Supplementary Material: Liquid Biopsy-Based ExooncomiRNAs Can Predict Prostate Cancer Aggressiveness

Xavier Ruiz-Plazas, Antonio Altuna-Coy, Marta Alves-Santiago, José Vila-Barja, Joan Francesc García-Fontgivell, Salomé Martínez-González, José Segarra-Tomás and Matilde R. Chacón

Table S1. List of the 14 selected exo-oncomiRNAs and fold-change that accomplished the following criteria: Ct < 33 and > 1.8 fold over- expression when comparing PC-3 and/or LNCaP cell lines treated with sTWEAK.

Fold Change							
Exo-oncomiRNA	PC-3 vs PC-3 + sTWEAK	LNCaP vs LNCaP + sTWEAK	PC-3 + sTWEAK vs LNCaP + sTWEAK				
miR-125b-1-3p	-	1.83	-				
miR-193b-3p	-	-	14.03				
miR-221-3p	3.87	-	-				
miR-222-3p	2.05	-	-				
miR-23a-3p	-	-	5.24				
miR-27a-3p	-	2.25	-				
miR-29a-3p	-	-	2.14				
miR-31-5p	1.82	-	-				
miR-497-5p	-	-	3.67				
miR-643	2.96	-	-				
miR-663b	-	2.27	-				
miR-940	2.11	-	-				
miR-9-5p	-	2.81	-				
miR-99a-3p	-	2.95	-				

Table S2. List of the 9 out of 14 selected exo-oncomiRNAs that did not show differences when comparing urine or semen biofluids from PCa patients stratified by risk (low or high).

ISUP-GG Classification								
Low-Risk (Group I and II) N = 57				High-Risk (Group III, IV & V) N = 40				
	Mean	±	S.D	Mean	±	S.D	<i>p</i> -Value	
Exo-oncomiRNAs in se	emen - Relative exp	pression levels						
miR-125b-2-3p	1.49	±	0.78	1.99	±	1.58	0.408	
miR-193b-3p	0.99	±	0.54	0.99	±	0.42	0.723	
miR-23a-3p	1.54	±	0.69	2.15	±	3.54	0.439	
miR-27a-3p	1.66	±	1.02	1.44	±	0.80	0.487	
miR-29a-5p	2.05	±	1.29	1.98	±	1.32	0.865	
miR-497-5p	0.99	±	0.58	0.91	±	0.34	0.844	
miR-643	0.44	±	0.39	0.63	±	0.52	0.185	
miR-663b	1.68	±	2.52	2.68	±	4.68	0.865	
miR-9-5p	0.98	±	0.80	2.34	±	2.83	0.131	
miR-940	1.40	±	2.41	2.46	±	2.89	0.265	
miR-99a-3p	1.25	±	0.66	1.27	±	0.52	0.762	
Exo-oncomiRNAs in u	rine - Relative exp	ression levels						
miR-125b-2-3p	0.05	±	0.06	0.04	±	0.03	0.549	
miR-221-3p	0.03	±	0.03	0.02	±	0.01	0.555	
miR-222-3p	0.03	±	0.04	0.02	±	0.03	0.838	
miR-23a-3p	0.07	±	0.04	0.06	±	0.03	0.404	
miR-29a-3p	0.03	±	0.04	0.02	±	0.03	0.085	
miR-31-5p	0.02	±	0.01	0.02	±	0.02	0.222	
miR-497-5p	0.02	±	0.03	0.02	±	0.02	0.476	
miR-643	0.30	±	1.12	0.13	±	0.28	0.716	
miR-663b	0.04	±	0.08	0.02	±	0.04	0.500	
miR-9-5p	0.12	±	0.16	0.16	±	0.28	0.583	

