High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Tissue Microarray Construction
2.3. Immunohistochemistry
2.4. Evaluation of Immunohistochemistry
2.5. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Association of Clinicopathological Features with CD16 Expression in Primary OC
3.3. Association of Clinicopathological Features with CD16-Positive TIC Density in Recurrent OC
3.4. Correlation of CD16 TIC with Other Cells of the Immune Microenvironment
3.5. Prognostic Significance of CD16 Expression in Recurrent OC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD16 | cluster of differentiation molecule 16 |
OC | ovarian cancer |
RFS | recurrence-free survival |
OS | overall survival |
HR | Hazard ratio |
CI | confidence interval |
FIGO | Fédération Internationale de Gynécologie et d’Obstétrique |
CRC | colorectal cancer |
FcγRIII | low-affinity immunoglobulin gamma Fc region receptor III |
ADCC | antibody-dependent cellular cytotoxicity |
LGLGs | large granular lymphocytes |
NK | natural killer |
TMA | tissue microarray |
IHC | indirect immunoperoxidase procedure |
FFPE | formalin-fixed paraffin-embedded |
CC1 | Mouse Monoclonal APC antibody |
TICs | tumor-infiltrating immune cells |
STATA | Software for Statistics and Data Science |
EKBB | Ethics Committee of Basel |
CT | chemotherapy |
CS | chemosensitive |
CR | chemoresistant |
TAM | tumor-associated macrophages |
TAN | tumor-associated neutrophils |
ICI | immune checkpoint inhibitors |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Ralyea, C.; Lockwood, C. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Jayson, G.C.; Kohn, E.C.; Kitchener, H.C.; Ledermann, J.A. Ovarian cancer. Lancet 2014, 384, 1376–1388. [Google Scholar] [CrossRef]
- Coburn, S.B.; Bray, F.; Sherman, M.E.; Trabert, B. International patterns and trends in ovarian cancer incidence, overall and by histologic subtype. Int. J. Cancer. 2017, 140, 2451–2460. [Google Scholar] [CrossRef] [Green Version]
- Kaku, T.; Ogawa, S.; Kawano, Y.; Ohishi, Y.; Kobayashi, H.; Hirakawa, T.; Nakano, H. Histological classification of ovarian cancer. Med. Electron. Microsc. 2003, 36, 9–17. [Google Scholar] [CrossRef]
- Banerjee, S.; Kaye, S.B. New strategies in the treatment of ovarian cancer: Current clinical perspectives and future potential. Clin. Cancer Res. 2013, 19, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Giusti, I.; Bianchi, S.; Nottola, S.A.; Macchiarelli, G.; Dolo, V. Clinical electron microscopy in the study of human ovarian tissues. Euromediterranean Biomed. J. 2019, 14, 145–151. [Google Scholar]
- Shih, I.M.; Kurman, R.J. Ovarian tumorigenesis: A proposed model based on morphological and molecular genetic analysis. Am. J. Pathol. 2004, 164, 1511–1518. [Google Scholar] [CrossRef]
- Meinhold-Heerlein, I.; Bauerschlag, D.; Hilpert, F.; Dimitrov, P.; Sapinoso, L.M.; Orlowska-Volk, M.; Bauknecht, T.; Park, T.W.; Jonat, W.; Jacobsen, A. Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene. 2005, 24, 1053–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeppernick, F.; Meinhold-Heerlein, I. The new FIGO staging system for ovarian, fallopian tube, and primary peritoneal cancer. Arch. Gynecol. Obstet. 2014, 290, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Prat, J.; FIGO Committee on Gynecologic Omcology. Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynecol. Obstet. 2014, 124, 1–5. [Google Scholar] [CrossRef]
