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Simple Summary: During the last two decades, collaborative translational studies utilizing novel
methodologies have dramatically advanced our understanding of multiple myeloma (MM) patho-
physiology and revolutionized derived treatment strategies. Nevertheless, MM remains an incurable
disease, with the vast majority of patients relapsing due to evolving genetic alterations within tumor
cell clones as well as the pressure of the immunosuppressive bone marrow (BM) microenvironment.
Therefore, continuous translational efforts are needed to further increase our understanding of MM
biology, develop rationally derived drugs and to thereby improve patient outcome.

Abstract: Despite the challenges imposed by the COVID-19 pandemic, exciting therapeutic progress
continues to be made in MM. New drug approvals for relapsed/refractory (RR)MM in 2020/2021
include the second CD38 monoclonal antibody, isatuximab, the first BCMA-targeting therapy and
first-in-class antibody–drug conjugate (ADC) belantamab mafodotin, the first BCMA-targeting CAR
T cell product Idecabtagen-Vicleucel (bb2121, Ide-Cel), the first in-class XPO-1 inhibitor selinexor,
as well as the first-in-class anti-tumor peptide-drug conjugate, melflufen. The present introductory
article of the Special Issue on “Advances in the Treatment of Relapsed and Refractory Multiple
Myeloma: Novel Agents, Immunotherapies and Beyond” summarizes the most recent registration
trials and emerging immunotherapies in RRMM, gives an overview on latest insights on MM
genomics and on tumor-induced changes within the MM microenvironment, and presents some of
the most promising rationally derived future therapeutic strategies.

Keywords: relapsed/refractory multiple myeloma (RRMM); novel therapies; immunotherapies;
CAR T cells; bispecific antibodies; clonal evolution; protein degradation

1. Introduction

Multiple myeloma (MM), defined as a malignant disorder of post-germinal center
(GC) B cells, is characterized by the clonal proliferation of plasma cells (PCs) leading to hy-
percalcemia, renal insufficiency, anemia, and bone disease (CRAB criteria) or bone marrow
(BM) infiltration with clonal PCs > 60%, serum FLC ratio > 1:100, and/or more than one
lesion on MRI or PET/CT (Myeloma-Defining Events or SLiM CRAB criteria), as well as
immunodeficiency [1]. With the introduction and continuous improvement of molecular,
genetic and cellular technologies, collaborative preclinical studies have dramatically ad-
vanced our understanding of genetic and molecular MM pathophysiology during the past
two decades. Functionally, we now know that accumulating genomic alterations within
tumor cells as well as MM-specific vulnerabilities (i.e., the high dependency of tumor cells
on the ubiquitin-proteasome system [UPS]) and MM-induced changes within the bone
marrow (BM) microenvironment, result in tumor cell proliferation, survival, migration, and
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drug resistance as well as osteolysis, BM angiogenesis, and immunosuppression. These
findings led to the approval of 15 novel agents and a total of 33 novel regimens for MM
therapy during the last two decades. The bench-to-bedside translation of Immunomodula-
tory drugs (IMiDs; lenalidomide, pomalidomide), proteasome inhibitors (PIs; bortezomib,
carfilzomib, ixazomib), and monoclonal antibodies (mAbs; elotuzumab, daratumumab,
isatuximab), in particular, has revolutionized MM therapy and resulted in the improvement
of patient survival from 3–4 years in the 1990s to currently more than eight years.

Nevertheless, relapse is still inevitable in the majority of patients, including those who
achieved deep remissions becoming progressively shorter [2]. Criteria for relapsed/refractory
multiple myeloma (RRMM) include the IMWG criteria for progressive disease (PD), pro-
gressive disease on treatment or after at least minimal response (MR), or progressive disease
≤60 days following the most recent treatment, the absence of at least MR on a given ther-
apy (primary refractory disease), the presence of PD criteria in the absence of features for
RRMM, or primary refractory MM [1–4]. A note of caution: given that continuous treatment
has become standard, most RRMM patients need to be considered treatment-refractory. A
revision of current IMWG criteria for RRMM should therefore be considered. While exclusive
monitoring may be considered for MM patients with asymptomatic biochemical relapse
with slow tempo, immediate treatment is required for those with cytogenetic high-risk fea-
tures, with renal or neurologic complications, and with a rapid doubling of the M-spike.
Therapy-related features (response to/toxicity of/exposure/refractoriness to prior therapies,
SCT eligibility, prior SCT), disease-related features (genetic alterations, duration of prior remis-
sion, extramedullary disease, high tumor burden, pace of disease, end-organ function), and
patient-related features (performance status, comorbidities, disabilities, patient preference,
accessibility to treatment centers, compliance, cost) guide the choice of treatment in RRMM
patients. Treatment goals vary among patients with RRMM and should consider disease
control, extension of survival, and maintenance of quality of life (QoL). Specifically, in frail
MM patients, treatment should focus on symptom relief rather than on attaining a deep
and durable response. In contrast, in patients with aggressive disease, treatment should
be initiated immediately. Current treatment strategies in RRMM [3,4] include a change of
therapy regimens (relapse after <6 months), a re-challenge with previous therapy regimens
(relapse after >6 months), autologous SCT (progression after >18 months for patients who are
not on maintenance, and after >36 months for patients who are on maintenance), or inclusion
into a clinical trial (Figure 1). Triplet regimens should always be preferred.

Besides briefly summarizing updates on clinical trials that led to regulatory drug
approvals in RRMM during the last months, the present introductory article will give
an overview of the most recent advances of our knowledge on RRMM biology, MM
genomics and their evolving impact on personalized treatment strategies. Moreover, we
will introduce the reader to venetoclax, CELMoDs, additional CAR T cell products, and
bispecific antibodies, but also to proteolysis targeting chimeras (PROTACs)/degronomids
that ensure the continuing rapid treatment progress in (RR)MM.

Eminent experts will then discuss in comprehensive state-of-the-art articles the thera-
peutic developments in RRMM and offer evidence-based recommendations for combina-
torial treatment approaches. Topics include up-to-date diagnosis and treatment response
monitoring in RRMM, risk-adapted stratification and sequencing of RRMM therapies, thera-
peutic advances in RRMM patients with renal insufficiency, novel non-immunologic agents
for RRMM patients, and the use of bispecific antibodies in RRMM, and the management of
adverse events and supportive therapy in RRMM.
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Figure 1. Treatment options for multiple myeloma (MM) patients at first relapse. Listed treatment options are selected
and not inclusive of all available regimens. Evidence for these treatment regimens stems from randomized-controlled
trials discussed in this review article. Dara, daratumumab; K, carfilzomib; R, Revlimid/lenalidomide; P, pomalidomide;
V, Velcade/bortezomib; I, ixazomib; Elo, elotuzumab; Isa, isatuximab; C, cyclophosphamide; ASCT, autologous stem
cell transplantation.