<i>Cancers</i> 2020 , 13,						S	2 of S8
miR-940 miR-99a-3p	0.10 0.03	± ±	0.12 0.05	0.12 0.02	± ±	0.15 0.01	0.640 0.713
		Ta	ble S3. Predicted	l miR-221-3p targe	ets.		
Target Gene	e Symbol Gene Name Biological Function Role Associated			d with Cancer			
TCF1	2	Transcripti	ion Factor 12	May participate in r specific gene expre formation of l	egulating lineage- ssion through the neterodimers	Colorectal cancer survival [1] Ovarian cancer cell proliferation migration and invasion [2] High expression contributes to gas cancer development [3] Decreased expression associated v PCa biochemical recurrence [4	
SNAP.	23	Synap Associated	otosome d Protein 23	Regulator o vesicle dockin	f transport g and fusion	Supresses cervical cancer progress [5] Hiperexpression promotes ovari cancer [6].	
DPP	8	Dipe Pepti	eptidyl idase 8	May play a r activation and in	ole in T-cell nmune function	Inhibition induc multiple m Expression may aggressive disease ovarian c	es cell death in yeloma [7] be related to less in advanced-stage rancer [8]
ARN	Т	A Hydrocarbon F Trans	aryl Receptor Nuclear slocator	The protein is for transcriptional reg inducible	s a co-factor gulation by hypoxia- factor 1	Alters gene expression of tumo growth-related protein COX-2 i squamous cell carcinoma [9] Increased activity promotes tum progression [10]	
NLK	(Nem Kii	io Like nase	Serine/threor kinase that regula transcription factors v fate deterr	nine-protein ntes a number of with key roles in cell nination.	mRNA and protein expression was significantly increased in laryng carcinoma tissues compared with those in adjacent tissues [11] Inhibits androgen receptor signalir in PCa cells [12]	
ZFP36	L2	ZFP3 Finger Pro	36 Ring otein Like 2	Nuclear transc most likely function response to gr	ription factor is in regulating the rowth factors	Promotes pancreatic cancer aggressiveness[13]	
FNIP	2	Foll Interactin	iculin ng Protein 2	May play a r metabolism and nu regulating the AMPK	ole cellular utrient sensing by C-mechanistic target	Possible role in Kidney tumor progression [14] Somatic mutation associated wi gastric and colon cancers [15]	
ESR1	1	Estr Rece	rogen eptor 1	Essential f development and rep	or sexual productive function	Mutation are associated w	
НІРК	71	Homee Interacting P	odomain rotein Kinase 1	Phosphc homeodomain trans may also function as homeodomain tran	orylates cription factors and s a co-repressor for ascription factors	Down regulation in human colore adenocarcinoma cells modulate resistance to Methotrexate [17 Regulation of breast cancer stem Heterogeneity via targeting HIPK1 Catenin Axis [18]	
SCARI	SCARB2 Scavenger Receptor Class B Member 2		May participate transportation and th endosomal/ compar	e in membrane ne reorganization of lysosomal rtment	Role in the regulation of intracell vesicle trafficking of lysosomes endosomes in human breast cance [19]		

References

Mullany, L.E.; Herrick, J.S.; Wolff, R.K.; Stevens, J.R.; Samowitz, W.; Slattery, M.L. Transcription factor-1. microRNA associations and their impact on colorectal cancer survival. Mol. Carcinog. 2017, 56, 2512-2526, doi:10.1002/mc.22698.

compartment

- 2. Gao, S.; Bian, T.; Su, M.; Liu, Y.; Zhang, Y. miR-26a inhibits ovarian cancer cell proliferation, migration and invasion by targeting TCF12. Oncol. Rep. 2019, 43, 368-374, doi:10.3892/or.2019.7417.
- Wang, X.; Gao, S.; Xie, F.; Li, W.; Li, M.; Yan, N.; Gao, T.; Fang, L. High expression of TCF12 contributes to 3. gastric cancer development via being target regulated by miR-183 and activating PI3K/AKT pathway. J. Cell. Biochem. 2019, 120, 13903-13911, doi:10.1002/jcb.28664.
- 4. Chen, Q.-B.; Liang, Y.-K.; Zhang, Y.-Q.; Jiang, M.-Y.; Han, Z.-D.; Liang, Y.-X.; Wan, Y.-P.; Ying-Ke, L.; He, H.-C.; Zhong, W.-D. Decreased expression of TCF12 contributes to progression and predicts biochemical recurrence in patients with prostate cancer. Tumor Biol. 2017, 39, doi:10.1177/1010428317703924.
- 5. Zhu, B.; Zhang, Q.; Wu, Y.; Luo, J.; Zheng, X.; Xu, L.; Lu, E.; Qu, J.; Ren, B. SNAP23 suppresses cervical cancer progression via modulating the cell cycle. Gene 2018, 673, 217-224, doi:10.1016/j.gene.2018.06.028.