- Rose, P.G.; Nerenstone, S.; Brady, M.F.; Clarke-Pearson, D.; Olt, G.; Rubin, S.C.; Moore, D.H.; Small, J.M.; Gynecologic Oncology Group. Secondary surgical cytoreduction for advanced ovarian carcinoma. N. Engl. J. Med. 2004, 351, 2489–2497. [Google Scholar] [CrossRef] [PubMed]
- Van der Burg, M.; van Lent, M.; Buyse, M.; Kobierska, A.; Colombo, N.; Favalli, G.; Lacave, A.J.; Nardi, M.; Renard, J.; Pecorelli, S. The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian cancer. N. Engl. J. Med. 1995, 332, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother Pharm. 2018, 81, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Ozols, R.F.; Bundy, B.N.; Greer, B.E.; Fowler, J.M.; Clarke-Pearson, D.; Burger, R.A.; Mannel, R.S.; DeGeest, K.; Hartenbach, E.M.; Baergen, R.; et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2003, 21, 3194–3200. [Google Scholar] [CrossRef]
- Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; et al. Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J. Pathol. 2014, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broussard, E.K.; Disis, M.L. TNM staging in colorectal cancer: T is for T cell and M is for memory. J. Clin. Oncol. 2011, 29, 601–603. [Google Scholar] [CrossRef]
- Pagès, F.; Galon, J.; Dieu-Nosjean, M.C.; Tartour, E.; Sautès-Fridman, C.; Fridman, W.H. Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene 2010, 29, 1093–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naito, Y.; Saito, K.; Shiiba, K.; Ohuchi, A.; Saigenji, K.; Nagura, H.; Ohtani, H. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998, 58, 3491–3494. [Google Scholar] [PubMed]
- Lalos, A.; Tülek, A.; Tosti, N.; Mechera, R.; Wilhelm, A.; Soysal, S.; Daester, S.; Kancherla, V.; Weixler, B.; Spagnoli, G.C.; et al. Prognostic significance of CD8+ T-cells density in stage III colorectal cancer depends on SDF-1 expression. Sci. Rep. 2021, 11, 775. [Google Scholar] [CrossRef]
- Köbel, M.; Kalloger, S.E.; Boyd, N.; McKinney, S.; Mehl, E.; Palmer, C.; Leung, S.; Bowen, N.J.; Ionescu, D.N.; Rajput, A.; et al. Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies. PLoS Med. 2008, 5, e232. [Google Scholar] [CrossRef] [PubMed]
- Posabella, A.; Köhn, P.; Lalos, A.; Wilhelm, A.; Mechera, R.; Soysal, S.; Muenst, S.; Güth, U.; Stadlmann, S.; Terracciano, L.; et al. High density of CD66b in primary high-grade ovarian cancer independently predicts response to chemotherapy. J. Cancer Res. Clin. Oncol. 2020, 146, 127–136. [Google Scholar] [CrossRef]
- Yoon, J.; Terada, A.; Kita, H. CD66b regulates adhesion and activation of human eosinophils. J. Immunol. 2007, 179, 8454–8462. [Google Scholar] [CrossRef] [Green Version]
- Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol. Rev. 2008, 222, 155–161. [Google Scholar] [CrossRef]
- Condeelis, J.; Pollard, J.W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006, 124, 263–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeim, F.; Rao, P.; Song, S.; Phan, R.T. Atlas of Hematopathology (Second Edition): Principles of Immunophenotyping, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 29–56. [Google Scholar]