2. Recent Registration Trials in the Context of Current Treatment Standards
2.1. Treatment Options for MM Patients in First Relapse

Results of more than 9 phase III trials shape the current treatment landscape of
triplet combination therapies in RRMM. Revlimid (lenalidomide)/dexamethasone (Rd)
represents the backbone of 4 of these triplet combinations (KRd, IRd, DRd, Elo-Rd). The
addition of the third substance led to an improvement in the depth of the response and
subsequently to an improved PFS. A recent follow-up of the POLLUX trial (NCT02076009)
demonstrated particularly impressive data with Dara-Rd: ORR 93% (CR 56%), MRD
negativity 30% and the longest proven PFS (44.5 months) and PFS2 (NR vs. 31 months)
to date. A clear survival advantage is expected. These data support the preferred use
of Dara-Rd in the first relapse. However, the unsatisfactory effect of Dara-Rd in the
subpopulation of cytogenetically high-risk patients is a caveat [5]. Combination strate-
gies containing PIs (i.e., VRd and VRd lite) may be preferable in this patient population.
In view of the extensive use of lenalidomide in the upfront and maintenance setting,
the burning question remains, how to best treat lenalidomide-refractory patients. Im-
portantly, neither IMiDs nor the PIs are “class-refractory”, meaning co-resistant with
other members of these drug classes. Lenalidomide-free therapy options in the first re-
lapse include carfilzomib and dexamethasone (Kd) and daratumumab (Dara)-Vd, and
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based on the recently published CANDOR trial (NCT03158688; Dara-K56d vs. K56d)
also Dara-Kd. Dara-K56d showed a 37% reduction in the risk of progression or death
in a population that also included lenalidomide and PI-refractory patients. These ex-
cellent data led to the approval of this combination in RRMM after 1 to 3 previous
therapies on 20 August 2020 (FDA) and 18 December 2020 (EMA), respectively [6]. Of
note, efficacy and safety of Dara-dexamethasone with weekly carfilzomib (70 mg/m2)
is comparable to twice-weekly KdD56 while being more convenient [7]. The use of
pomalidomide-containing triplets represents another potential treatment approach for
lenalidomide-refractory patients. Following V-Pd (OPTIMISMM trial, NCT01734928) [8,9]
and Elo-Pd (ELOQUENT-3 trial, NCT02654132) [10], drug combinations of isatuximab (ISA,
ICARIA trial/NCT02990338) [11] and Dara (EQULEUUS/MMY1001 trial/NCT01998971-
and APOLLO trial/NCT03180736) [12] with Pd received drug approval in 2020 and 2021,
respectively. Specifically, the ICARIA trial is the first phase III study based on which a
CD38 mAb in combination with a Pd backbone received approval on March 2020 (FDA)
and 22 June 2020 (EMA) for RRMM patients with at least two previous therapies (mPFS
12.7 vs. 7, 9 months; MRD negativity 5.2 vs. 0; significant improvement in PFS2, and a
strong trend of improved OS) [13,14]. Data of the phase III APOLLO trial (Dara-Pd vs.
Pd) are similarly exciting, with a 12-month PFS rate of 52% vs. 35% (HR = 0.63) [15]. A
deep response with a clear improvement in PFS for Isa-K56d (NR vs. 19 months, very
good partial remission [VGPR] 72.6% vs. 56.1%, MRD negativity 29.6% vs. 13%) was also
observed in the phase III IKEMA trial (NCT03275285, Isa-Kd vs. Kd) [16]. Based on these
data Isa-Kd received approval for the treatment of adult patients with RRMM who have
received one to three prior lines of therapy on 31 March 2021 (FDA) and 19 April 2021
(EMA), respectively. Of note, a PFS benefit was also seen in patients with HR cytogenetics
del17p, t(4;14), t(14;16), 1q21 gain; as well as in patients older than 70 years; regardless of
the refractory status or the number of prior treatment lines [17–19].

In summary, for the treatment of RRMM triplets with second generation IMiDs,
PIs, and monoclonal antibodies are preferred upon relapse. Dara-Rd, Dara-Vd, Dara-Kd
are recommended as second-line options, with Dara-Vd and Dara-Kd being also active
in lenalidomide-resistant relapse. Elo-Rd is recommended as second-line therapy for
patients with lenalidomide-sensitive disease, and may also be considered after ≥3 prior
lines of therapy in combination with Pd for refractory disease. Third line treatment
options are predominantly guided by drug-refractoriness and frailty. However, while
switching therapies (even within the same class) is certainly a commendable strategy,
drug refractoriness may also be overcome by the addition of an additional agent. A clear
recommendation for second-line therapy of Dara-pre-treated (Dara-refractory) patients
is currently still pending. Dependent on the backbone used during previous therapy, the
use of KRd, IRd, Elo-Rd, Rd, but also PVd, Kd, and KPd are possible. Available data on
whether isatuximab is effective in Dara-refractory patients or vice versa currently do not
support the switch of CD38-targeting agents (Table 1, Figure 1).

2.2. Treatment Options for MM Patients in Second or Higher Relapse

The incorporation of lenalidomide, pomalidomide, bortezomib and second-generation
proteasome inhibitors as well as of monoclonal antibodies in the upfront setting as well
as at first relapse results in heavily pre-treated populations at second or higher relapses.
Triple (1 IMiD, 1 PI, 1 anti-CD38)-, quad (2 IMiDs, 1 PI, 1 anti-CD38 or 1 IMiD, 2 PIs,
1 anti-CD38)-or penta (2 IMiDs, 2 PIs, 1 anti-CD38)-refractory patients become increasingly
frequent. Based on the retrospective MAMMOTH study (n = 275) median OS in MM
patients (1) not triple refractory was 11.2 months; (2) triple/quad-refractory (n = 148) was
9.2 months; and (3) penta-refractory (n = 70) was 5.6 months [20].

Selinexor is an inhibitor of the nuclear export protein XPO-1, which blocks the nu-
clear export of tumor suppressors, the glucocorticoid receptor and eIF4E-bound mRNAs
(c-Myc, Bcl-XL, MDM2) [21]. Based on data from the STORM trial (NCT02336815; ORR
26%, median PFS 4 months, median OS 9 months), selinexor 80 mg twice weekly in com-
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bination with dexamethasone was approved on 3 July 2019 (FDA) and on 29 March 2021
(EMA), respectively, for the treatment of penta-refractory RRMM patients with ≥4 previous
therapies [22]. Even if the toxicity of this therapy (thrombopenia, fatigue, GI toxicity) has
been widely discussed, results obtained in this heavily pre-treated patient population are
convincing. Ongoing trials are examining selinexor in combination with other substances
in earlier lines of therapy. Final data from the BOSTON trial (NCT03110562; S-Vd vs.
Vd) demonstrated a significantly improved response rate (ORR 76.4 vs. 62.3%; mPFS
13.93 vs. 9.46 months) and reduced toxicity for S-Vd vs. Vd in a weekly selinexor-dosing
strategy [23]. Based on these data S-VD has been approved for the treatment of RRMM
patients who have received at least 1 prior therapy on 21 December 2020 (FDA). Early data
of the ongoing STOMP trial (NCT02343042), which investigates selinexor in combination
with different standard-of-care agents including weekly-dosing of selinexor in combination
with Kd, Pd, and Dara are also promising [24–27]. A direct comparison with anti-CD38-
containing combinations such as Dara-Pd or Isa-Pd is not possible. Nevertheless, selinexor
may represent an excellent option for all oral triplet therapies. Moreover, selinexor-based
triplets may be considered as a strategy to bridge to CAR T cell therapy or for RRMM
patients who are not eligible to CAR T cell-, BiTE-, or ADC-therapy. Phase III trials which
compare different triplets would be necessary to determine whether selinexor-containing
triplets may be preferred, at least in subgroups of RRMM patients.