- Sun, Q.; Huang, X.; Zhang, Q.; Qu, J.; Shen, Y.; Wang, X.; Sun, H.; Wang, J.; Xu, L.; Chen, X.; et al. SNAP23 promotes the malignant process of ovarian cancer. *J. Ovarian Res.* 2016, *9*, 1–9, doi:10.1186/s13048-016-0289-9.
- Sato, T.; Tatekoshi, A.; Takada, K.; Iyama, S.; Kamihara, Y.; Jawaid, P.; Rehman, M.U.; Noguchi, K.; Kondo, T.; Kajikawa, S.; et al. DPP8 is a novel therapeutic target for multiple myeloma. *Sci. Rep.* 2019, *9*, 1–8, doi:10.1038/s41598-019-54695-w.
- 8. Brunetti, M.; Holth, A.; Panagopoulos, I.; Staff, A.C.; Micci, F.; Davidson, B. Expression and clinical role of the dipeptidyl peptidases DPP8 and DPP9 in ovarian carcinoma. *Virchows Archiv* **2018**, 474, 177–185, doi:10.1007/s00428-018-2487-x.
- Chang, K.-Y.; Shen, M.-R.; Lee, M.-Y.; Wang, W.-L.; Su, W.-C.; Chang, W.-C.; Chen, B.-K. Epidermal Growth Factor-activated Aryl Hydrocarbon Receptor Nuclear Translocator/HIF-1β Signal Pathway Up-regulates Cyclooxygenase-2 Gene Expression Associated with Squamous Cell Carcinoma. *J. Biol. Chem.* 2009, 284, 9908–9916, doi:10.1074/jbc.m806210200.
- 10. Semenza, G.L. HIF-1 and tumor progression: pathophysiology and therapeutics. *Trends Mol. Med.* **2002**, *8*, S62–S67, doi:10.1016/s1471-4914(02)02317-1.
- Shen, N.; Duan, X.-H.; Wang, X.-L.; Yang, Q.-Y.; Feng, Y.; Zhang, J.-X. Effect of NLK on the proliferation and invasion of laryngeal carcinoma cells by regulating CDCP1. *Eur. Rev. Med. Pharmacol. Sci* 2019, 23, 6226– 6233.
- 12. Emami, K.H.; Brown, L.G.; Pitts, T.E.; Sun, X.; Vessella, R.L.; Corey, E. Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. *Prostate* **2009**, *69*, 1481–1492, doi:10.1002/pros.20998.
- Yonemori, K.; Seki, N.; Kurahara, H.; Osako, Y.; Idichi, T.; Arai, T.; Koshizuka, K.; Kita, Y.; Maemura, K.; Natsugoe, S. ZFP36L2promotes cancer cell aggressiveness and is regulated by antitumormicroRNA-375in pancreatic ductal adenocarcinoma. *Cancer Sci.* 2017, 108, 124–135, doi:10.1111/cas.13119.
- 14. Hasumi, H.; Baba, M.; Hasumi, Y.; Lang, M.; Huang, Y.; Oh, H.F.; Matsuo, M.; Merino, M.J.; Yao, M.; Ito, Y.; et al. Folliculin-interacting proteins Fnip1 and Fnip2 play critical roles in kidney tumor suppression in cooperation with Flcn. *Proc. Natl. Acad. Sci.* **2015**, *112*, E1624–E1631, doi:10.1073/pnas.1419502112.
- Mo, H.Y.; Son, H.J.; Choi, E.J.; Yoo, N.J.; An, C.-H.; Lee, S.H. Somatic mutations of candidate tumor suppressor genes folliculin-interacting proteins FNIP1 and FNIP2 in gastric and colon cancers. *Pathol. - Res. Pr.* 2019, 215, 152646, doi:10.1016/j.prp.2019.152646.
- 16. Lee, N.; Park, M.-J.; Song, W.; Jeon, K.; Jeong, S. Currently Applied Molecular Assays for Identifying *ESR1* Mutations in Patients with Advanced Breast Cancer. *Int. J. Mol. Sci.* **2020**, *21*, 8807, doi:10.3390/ijms21228807.
- 17. Zhang, D.; Li, Y.; Sun, P. miR-770-5p modulates resistance to methotrexate in human colorectal adenocarcinoma cells by downregulating HIPK1. *Exp. Ther. Med.* **2019**, *19*, 339–346, doi:10.3892/etm.2019.8221.
- Liu, B.; Du, R.; Zhou, L.; Xu, J.; Chen, S.; Chen, J.; Yang, X.; Liu, D.-X.; Shao, Z.-M.; Zhang, L.; et al. miR-200c/141 Regulates Breast Cancer Stem Cell Heterogeneity via Targeting HIPK1/β-Catenin Axis. *Theranostics* 2018, *8*, 5801–5813, doi:10.7150/thno.29380.
- Nishimura, Y.; Yoshioka, K.; Bernard, O.; Himeno, M.; Itoh, K. LIM kinase 1: evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells. *Eur. J. Cell Biol.* 2004, *83*, 369–380, doi:10.1078/0171-9335-00382.