- Bryceson, Y.T.; March, M.E.; Ljunggren, H.G.; Long, E.O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 2006, 107, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Bryceson, Y.T.; March, M.E.; Ljunggren, H.G.; Long, E.O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 2006, 214, 73–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeap, W.H.; Wong, K.L.; Shimasaki, N.; Teo, E.C.; Quek, J.K.; Yong, H.X.; Diong, C.P.; Bertoletti, A.; Linn, Y.C.; Wonga, S.C. CD16 is indispensable for antibody-dependent cellular cytotoxicity by human monocytes. Sci. Rep. 2016, 5, 34310. [Google Scholar] [CrossRef] [PubMed]
- Mandelboim, O.; Malik, P.; Davis, D.M.; Boyson, J.E.; Strominger, J.L. Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc. Natl. Acad. Sci. USA 1999, 96, 5640–5644. [Google Scholar] [CrossRef] [Green Version]
- Sconocchia, G.; Zlobec, I.; Lugli, A.; Calabrese, D.; Iezzi, G.; Karamitopoulou, E.; Patsouris, E.S.; Peros, G.; Horcic, M.; Tornillo, L.; et al. Tumor infiltration by FcγRIII (CD16)+ myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int. J. Cancer. 2011, 128, 2663–2672. [Google Scholar] [CrossRef] [Green Version]
- Poznanski, S.M.; Nham, T.; Chew, M.V.; Lee, A.J.; Hammill, J.A.; Fan, I.Y.; Butcher, M.; Bramson, J.L.; Lee, D.A.; Hirte, H.W.; et al. Expanded CD56superbright CD16 + NK Cells from Ovarian Cancer Patients Are Cytotoxic against Autologous Tumor in a Patient-Derived Xenograft Murine Model. Cancer Immunol. Res. 2018, 6, 1174–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, G.; Kurman, R.J.; Chang, H.W.; Cho, S.K.R.; Shih, I.M. Diverse tumorigenic pathways in ovarian serous carcinoma. Am. J. Pathol. 2002, 160, 1223–1228. [Google Scholar] [CrossRef] [Green Version]
- Jazaeri, A.A.; Awtrey, C.S.; Chandramouli, G.V.R.; Chuang, Y.E.; Khan, J.; Sotiriou, C.; Aprelikova, O.; Yee, C.Y.; Zorn, K.K.; Birrer, M.J.; et al. Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin. Cancer Res. 2005, 11, 6300–6310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droeser, R.A.; Güth, U.; Eppenberger-Castori, S.; Stadlmann, S.; Hirt, C.; Terracciano, L.; Singer, G. High IL-17-positive tumor immune cell infiltration is indicative for chemosensitivity of ovarian carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bubendorf, L.; Nocito, A.; Mosh, H.; Sauter, G. Tissue microarray (TMA) technology: Miniaturized pathology archives for high-throughput in situ studies. J. Pathol. 2001, 195, 72–79. [Google Scholar] [CrossRef]
- Däster, S.; Eppenberger-Castori, S.; Hirt, C.; Zlobec, I.; Delko, T.; Nebiker, C.A.; Soysal, S.D.; Amicarella, F.; Iezzi, G.; Sconocchia, G.; et al. High frequency of CD8 positive lymphocyte infiltration correlates with lack of lymph node involvement in early rectal cancer. Dis. Markers 2014, 2014, 792183. [Google Scholar] [CrossRef]
- Zlobec, I.; Steele, R.; Terracciano, L.; Jass, J.R.; Lugli, A. Selecting immunohistochemical cut-off scores for novel biomarkers of progression and survival in colorectal cancer. J. Clin. Pathol. 2007, 60, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Pignata, S.; Cecere, S.C.; Du Bois, A.; Harter, P.; Heitz, F. Treatment of recurrent ovarian cacner. Ann. Oncol. 2017, 28, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Herzog, T.J.; Vermorken, J.B.; Pujade-Lauraine, E.; Provencher, D.M.; Jagiello-Gruszfeld, A.; Kong, B.; Boman, K.; Park, Y.C.; Parekh, T.; Lebedinsky, C.; et al. Correlation between CA-125 serum level and response by RECIST in a phase III recurrent ovarian cancer study. Gynecol. Oncol 2011, 122, 350–355. [Google Scholar] [CrossRef]