The lipophilic alkylant melflufen is the first anti-tumor peptide-drug conjugate. Due
to its lipophilicity, it is easily taken up into tumor cells and cleaved to the active alkylane
by aminopeptides, which are present in increased numbers in tumor cells. Upon release,
melphalan alkylates the DNA and induces tumor cell apoptosis. In continuation of the
O-12-M1 trial (NCT01897714) promising results were obtained in the phase II HORIZON
trial (NCT02963493) which investigated the anti-MM activity of melflufen in combination
with dexamethasone in heavily pre-treated (26% triple-refractory) MM patients (ORR of
31%, a PFS of 5.7 months, and an mOS of 20 months) [28]. Based on these data melflufen
in combination with dexamethasone was approved for patients with RRMM who have
received at least 4 prior therapies and whose disease is refractory to at least one IMiD, one
PI, and one CD38-directed mAb on 26 February 2021. We propose that optimal candidates
for this regimen are patients with alkylator-sensitive disease with good baseline counts
(ANC ≥ 1.0, plts ≥ 100). First data of the phase III OCEAN trial (NCT03151811) with
melflufen/dexamethasone vs. pomalidomide/dexamethasone are expected later this year.
Melflufen could be an excellent option for RRMM patients with alkylator-sensitive disease
and good baseline blood counts. However, it needs to be mentioned that a partial hold was
recently put on all trials with melflufen due to an increased risk of death associated with
melflufen/dexamethasone vs. pomalidomide/dexamethasone in RRMM patients after
2–4 prior lines of therapy (Table 1, Figure 2).

Besides novel treatment regimens, salvage ASCT remains another treatment option to
be considered. Its use varies widely. Recent retrospective data of the Center for International
Blood and Marrow Transplant Research (CIBMTR) strongly indicated a role of salvage ASCT
in the novel agent era with a 1-year PFS of 50% and an OS of 94%. It thereby compares
favorably with several other approved regimens using newer agents [29]. Another ret-
rospective study performed by the European Blood and Marrow Transplant group (EBMT),
showed a median OS of 7 months after the third ASCT if the relapse-free interval (RFI) was
<six months, 13 months if the RFI was between 6 and 18 months, and 27 months if the RFI
was ≥18 months [30]. The only prospective phase III trial demonstrated that salvage ASCT
transplant conferred the highest benefit when performed as consolidation after the second
line chemotherapy rather than later in the treatment course [31]. In summary, although
effective, modern randomized studies are required to better define the role of salvage ASCT
as part of evolving treatment strategies in RRMM.
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2.3. Evolution of Immunotherapies for RRMM Patients

While naked mAbs directed against SLAMF7 (elotuzumab) and CD38 (Dara, ISA)
have become therapeutic backbones in RRMM, allogeneic stem cell transplantation (ORR
80%, median PFS 20 months) and donor lymphocyte infusions, which mediate a donor
T-lymphocyte-mediated graft-versus-myeloma effect, remain restricted to few patients due
to its high toxicity and mortality rate. With the establishment of various new immunothera-
peutic approaches, such as Antibody–Drug Conjugates (ADCs), Bispecific T-Cell Engagers
(BiTEs) and Chimeric-Antigen-Receptor (CAR) T cells, treatment regimens in RRMM are
currently revolutionizing MM therapy.

Figure 2. Treatment options for MM patients with a second or higher relapse. Listed treatment
options are selected and not inclusive of all available regimens. Evidence for these treatment
regimens stems from randomized-controlled trials discussed in this review article. S, Selinexor;
PROTACs, proteolysis-targeting chimera; BCMA, B cell maturation antigen; DCEP, dexametha-
sone/cyclophosphamide/etoposide/cisplatin; VTD-PACE, V (bortezomib), T (thalidomide), D (dex-
amethasone), PACE (cisplatin/doxorubicin/cyclophosphamide/etoposide).
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2.3.1. Antibody Drug Conjugates (ADCs)

B-cell maturation antigen (“B-cell maturation antigen”, BCMA) represents the predom-
inant point of attack of these modalities [32,33]. The ADC belantamab mafodotin (Belamaf,
Blenrep) is a mAb that is linked to the cytotoxin monomethyl-auristatin F (MMAF) and induces
MM cell death via antibody-dependent cytotoxicity (ADC), antibody-dependent cell-mediated
cytotoxicity (ADCC), immunogenic cell death (ICD) and direct BCMA receptor inhibition. Based
on the DREAMM-2 trial, belantamab mafodotin became the first-in-class ADC approved for
monotherapy in patients with RRMM, after ≥4 prior therapies, who are refractory to at least
one PI, one IMiD and one CD38 mAb on 2 August 2020 (FDA) and 26 August 2020, respec-
tively. Of note, response time in this heavily pre-treated patient population was more than 13
months. Keratopathies occurred in about 50% of patients but did not lead to blindness and
were reversible [34]. Nevertheless, belantamb mafodotin should be avoided in patients with
preexisting ocular disease. Several ongoing trials investigate belantamab mafodotin in a reduced
dose in combination with Pd, pembrolizumab, Rd, Vd, and VRd, and also in earlier lines of
therapy (DREAMM-3 to -9). Moreover, DREAMM-12 and -13 evaluate belantamab mafodotin
safety in RRMM patients with renal or hepatic impairment, respectively. Other ADCs in early
clinical evaluation include BCMA-targeted ADCs MEDI2228, AMG224, HDP-101 and CC-99712,
CD38-targeted ADCs TAK-169 and TAK-573, and the CD74-targeted ADC STRO-001 [35–40]
(Table 1, Figure 2).

Table 1. Recent approvals for patients with relapsed/refractory multiple myeloma (RRMM).

FDA/EMA Regimen Study Phase Prior Lines N ORR, % PFS, mos OS Ref.

