Red pixels represent positive Shapley values that increase
the probability of being melanoma, while blue pixels represent negative Shapley values
that increase the probability of being non-melanoma. On the other hand, the weight of
each superpixel is showed by LIME, where blue pixels mean those that most support the
prediction and red ones the lower support. Both analyses corroborated that the proposed
model focused in the lesion itself.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Model-agnostic interpretation tools. (a) Nevus, (b) SHAP, (c) LIME, (d) Melanoma, (e) SHAP, (f) LIME.

5. Conclusions

In this work, a novel neural network architecture for diagnosing melanoma has been
proposed, allowing the early extraction of richer abstract features before passing them
to deeper layers. The use of CapsNet combined with convolutional blocks allowed a
better learning of the representations. By this way, better predictive features could be
extracted, thus facilitating the learning of better abstract and discriminative features for
melanoma diagnosis. The proposed architecture is flexible regarding the design of its blocks.
Consequently, custom networks could easily be designed, for example by employing
another convolutional block with a simpler or more complex internal structure. Moreover,
the predictive features from CapsNet could be used to feed other well-known models,
such as Support Vector Machine, which has proven to achieve high performance [69]. The
results corroborated that data augmentation and transfer learning are suitable techniques
to improve the proposal and all studied CNN models, overcoming common issues in
melanoma diagnosis, such as small datasets and imbalance data. Finally, the proposed
model significantly outperformed state-of-the-art CNN models that haven previously been
applied for solving melanoma diagnosis problem, confirming the potential that possess
this novel neural network architecture.

The research on CapsNet is still at early stage and, therefore, few application on
real-world problems can be found so far. Consequently, more research and extensive
experimental study should be conducted in order to demonstrate and confirm the full
potential of this neural network architecture. As future works, we will also design ensemble
learning techniques for a better application in small and medium problems. Finally, we
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encourage further development of the research line that combines the proposal and other
CNN models for a better melanoma diagnosis.
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