- Griffiths, R.W.; Zee, Y.K.; Evans, S.; Mitchell, C.L.; Kumaran, G.C.; Welch, R.S.; Jayson, G.C.; Clamp, A.R.; Hasan, J. Outcomes after multiple lines of chemotherapy for platinum-resistant epithelial cancers of the ovary, peritoneum, and fallopian tube. Int. J. Gynecol. Cancer 2011, 21, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Harter, P.; Sehouli, J.; Reuss, A.; Hasenburg, A.; Scambia, G.; Cibula, D.; Mahner, S.; Vergote, I.; Reinthaller, A.; Burges, A.; et al. Prospective validation study of a predictive score for operability of recurrent ovarian cancer: The Multicenter Intergroup Study DESKTOP II. Int. J. Gynecol. Cancer 2011, 21, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Pignata, S.; Scambia, G.; Bologna, A.; Signoriello, S.; Vergote, I.B.; Wagner, U.; Lorusso, D.; Murgia, V.; Sorio, R.; Ferrandina, G.; et al. The MITO8 phase III international multicenter randomized study testing the effect on survival of prolonging platinum-free interval (PFI) in patients with ovarian cancer (OC) recurring between 6 and 12 months after previous platinum-based chemotherapy: A collaboration of MITO, MANGO, AGO, BGOG, ENGOT, and GCIG. J. Clin. Oncol. 2016, 35, 3347–3353. [Google Scholar] [CrossRef]
- Poveda, A.; Vergote, I.; Tjulandin, S.; Kong, B.; Roy, M.; Chan, S.; Filipczyk-Cisarz, E.; Hagberg, H.; Kaye, S.B.; Colombo, N.; et al. Trabectedin plus pegylated liposomal doxorubicin in relapsed ovarian cancer: Outcomes in the partially platinum-sensitive (platinum-free interval 6–12 months) subpopulation of OVA-301 phase III randomized trial. Ann. Oncol. 2011, 22, 39–48. [Google Scholar] [CrossRef]
- Coleman, R.L.; Brady, M.F.; Herzog, T.J.; Sabbatini, P.; Armstrong, D.K.; Walker, J.L.; Kim, B.G.; Fujiwara, K.; Tewari, K.S.; O’Malley, D.M.; et al. Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017, 18, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.; Biburger, M.; Christin Brückner, C.; Ipsen-Escobedo, A.; Gordan, S.; Lehmann, C.; Voehringer, D.; Winkler, T.; Schaft, N.; Dudziak, D.; et al. Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Sci. Immunol. 2017, 2, eaah6413. [Google Scholar] [CrossRef] [PubMed]
- Hatjiharissi, E.; Xu, L.; Santos, D.D.; Hunter, Z.R.; Ciccarelli, B.T.; Verselis, S.; Modica, M.; Cao, Y.; Manning, R.J.; Leleu, X.; et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood 2007, 110, 2561–2564. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.; Zarate, R.; Bandres, E.; Boni, V.; Hernández, A.; Sola, J.J.; Honorato, B.; Bitarte, N.; García-Foncillas, J. Fc gamma receptor polymorphisms as predictive markers of Cetuximab efficacy in epidermal growth factor receptor downstream-mutated metastatic colorectal cancer. Eur. J. Cancer. 2012, 48, 1774–1780. [Google Scholar] [CrossRef]
- Musolino, A.; Naldi, N.; Bortesi, B.; Pezzuolo, D.; Capelletti, M.; Missale, G.; Laccabue, D.; Zerbini, A.; Camisa, R.; Bisagni, G.; et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 2008, 26, 1789–1796. [Google Scholar] [CrossRef]
- Belisle, J.A.; Gubbels, J.A.A.; Raphael, C.A.; Migneault, M.; Rancourt, C.; Connor, J.P.; Patankar, M.S. Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125). Immunology 2007, 122, 418–429. [Google Scholar] [CrossRef]