FDA:
12 July 2021

EMA:
22 June 2021

Dara-Pd
vs Pd APOLLO III ≥1

(Φ 2) 304 69 vs. 46 12.4 vs. 6.9
[HR: 0.69] NR vs. NR [15]

FDA:
31 March 2021

EMA:
19 April 2021

Isa-Kd
vs Kd IKEMA III 1–3 302 86.6 vs. 82.9 NR vs. 19.15

[HR: 0.53] NR vs. NR [16]

FDA 21 December 2020 S-Vd BOSTON III 1–3
(Φ 2) 402 79 vs. 66 13.9 vs. 9.5

[HR: 0.70] NR [23]

20, 2020
EMA: 18 December 2020

Dara-Kd
vs Kd CANDOR III 1–3 466 84.3 vs. 74.7 NR vs. 15.8

[HR: 0.59] NR vs. NR [6]

EMA: 16 May 2019 V-Pd
vs Vd OPTIMISSM III 1–3

Φ 2 559
82.2 vs. 50 (ITT)
90 vs. 54.8 (after

1 prior tx)

HR (ITT): 0.61
[HR: after 1 prior

line of Tx 0.54]
NR [8]

FDA:
26 February 2021

Melflufen-
Pd HORIZON II ≥2 157 31 5.7 20 [28]

FDA:
2 March 2020

EMA:
2 June 2020

Isa-Pd ICARIA III ≥2 307 60.4 vs. 35.3 12.7 vs. 7.9 1 yr OS: 72 vs. 63 [13]

FDA:
7 November 2020

EMA: 28 August 2019

Elo-Pd
vs Pd

ELOQUENT-
3 III ≥2

Φ 1–4 646 79 vs. 66

1 yr PFS
68 vs. 57
2 yrs PFS
41 vs. 27

NR [10]

FDA: 5 August 2020
EMA: 26 August 2020 Belamaf DREAMM-2 II ≥3

Φ 7
97
99

32 (2.5 mg/kg)
35 (3.4 mg/kg)

2.8
(2.5 mg/kg)

3.9
(3.4 mg/kg)

mOS estimate:
13.7 (2.5 mg/kg)
13.8 (3.4 mg/kg)

[34]

FDA: 27 March 2021
EMA: 19 August 2021 Ide-Cel KarMMa II ≥4

Φ 6 128 73
8.8

12.1 at 450 × 106

18 mos PFS 66%
19.4 [41]

FDA:
3 July 2019

EMA:
29 March 2021

Sd STORM I/II Φ 7 79
122 26.2 3.7 8.6 [22]

Φ, median lines of prior therapy; mo/s, month/s; yr/s, year/s; PFS, progression free survival; OS, overall survival; HR, hazard ratio; NR,
non-reached
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2.3.2. Bispecific Antibodies (BiTEs/T Cell Engagers)

The biggest excitement during the last months came with the clinical introduction of a
new class of therapeutic agents in MM, the Bispecific T cell Engagers (BiTEs). They link a surface
target molecule (i.e., BCMA) on tumor cells to CD3 on T cells and thereby redirect activated T
cells to induce tumor cell death. The first-in-human BiTE directed against BCMA, AMG420
(BI-836909), showed an ORR of 70% and a response duration of 5.6 to 10.4 months in RRMM
patients. However, a 4-weeks on and 2 weeks off continuous i.v.-treatment protocol for 6-week
cycles posed a significant challenge, why the further development of AMG420 has been sus-
pended [42]. Preliminary results of a trial investigating the half-life-extended anti-BCMA BiTE
AMG701 (pavurutamab) are encouraging (ORR 83%) [43]. Excitingly, CC-93269/alnuctamab,
a humanized 2 + 1 BCMA/T cell engager, resulted in ORR of up to 89% and a sCR of 44%
in heavily pre-treated patients (66.7% triple refractory) [44,45]. The phase I MajesTEC-1 trial
(NCT04557098) on the efficacy and tolerance of the subcutaneous “off-the-shelf” BCMA/CD3-
BiTE teclistamab (JNJ-64007957) demonstrated an ORR 65% (>58% VGPR, >40% CR) in an
even heavier pre-treated patient population (triple-class refractory 80%; penta-refractory 41%).
The drug was well tolerated with no high-grade Cytokine Release Storm (CRS), and self-limited
cytopenias. Given confirmatory results in the phase II extension of this trial teclistamab is
likely to become the first bispecific antibody approved for the therapy of RRMM [46]. Further
trials examining teclistamab in earlier lines of therapy are planned. Other BCMA/CD3-BiTEs
currently under clinical evaluation include REGN5458 and TNB-383B [47,48]. Very early results
of the MagnetisMM-1 trial (NCT03269136) on the use of the subcutaneously administered,
humanized BCMA-CD3 bispecific antibody elranatamab (PF-06863135) in patients with a me-
dian of 8 prior lines of therapy were comparable to those with teclistamab, and also included
patients previously treated with BCMA-targeting agents [49]. However, it needs to be noted
that the trial was transiently on hold due to the development of neuropathy in some patients.
While clinical trials predominantly focus on BCMA/CD3-BiTEs, there is an urgent need for al-
ternatively targeting BiTEs. Non-BCMA-targeting BiTEs are already under early clinical phase
I evaluation in RRMM; they include the subcutaneous GPRCD5/CD3-BiTE talquetamab (JNJ-
64007957) (NCT03399799/MonumentTAL-1, NCT04634552 part 1-2/MonumentaTAL-1 part 3,
NCT04108195/TRIMM-2/MMY1002, NCT04586426/RedirecTT-1) and the FcRH5/CD3-BiTe
cevostamab (BFCR4350A) (NCT03275103). Early data on talquetamab and cevostamab sug-
gested a manageable safety profile with high, rapid and durable response rates (ORR ~60–70%)
that deepened over time in a group of heavily pre-treated patients, who have also received
BCMA-targeted therapy [50,51]. An additional study is ongoing with the CD38/CD3 BiTEs
GBR1342 (NCT0330911); studies with trispecific CD38/CD28/CD3 antibodies are planned.
Moreover, based on preclinical observations, clinical trials investigating teclistamab in com-
bination with other anti-MM agents (for example, IMiDs or daratumumab) (NCT04722146,
NCT04108195/TRIMM-2/MMY1002) and/or talquetamab (NCT04586426) in RRMM are cur-
rently recruiting. Another option of BiTE-containing combination therapy may be a vaccination
approach, and recent data demonstrated that a PLGA/heteroclitic BCMA72-80 peptide induces
HLA-A2 restricted central and effector memory cytotoxic T cells (CTLs) and thereby increased
granzyme-mediated cytotoxicity of BCMA-BiTEs [52]. The development of resistance against
monoclonal antibodies represents a key challenge in the treatment of MM. Mechanisms of
resistance include low expression of the surface target gene due to selection of cells with low
target expression; transfer of the tumor antigen to T cells followed by BiTE-induced fratricide of
T cells (trogocytosis); overexpression of the complement-inhibitory proteins CD55 and CD59;
depletion of NK cells (by CD38 antibodies); decreased activation of T cells and macrophages; as
well as deregulation of regulatory T cells, tumor-associated macrophages, and myeloid-derived
suppressor cells. Being available “off-the-shelf”, BiTEs but also ADCs represent community
practice-friendly choices, for patients with rapid disease progression in particular. Nevertheless,
in contrast to CAR T cells, an intensive treatment schedule is required for these modalities,
thereby challenging the patient’s QoL [34,46].
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2.3.3. Chimeric Antigen Receptor T Cells (CAR T Cells)