Table S4. List of the selected exo-oncomiR-221-3p and exo-oncomiR-222-3p target's scores.

	miRanda-miRSVR			Diana-MicroT-CDS		miRWalk		
Score	ore miRSVR		PhastCons		miTG		miRWalk	
Targets	exo-miR-221-3p	exo-miR-222-3p	exo-miR-221-3p	exo-miR-222-3p	exo-miR-221-3p	exo-miR-222-3p	exo-miR-221-3p	exo-miR-222-3p
TCF12	-3.002	-2.370	0.649; 0.816; 0.802#	0.649; 0.816; 0.802#	0.880	0,861	0.882	0,807
SNAP23	-1.192	-1.191	0.643	0,648	0.770	0,789	0.846	0,801
DPP8	-1.187	-1.181	0.650	0,650	0.827	0,805	0.962	0,923
ARNT	-1.160	-1.172	0.772	0,772	0.829	0,836	0.837	0,923
NLK	-1.101	-1.099	0.777	0,777	0.878	0,868	0.846	0,823
ZFP36L2	-0.587	-0,608	0.578	0,578	0.961	0,956	0.923	0,846
FNIP2	-0.438	-0.404	0.591	0,586	0.981	0,947	0.897	1,000
ESR1	-1.128	-0,844	0.569; 0.719#	0,719	0.768	0,702	0.955	1,000
HIPK1	-0.824	-0.851	0.831	0.831	0.825	0.956	0.923	0,923
SCARB2	-0.426	-0,429	0.692	0,692	0.798	0,829	0.846	0,846

MicroRNA Target Prediction Databases

Figure S1. Complete WB results referring to Figure 1. Ponceau stained images of gel transferredmembranes cut before antibody incubation to allow detection of CD9, TSG101, HSP70 proteins (A,B,C). Then stripping off was performed and membranes were reproved with CD63 and Tubulin antibodies (D). A separate gel was run and incubated with CD81 antibody. The numbers below the membranes represent the percentage of intensity. CM: culture media, U: urine, S: semen, C: PC-3 cell extract nbd: no band detected.

R- value

Figure S2. Spearman correlation matrix. Correlation map plotted using significance levels for Spearman's test performed with relevant clinical and biomarker data from all studied patients. Positive correlations are displayed in grading-blue and negative correlations in grading-red color. Correlations with *p*-value \geq 0.05 are considered as insignificant and are left blank. Color intensity and the size of the circle are proportional to the correlation coefficients. In the right side of the correlogram, the legend color shows the correlation coefficients and the corresponding colors.

Figure S3. (a) Partial least squares discriminant analysis (PLS-DA) model in order to evaluate the potential of the 5 selected exo-oncomiRNAS plus PSA in serum, sTWEAK in semen, Age, Prostatic volume, Testosterone in the stratification of PCa aggressiveness. (b) PLS-DA model in order to evaluate the potential of the ROC model (sTWEAK in semen, exo-oncomiR-221-3p and exo-oncomiR-222-3p in semen) in 2-dimension and 3-dimension. Both models were evaluated using R2, Q2 and Q2/R2 metrics. A model is considered predictive when Q2/R2 ratio is greater than 0.5.

Figure S4. Complete WB results referring to Figure 4d. The membranes were cut before antibody incubation to allow multiple detection of a single gel without stripping off antibodies. Therefore, no complete membranes can be shown for this experiment. The numbers below membranes represent the percentage of intensity.

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).