- Bairi, K.E.I.; Kandhro, A.H.; Wafaa Mahfoud, G.A.; Louanjli, N.; Saadani, B.; Afqir, S.; Amrani, M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell Oncol. 2017, 40, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Yang-Hartwich, Y.; Soteras, M.G.; Lin, Z.P.; Holmberg, J.; Sumi, N.; Craveiro, V.; Liang, M.; Romanoff, E.; Bingham, J.; Garofalo, F.; et al. p53 protein aggregation promotes platinum resistance in ovarian cancer. Oncogene 2015, 34, 3605–3616. [Google Scholar] [CrossRef]
- Henriksen, J.R.; Nederby, L.; Donskov, F.; Waldstrøm, M.; Adimi, P.; Jakobsen, A.; Steffensen, K.D. Blood natural killer cells during treatment in recurrent ovarian cancer. Acta Oncol. 2020, 59, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Magdalena Klanova, M.; Mikkel, Z.; Oestergaard, M.Z.; Marek Trněný, M.; Wolfgang Hiddemann, W.; Robert Marcus, R.; Laurie, H.; Sehn, L.H.; Umberto Vitolo, U.; Alexandra Bazeos, A.; et al. Prognostic Impact of Natural Killer Cell Count in Follicular Lymphoma and Diffuse Large B-cell Lymphoma Patients Treated with Immunochemotherapy. Clin. Cancer Res. 2019, 25, 4634–4643. [Google Scholar] [CrossRef] [Green Version]
- Capuano, C.; Chiara Pighi, C.; Molfetta, R.; Paolini, R.; Battella, S.; Palmieri, G.; Giannini, G.; Belardinilli, F.; Santoni, A.; Galandrini, R. Obinutuzumab-mediated high-affinity ligation of FcγRIIIA/CD16 primes NK cells for IFNγ production. Oncoimmunology 2017, 10, e1290037. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Huang, Y.; Huang, L.; Xu, Y.; Wang, Z.; Li, H.; Zhang, T.; Zhong, M.; Gao, W.Q.; Zhang, Y. CD16 expression on neutrophils predicts treatment efficacy of capecitabine in colorectal cancer patients. BMC Immunol. 2020, 8, 46. [Google Scholar] [CrossRef]
- Fridman, W.H.; Pagès, F.; Sautès-Fridmann, C.; Galon, J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer. 2012, 12, 298–306. [Google Scholar] [CrossRef]
- Governa, V.; Trella, E.; Mele, V.; Tornillo, L.; Amicarella, F.; Cremonesi, E.; Muraro, M.G.; Xu, H.; Droeser, R.; Däster, S.; et al. The Interplay Between Neutrophils and CD8 + T Cells Improves Survival in Human Colorectal Cancer. Clin. Cancer Res. 2017, 23, 3847–3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droeser, R.A.; Hirt, C.; Eppenberger-Castori, S.; Zlobec, I.; Viehl, C.T.; Frey, D.M.; Nebiker, C.A.; Rosso, R.; Zuber, M.; Amicarella, F.; et al. High myeloperoxidase positive cell infiltration in colorectal cancer is an independent favorable prognostic factor. PLoS ONE 2013, 8, e64814. [Google Scholar] [CrossRef]
Characteristics | n = 47 (%) |
---|---|
Age (media, range) | 58 (34–77) |
FIGO stage: | 1 (2.1) |
II | 1 (2.1) |
IIIA | 5 (10.6) |
IIIB | 32 (68.2) |
IIIC | 8 (17.0) |
IV | |
Residual disease | |
None | 16 (34.0) |
<2 cm | 17 (36.2) |
≥2 cm | 13 (27.7) |
Unclear | 1 (2.1) |
Number of chemotherapy cycles | |
<6 | 8 (17.0) |
6 or more | 39 (83.0) |
Response to chemotherapy | 33 (70.2) |
CS | 14 (29.8) |
CR | |
RFS in months | 10.1 (9.89–10.30) |
OS in months | 41.4 (40.77–42.03) |
CD16 TIC P | 17.01 (15.38–18.64) |
CD16 TIC R | 43.16 (30.21–56.11) |
CD16 Score P | 105.3 (93.78–116.82) |
CD16 Score R | 97.2 (75.72–108.68) |
Characteristics | CD16high, n = 21 (%) | CD16low, n = 22 (%) | p-Value |
Age (media, range) | 58.6 (45–73) | 56.4 (34–77) | 0.635 |
FIGO stage: | |||
II | 0 (0.0) | 1 (4.5) | |
IIIA | 0 (0.0) | 0 (0.0) | |
IIIB | 4 (19.0) | 1 (4.5) | |
IIIC | 13 (61.9) | 17 (77.4) | |
IV | 4 (19.0) | 3 (13.6) | 0.324 |