Investigations on the therapeutic use of CAR-T cells remains the “hot topic” in RRMM
also in 2020/2021; several excellent and comprehensive reviews have been published
recently (e.g., [53]). Excitingly, CAR T cell treatment is a one-time treatment with the highest
efficacy among the novel BCMA-targeting immunotherapeutic options [54]. Confirming
previous data of a phase I trial [55], a 25 month-update of the pivotal phase II KarMMa trial
(NCT03361748) on the anti-MM activity of the BCMA-CAR T cell product Idecabtagen-
Vicleucel (bb2121, Ide-Cel) demonstrated an ORR of up to 82% (sCR/CR 33%) and a
median PFS of 12.1 months (20.2 mos in patients with CR or sCR) at 450 × 106 CAR T
cells in a heavily pre-treated patient population (median six prior therapies; 84% triple
refractory). Of note, responses were independent of age or risk, and included patients
with extramedullary, triple-or penta-refractory disease [41]. Based on these data, Ide-
Cel was approved as the first BCMA-directed CAR T cell product for the treatment of
RRMM patients after ≥4 prior lines of therapy, including an immunomodulatory agent,
a proteasome inhibitor, and a CD38 monoclonal antibody on 27 March 2021 (FDA) and
19 August 2021 (EMA), respectively. In order to enrich CAR T cells with a memory-like
phenotype, the bb2121 CAR T cell product was treated ex vivo with the PI3-kinase inhibitor
bb007, therefore called bb21217 [56,57]. Exciting interim results were presented this year
also on another BCMA-CAR-T cell product, Ciltacabtagen-Autoleucel (Cilta-Cel, JNJ-
68284528 or JNJ-4528 or LCAR-B38M), which consists of a tandem antigen receptor for
BCMA. After a follow-up of 18 months, the phase Ib/II CARTITUDE-1 trial (NCT03548207)
reported an impressive ORR 97.9%, with a sCR 80.4% and an OS 81% in MM patients with
an average of 6 prior therapies. Of note, 66% of all patients were still in remission after
18 months; this value was even higher in those patients who had achieved a sCR (75.9%).
It is noteworthy that of 61 patients with evaluable MRD status, 91.8% were MRD negative
(cut-off: 10−5). Cilta-Cel has been granted breakthrough therapy designation status by
the US FDA in early 2021. The regulatory approval of Cilta-Cel both in the USA and the
EU is expected within the next months. Several clinical trials examining the anti-MM
activity of Cilta-Cel and Ide-Cel in earlier stages of the disease are ongoing [58]. Promising
initial results of the phase II CARTITUDE-2 trial (NCT04133636) in RRMM patients after
one to three prior lines of therapy were presented at this year’s ASCO meeting (after a
six months follow-up: ORR 95%, ≥CR 75%) [59]. Data on Ide-Cel and Cilta-Cel suggest
that Ide-Cel may be more favorable in terms of tolerability, while Cilta-Cel is slightly
more impressive in terms of efficacy. Exciting early results have also been presented
for Orvacabtagen-Autoleucel (Orva-Cel, JCARH125), a fully human BCMA-CAR T cell
product characterized by a modified spacer and a defined CD4: CD8 ratio. The multicenter
phase I/II EVOLVE trial (NCT03430011) in patients with RRMM after at least 3 prior
lines of therapy (94% triple-refractory, 48% penta-refractory) demonstrated an ORR 92%
(sCR/CR 36%), with 69% of patients maintaining CAR T cell persistence after 6 months [60].
CRS rates were 60 to 80% for BiTes and 60 to 80% for CAR T-cell products; Immune Effector
Cell-associated Neurotoxicity Syndrome (ICANS) rates were 10 to 20% for CAR T cells.
CAR T cells should therefore be avoided in frail patients with significant cardiopulmonary
or neurologic disorders who are likely to not tolerate CRS or ICANS; or in patients with a
rapid relapse in need of immediate therapy. Despite unique response rates (i.e., high MRD
negativity) even in heavily pre-treated MM patients, the durability of CAR T cells needs
to be further improved. PFS lasts a maximum of one year without developing a plateau,
indicative for a loss of response over time and disease relapse. Ongoing trials therefore
investigate whether the use of CAR-T cells in earlier lines of therapy or combination
strategies eradicate the malignant clone, prolong the response time and improve tolerance.

Moreover, we need to better understand mechanisms of resistance against CAR T
cell therapy; contributing factors include CAR T cell-and tumor cell-intrinsic features (i.e.,
poor T cell expansion and persistence; impaired T cell function via exhaustion resistance,
high tumor burden or tonic signaling; tumor cell heterogeneity with changes in target
antigen expression via clonal selective pressure, trogocytosis, splice variants, and lineage
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switch), features mediated via the microenvironment (e.g., immune suppression), as well as
impaired T cell trafficking [61,62]. Specifically, recently discovered mechanisms-of-actions
include biallelic BCMA-loss [63,64] or the inhibitory effect of T regs [65], which induce
resistance against BCMA-targeting agents [66]. Counteracting therapeutic strategies to over-
come resistance against BCMA-targeting CAR T cells may include the use of non-BCMA
CD38-, SLAMF7-, GPRC5D-, CD138-, ikappa light chain-targeting CAR T cells; as well as
dual-targeted, triple CAR T cells such as BCMA/CD38/CD3-or CD19/BCMA/CD3-CAR
T cells [67–69]; or also off-the-shelf AlloCAR T cells. Very early results of the UNIVER-
SAL trial (NCT04093596), a first-in-class human study with the AlloCAR T cell product
ALLO-715 CAR T + ALLO-647 anti-CD52 mAb are promising (ORR 60%, ≥VGPR 40%;
no GvHD) [70]. Additional strategies under investigation include CAR T cell-containing-
combination therapies with IMiD/CELMoD agents, anti-CD38 monoclonal antibodies,
checkpoint inhibitors, and the use of gamma secretase inhibitors. Besides CAR T cells,
CAR-NK cells against BCMA (e.g., FT576, NK92, UCB), CD38, SLAMF7 and NKG2D are
under development with the potential advantage of multiple off-the-shelf sources, lower
toxicity and mode-of-actions via CAR but also endogenous receptors [71,72]. Clinical trials
have already been initiated (e.g., NCT03940833, NCT05008536) [73].

Moreover, several ongoing preclinical strategies also seek to improve the clinical
practicability of CAR T cells and BiTEs. For example, recent data suggest the therapeutic
potential of transiently active anti-BCMA mRNA-versus DNA-based CAR T cells. These
CAR T cells could be given in regular intervals, thereby increasing anti-MM efficacy while
reducing toxicity [74]. As another exciting option, the use of Binary Activated T Cells with
Chimeric Antigen Receptors (BAT-CARs) directed against “molecule X”-labelled antibodies
comes with the promise of creating a wider therapeutic window, of expanding the use of
existing targets (i.e., already available multiple antibodies can be labelled with the same
molecule), and of preventing antigen escape and therefore the development of resistance
(Table 1, Figure 2).

3. The Therapeutic Future of RRMM

Functionally, the development of RRMM is based on changes of the intrinsic tumor
cell biology (e.g., evolving genomic sub/clonal aberrations; evolving mechanisms of re-
sistance against initial therapies; deregulated signaling pathways; deregulated apoptotic
and autophagic programs), of the tumor microenvironment (e.g., evolving deregulation
of the finely tuned homeostasis within the bone marrow, resulting in an increased im-
munosuppression in particular), but also of host factors (e.g., treatment intolerance, organ
failure, frailty). Ongoing efforts aim to improve the use and sequencing of, and to identify
resistance mechanisms against existing treatment regimens, but also to discover novel
therapeutic targets, to develop rationally derived agents and to integrate them into forth-
coming treatment strategies. For an excellent up-to-date summary of our knowledge on
mechanisms mediating resistance against IMiDs, PIs, CD38 mAbs, and BCMA-targeting
agents as well as emerging therapeutic strategies to overcome them, we refer to a com-
prehensive recent review article by Drs Davis et al. [75]. Of interest, a very recent study
demonstrated that resistance against CD38-targeting mAbs is, at least in part, related
to microenvironment-mediated downregulation of CD38 on tumor cells. Indeed, JAK2
inhibitor ruxolitinib inhibits Stat3-dependent, bone marrow stroma cell (BMSC)/IL-6-
mediated downregulation of CD38 and thereby restores sensitivity to anti-CD38 agents,
and anti-CD38-triggered ADCC, in particular [76]. Our current knowledge on evolving
molecular and generic alterations in tumor cells and cells of the BM microenvironment
as well as on derived novel approaches of treatment stratification and personalization
in RRMM will be summarized below. Adverse events mediated by these agents will be
comprehensively summarized by Drs Pozzi and colleagues in this special issue.
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3.1. Molecularly-Based Innovative Approaches of Treatment Stratification and Personalization
3.1.1. Recent Insights into MM Genomics and the Impact of the MM Microenvironment
in RRMM

Molecular events contributing to RRMM include: (1) chromosomal translocations,
gains and deletions, which are determined by cytogenetic approaches; and (2) driver/point
mutations, epigenetic aberrations, and increased genomic instability, which are determined
by genomic approaches.

Targeting cytogenetic events. Early cytogenetic studies (FISH analysis) have defined
three stages of myelomagenesis: (1) initial events leading to the transformation of nor-
mal plasma cells to MM precursor stages; (2) late events leading to the progression of
MM precursor stages to MM; (3) events leading to extramedullary disease and plasma
cell leukemia. Based on refined technologies (whole genome sequencing, WGS; whole
exome sequencing, WES; comparative genomic hybridization, CGH; copy number array,
CAN; spectral karyotyping, multiplex FISH analysis), recent studies demonstrated that
MM progression is based on the molecular and clonal behavior of tumor cells, and occurs
either through branching evolution of reservoir tumor cell clones (Darwin principle, in
80% of RRMM) early in myelomagenesis via interaction of tumor cells with the tumor
microenvironment; or through neutral evolution (in 20% of RRMM), independent of the
tumor microenvironment, via the oncogenic impact of driver mutations (i.e., high-risk
14q translocations). Of note, the branching evolution pattern has been associated with
inferior overall survival (HR = 2.61, p = 0.0048) [77]. Priming “genetic hits” in germinal
center (GC) B cells trigger signaling pathways that induce a clonal advantage to plasma
cells and thereby lead to the evolution of MM precursor stages MGUS and SMM. De-
fined by early cytogenetic studies, these disease-initiating events include hyperdiploidy
(~45%) with multiple trisomies (i.e., gain of odd numbered chromosomes 3,5,7,9,11,15,19,
and 21) or non-hyperdiploidy/hypodiploidy with a high incidence of recurrent chromo-
somal translocations (~55%). Generated by aberrant class switch recombination (CSR),
chromosomal translocations bring oncogenes under the control of the immunoglobulin H
(IgH) switch region 14q32. These oncogenes include CCND1 (t[11;14]), CCND3 (t[6;14]),
c-Maf (t[14;16]), FGFR3/MMSET (t[4;14]), MafA (t[8;14]) and MafB (t[14;20]). Together
with del[13q], these genetic events have been identified in MM as well as in its precursor
conditions MGUS and SMM [78–81]. In contrast to hypodiploid MM, hyperdiploid MM
is associated with lengthened survival. High-risk abnormalities include t[4;14], t[14;16],
t[14;20], del17p and gain 1q; double hit MM is defined by two of these abnormalities,
and triple hit, when three of these abnormalities are present [82]. Additional genetic hits
together with the selective pressure of the immunosuppressive BM microenvironment
mediate the transition of MM precursor stages to MM, MM relapses, and PCL. During
the last few years our understanding of MM genomics has been significantly advanced by
utilizing modern technologies. Secondary genetic hits include del17; del1p with loss of
CDKN2C, FAF1, and FAM46C; 1q gains with amplification of i.e., CKS1B, ANP32E, Bcl9,
and PDZK1; copy-number variations (CNVs); as somatic mutations within the MAPK-,
NFkB-pathway and the DNA-repair pathway. Utilizing WGS, today’s most comprehensive
genomic analysis tool, additional de novo mutations (e.g., FAM46C, TRAF2, NF1, and
XBP1), de novo translocations (MAP3K14), pre-existing (e.g., Tet2) and non-coding muta-
tions (Xbp-1, SCML1, and RBX1) have been identified at MM relapse [83]. Moreover, the
existence of oncogenic dependencies between primary translocations and hyperdiploidy,
and mutated driver genes and common regions of CNVs recently proposed that primary
events pre-determine the genomic landscape of MM and give thereby rise to a subsequent
non-random accumulation of genetic hits. For example, t[4;14] is associated with mutations
in FGFR3, DIS3, and PRKD2; t[11;14] with mutations in CCND1 and IRF4; t[14;16] with
mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy and gain 11q with mutations
in FAM46C; and MYC rearrangements). Profiles of CNVs acquired at relapse differ substan-
tially among MM subtypes, with hyperdiploid (HRD) tumors evolving predominantly in
branching pattern vs. linear pattern in t(4;14) vs. stable pattern in t(11;14). CNA acquisition
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also differs between subtypes based on CCND expression, with a marked enrichment of
acquired del(17p) in CCND2 vs. CCND1 tumors [84]. Importantly, epigenetic aberrations
including DNA methylation, histone modification, non-coding RNA and super-enhancers
are increasingly recognized to play a key role in MM pathogenesis, the clonal heterogeneity
and plasticity of MM in its microenvironment, in particular [85,86]. Most recently, primary
molecular events involving SMARC2, NSD2, and PTP4A3 have been identified to affect key
epigenetic enzymes, i.e., MMSET [87]. Moreover, super-enhancer profiling has revealed
previously unrecognized novel oncogenes MAGI2 and HJURP [88]. Based on the presence
of molecular targets “personalized” therapy concepts are emerging for MM therapy. Most
prominently, venetoclax, a highly potent, selective BCL2 inhibitor is active in MM cells
with t(11;14) or high Bcl-2 expression. Nevertheless, cyclin D1 knockdown did not induce
resistance against venetoclax excluding a direct role for cyclin D1 in venetoclax sensitivity.
The biology of this heterogeneity therefore remains unknown. Of interest, RNA-and Assay
for transposase-accessible chromatin (ATAC)-sequencing recently indicated an association
of remnants of B-cell biology with BCL2 dependency. These data therefore suggest the
existence of biomarkers that could indicate venetoclax-sensitivity in MM, independent
of t(11;14) [89]. Venetoclax in combination with Vd in MM patients with t(11;14) or high
Bcl-2 expression (phase III BELLINI trial, NCT02755597: Ven-Vd vs. Vd) achieved an ORR
of 84% vs. 70% for Ven-Vd with a median PFS of 23.2 vs. 11.4 months. In contrast, an
increase in deaths was observed with venetoclax-Vd in the absence of t(11;14) and/or high
Bcl2 levels, commonly due to infections and in the context of progressive disease. Based
on these results, venetoclax is expected to be approved as the first precision medicine for
MM therapy over the next months [90]. A phase II trial (NCT02899052) of venetoclax in
combination with Kd showed promising response rates in RRMM patients, again with
greater response rates in patients with t(11;14) [91]. Additional clinical trials evaluating
venetoclax-containing combinations are ongoing.

Targeting epigenetic factors. Targeting epigenetic factors has similarly become a promis-
ing therapeutic approach in MM. Importantly, due to its pleiotropic effects on intracellular
pathways [92], the oral histone deacetylase (HDAC) inhibitor panobinostat is able to recap-
ture responses in heavily pre-treated patients. Indeed, based on the phase III PANORAMA-
1 trial intraveneous panobinostat in combination with bortezomib and dexamethasone
was approved for the treatment of MM patients after at least two prior therapies including
PIs and IMiDs on 19 March 2015 (phase III PANORAMA-1 trial, NCT01023308) [93]. Re-
cent data of the phase II PANORAMA-3 trial demonstrated that the saftey profile of this
regimen was improved upon replacing the previously used intravenous bortezomib with
subcuteneous bortezomib [94]. Additional approaches to target epigenetic factors in MM
include the use of EZH2-, HDAC6-and BET-inhibitors [85].

Targeting MM driver mutations. Given the increasing genomic complexity of the disease
over time, some experts recommend early prevention strategies in patients with MGUS and
SMM. Nevertheless, ongoing studies are also aiming at further dissecting inter-and intra-
patient genomic heterogeneity patterns in RRMM cells in order to define distinct molecular
subgroups, and to make them amendable to clinical decision-making and personalized
targeted therapies. Importantly, only few genes are recurrently mutated (e.g., KRas/NRas,
FAM46C, TP53, BRaf, TRAF3, and DIS3) and MM driver mutations are limited by vast
intra-and inter-patient genetic heterogeneity. However, it must be noticed that mutational
clusters exist, in the MAPK (~50%)-and the NFkB (~17%)-and PI3K/Akt (~17%) pathway,
in particular. Nonetheless, even in the absence of these mutations, signaling pathways are
activated through positive loops between the tumor cell and the cellular and non-cellular
BM microenvironment. They result in the production and secretion of growth factors,
cytokines and inflammatory mediators by both tumor and stroma cells, the expansion,
recruitment and activation of suppressor cells (i.e., MDSCs, Tregs, plasmocytoid DCs),
impaired T cell responses, an increased PD-1 and LAG-3 exhausted phenotype; as well as
osteoclast activation; and endothelial cell proliferation (e.g., reviewed in [95,96]). Pathway-
directed therapies and kinase inhibitors have therefore become a major focus in RRMM.
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Several comprehensive recent articles excellently review the functional basics of signaling
pathways in general; and of MAPK-, Stat3-and NFkB-signaling, in particular; as well as
the pathophysiologic role of protein kinases and emerging inhibitors in MM [97–99]. If
present, driver mutations may serve as biomarkers for personalized therapies in MM.
Mutations of the MAPK-pathway, in particular, are the most frequently observed pathway
mutations in MM. Of note, they are more frequent in the RRMM than in the NDMM
setting (72% vs. 43–53%) [100–102]. Specifically, K-and N-Ras mutations followed by
the activation of BRaf, Dis3, and FAM46C were observed in ~21% and 19% of NDMM
patients and may increase to up to 80% in RRMM patients, mostly affecting N-Ras (NRAS
Q61 mutation) [103,104]. Similarly, the prevalence of the BRaf V600E mutation increases
from 4% in NDMM to about 8% in RRMM patients [101]. Clinical activity of the Ras
inhibitor tipifarnib and the multi-kinase Raf/VEGFR-2/c-Kit/PDGFR inhibitor sorafenib
has been limited. However, other Ras inhibitors are in the clinical pipeline. In addition,
targeting the Germinal Center Kinase (GCK/MAP4K2) in Ras-mutant MM may offer an
exciting novel therapeutic approach [105]. MEK inhibition demonstrated a significantly
prolonged survival in a novel, NRasQ61/Myc-transgenic mouse model of highly malignant
MM. Based on their results the authors emphasize the strong rationale to develop MEK
inhibition-based therapies for treating advanced/relapsed MM [106]. Promising, although
short responses, have already been reported upon treatment with the BRaf V600E-inhibitor
vemurafenib in RRMM patients [107–109]. Several ongoing clinical trials investigate the
anti-MM activity of BRaf inhibitors (dabrafenib, encorafenib) alone or in combination
with MEK inhibitors (trametinib, cobimetinib, selumetinib, binimetinib), i.e., the GMMG-
BIRMA, the NCT03091257, the NCT03312530, and the NCT02407509 trial. Moreover,
rationally derived precision medicine umbrella and basket trials investigate pathway-
directed therapies alone or in combination with conventional or next-generation novel
therapies including the MATCH, TAPUR, CAPTUR, and MyDrug trial. Results are eagerly
awaited and will show whether precision medicine is able to counteract the steadily
increasing heterogeneity and complexity of genetic abnormalities as well as multiclonality
in RRMM.

Besides shedding light on the genomic complexity of MM and its progress from
precursor conditions MGUS and SMM, advances in single cell sequencing have identified
evolutionary clonal changes occurring during RRMM. The complexity of MM genetics
becomes even more challenging when considering the spatial genomic heterogeneity of
the disease. Indeed, multi-region sequencing has identified a positive correlation between
the size of a nodular plasma cell infiltrate and the presence of subclones [110]. Clonal
evolution drives tumor progression, dissemination, and relapse in MM. At the time of
diagnosis tumors harbor between three and seven detectable subclones that continuously
evolve throughout the treatment (linear evolution), branch (branching evolution), show
differential clonal response or stable clonality [104,111]. More diverse clones may progress
faster. In addition, the impact of the tumor microenvironment on the evolution of clones
needs to be considered. Of note, by utilizing an innovative DNA-barcode clone-tracking
system on a MM PrEDiCT (progression through evolution and dissemination of clonal
tumor cells) xenograft mouse model, Shen et al. recently demonstrated that only few clones
that successfully adapt to the BM microenvironment enter the circulation and colonize
distant BM sites. 28 genes were predicted to be master regulators of MM progression,
including HMGA1 and PA2G4 [112]. While direct mutations of drug target genes are
rare (i.e., CRBN mutations during lenalidomide maintenance), relapse during treatment
is predominantly induced by the emergence of high-risk subclones carrying mutations of
APOBEC, TP53 and IGLL5, Xbp-1, and MAPK [113]. For example, APOBEC activity is
associated with increased mutational burden and shorter time to relapse. APOBEC family
members have therefore been proposed as promising novel therapeutic targets (Figure 2).
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3.1.2. Assessment of MRD for Clinical Decision-Making and Personalized Targeted
Therapies in RRMM

With high complete response rates observed with “novel” and “next generation novel”
agents came the need for detecting deeper responses. The determination of MRD negativ-
ity by multicolor flow cytometry/next generation fluorescence (NGF) or next generation
sequencing (NGS) in BM biopsies derived from MM patients represents a powerful prog-
nostic marker utilized in various clinical trials. Nevertheless, its clinical utility as a tool
to guide individualized patient-treatment strategies in ND but also RRMM patients is
still under investigation. To get more insight, MRD status should be regularly evaluated
over the course of the disease. In order to repetitively assess the MRD status in (RR)MM,
tracking Circulating Tumor Cells (CTCs) or circulating free DNA (cfDNA) fragments from
tumor cells in the peripheral blood (“liquid biopsies”) emerges as a promising, innova-
tive, multi-regional minimally-invasive diagnostic method [114–116]. Indeed, cfDNA in
the peripheral blood plasma of patients represents an informative biomarker for MM
relapse [117]. Moreover, circulating micro-193a-5p may serve as a predictive marker of
early relapse after autologous stem cell transplantation in MM patients [118]. Most recently,
mass spectroscopy has been proposed as a complementary approach for the assessment of
the MRD status in the peripheral blood [119,120]. Of note, a significant correlation of the
MRD negativity determined by NGF in bone biopsies and by MALDI-TOF in the peripheral
blood was reported at ASCO 2021 [121,122].

3.2. Innovative Approaches to Treat MM-Specific Vulnerabilities
3.2.1. Novel Strategies to Target the UPR

Proteasome inhibitors target the MM-specific vulnerability of aberrant protein turnover
and thereby normalize the imbalance of proteasome degradative capacity and proteasome
load by inducing the terminal unfolded protein response (UPR), and subsequent cell
death [123,124]. In addition to second-generation PIs carfilzomib, ixazomib, and mari-
zomib, targeting deubiquitylating enzymes (DUBs), the 19S proteasome-associated ubiqui-
tin receptor Rpn13, and the aggresome/autophagy pathway by HDAC6 inhibition may not
only represent alternative approaches to target the UPR cascade, but may also to overcome
bortezomib-resistance [125–128]. Besides direct tumor cell toxicity, these agents have nu-
merous additional functions, BM angiogenesis and bone resorption in particular. Moreover,
blocking the UPR cascade induces immunogenic cell death (ICD) (e.g., by bortezomib the
type 1 IFN signature) via calreticulin expression (“eat-me-signal”) and the cGAS/STING
pathway activation [129,130], whilst targeting Rpn13 in dendritic cells triggers T and NK
cell anti-MM immunity [131].

3.2.2. Protein Degradation: A Novel Approach to Target Tumor-Specific Molecules

The recent discovery that IMiDs (thalidomide, lenalidomide, pomalidomide) co-
opt and enhance activity of the E3-ubiquitin ligase CRBN complex and thereby selec-
tively enhance ubiquitination and degradation of target proteins (i.e., the zinc finger TFs
IKZ1/Ikaros and IKZ3/Aiolos) followed by a decrease of downstream cMyc and IRF-4 gave
rise to the new therapeutic paradigm of protein degradation [132,133]. Based on these piv-
otal finding stronger chemoproteomic CRBN E3 Ligase Modulator/binder agents (“glues”;
CELMoDs®) have been developed. Preclinical studies demonstrating that the CELMoD
iberdomide (CC-220) has greater anti-MM activity than lenalidomide or pomalidomide in
both IMiD-sensitive and -resistant MM cell lines provided the strong translational rationale
for its development in combination with other agents for the treatment of RRMM [134].
Early results of clinical trials demonstrated promising efficacy of iberdomide in combination
with dexamethasone; and bortezomib or carfilzomib, dexamethasone and daratumumab;
respectively, in heavily pre-treated patients with RRMM [135]. A clinical trial evaluating
iberdomide in combination with daratumumab and dexamethasone (Iberdomide-Dara-
Dex) vs. Dara-Vd in RRMM patients will be initiated this fall (NCT04975997). CC-92480,
another CELMoD, specifically designed for rapid protein degradation, achieved an ORR
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of up to 54.5% in a heavily pre-treated RRMM patient population (50% triple refractory)
when used in combination with dexamethasone [136]. Several combination studies with
CC-92480 are ongoing.

Moreover, the finding that IMiDs are co-opting CRBN, enhancing its activity and
redirecting the protein degradation machinery of the cell toward the elimination of target
proteins pioneered a new class of small-molecule medicines, PROteolysis-TArgeting Chimeric
molecules (PROTACs) or degronomids. These novel agents hijack ubiquitin E3 ligases
(besides CRBN, VHL and MDM2) for selective ubiquitination and degradation of disease-
causing, target proteins (i.e., besides transcription factors such as IKZ1 and 3, c-Myc; also
Brd4, Mcl-1, and USP7) [137]. Based on promising preclinical data, a clinical phase I/II
trial testing the safety and tolerability of the single agent, orally bioavailable MonoDAC™
IZKF1/3 degrader CFT7455 is ongoing in RRMM (NCT04756726) [138] (Figure 2).

4. Conclusions

Based on translational research, a very exciting array of treatment options is currently
available for RRMM patients. An immediate end to the constant expansion of our thera-
peutic armamentarium against (RR)MM is not foreseeable in the near future. Impressive
response rates of 60 to 100% (compared to previously 30%) are obtained, especially with
emerging immunotherapeutic agents (i.e., BiTEs, CAR T cells), even in heavily pre-treated
patients. BCMA-targeting agents emerge as an additional backbone of RRMM therapy
and will move to earlier lines of therapy in the near future. Decisions on the choice and
sequencing of accessible therapeutic options have become increasingly complex but are
required to ensure the best outcome for patients. Importantly, costs, accessibility, and QOL
also need to be considered. We are confident that combination strategies of conventional,
targeted, and immune therapies will continue to change rapidly, to further increase MRD
negativity rates, to restore host anti-MM immunity, and to ultimately lead to long-term
disease-free survival and potential cure of MM.
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