Residual disease | 0.795 | ||
None | 7 (33.3) | 6 (27.3) | |
<2 cm | 8 (38.1) | 8 (36.4) | |
≥2 cm | 5 (23.8) | 8 (36.4) | |
Unclear | 1 (4.8) | 0 (0.0) | |
Number of CT cycles | 0.499 | ||
<6 | 2 (9.5) | 4 (18.2) | |
6 or more | 18 (85.7) | 18 (81.8) | |
Response to chemotherapy | |||
CS | 15 (71.4) | 15 (68.2) | 0.817 |
CR | 6 (28.6) | 7 (31.8) | |
Recurrence-free survival in months | 10.81 (8.63–12.99) | 8.36 (6.58–12.14) | 0.43 |
Overall survival in months | 36.92 (31.11–41.72) | 47.87 (42.05–53.69) | 0.174 |
(A) | |||
Characteristics | CD16high, n = 18 (%) | CD16low, n = 19 (%) | p-Value |
Age (media, range) | 58.6 (45–73) | 56.4 (34–77) | 0.097 |
FIGO stage: | |||
II | 1 (5.6) | 0 (0.0) | |
IIIA | 1 (5.6) | 0 (0.0) | |
IIIB | 3 (16.6) | 2 (10.5) | |
IIIC | 9 (50.0) | 14 (73.7) | |
IV | 4 (22.2) | 3 (15.8) | 0.619 |
Residual disease | 0.017 | ||
None | 6 (33.3) | 9 (47.4) | |
<2 cm | 11 (61.1) | 3 (15.8) | |
≥2 cm | 1 (5.6) | 6 (31.6) | |
Unclear | 0 (0.0) | 1 (5.2) | |
Number of CT cycles | 0.63 | ||
<6 | 2 (11.1) | 3 (15.8) | |
6 or more | 16 (88.9) | 15 (78.9) | |
Response to chemotherapy | 0.034 | ||
CS | 16 (88.9) | 11 (57.9) | |
CR | 2 (11.1) | 8 (42.1) | |
Recurrence-free survival in months | 12.67 (10.26–15.08) | 6.58 (5.17–7.99) | 0.029 |
Overall survival in months | 52.77 (46.53–59.01) | 29.00 (25.74–32.26) | 0.008 |
(B) |
Immune Marker | CD66b | IL-17 | MPO | FOXP3 | CXCR4 | |
CD16 | rho | 0.026 | 0.147 | 0.171 | 0.171 | 0.029 |
p-value | 0.868 | 0.347 | 0.274 | 0.279 | 0.856 | |
(A) | ||||||
CD16 | rho | 0.395 | 0.328 | 0.331 | 0.353 | 0.441 |
p-value | 0.016 | 0.048 | 0.045 | 0.060 | 0.008 | |
(B) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.02 | 0.99–1.05 | 0.194 | 1.03 | 0.94–1.11 | 0.527 |
CD16 high vs. low | 0.29 | 0.11–0.77 | 0.013 | 0.79 | 0.08–7.64 | 0.845 |
Residual disease < 2 cm | 0.61 | 0.25–1.49 | 0.277 | 0.29 | 0.44–2.01 | 0.213 |
Residual disease ≥ 2 cm | 1.28 | 0.49–3.38 | 0.616 | 3.54 | 0.66–18.94 | 0.139 |
Number of chemotherapy cycles | 1.04 | 0.83–1.30 | 0.750 | 0.88 | 0.57–1.35 | 0.552 |
FIGO stage: | ||||||
IIIA | 1.68 | 0.10–27.67 | 0.717 | 1.39 | 0.05–38.55 | 0.847 |
IIIB | 1.43 | 0.15–13.99 | 0.759 | 3.17 | 0.25–39.89 | 0.371 |
IIIC | 2.08 | 0.27–15.92 | 0.482 | 5.21 | 0.27–98.84 | 0.272 |
IV | 2.03 | 0.23–17.59 | 0.52 | 6.97 | 0.44–111.16 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalos, A.; Neri, O.; Ercan, C.; Wilhelm, A.; Staubli, S.; Posabella, A.; Weixler, B.; Terracciano, L.; Piscuoglio, S.; Stadlmann, S.; et al. High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival. Cancers 2021, 13, 5783. https://doi.org/10.3390/cancers13225783
Lalos A, Neri O, Ercan C, Wilhelm A, Staubli S, Posabella A, Weixler B, Terracciano L, Piscuoglio S, Stadlmann S, et al. High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival. Cancers. 2021; 13(22):5783. https://doi.org/10.3390/cancers13225783
Chicago/Turabian StyleLalos, Alexandros, Ornella Neri, Caner Ercan, Alexander Wilhelm, Sebastian Staubli, Alberto Posabella, Benjamin Weixler, Luigi Terracciano, Salvatore Piscuoglio, Sylvia Stadlmann, and et al. 2021. "High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival" Cancers 13, no. 22: 5783. https://doi.org/10.3390/cancers13225783
APA StyleLalos, A., Neri, O., Ercan, C., Wilhelm, A., Staubli, S., Posabella, A., Weixler, B., Terracciano, L., Piscuoglio, S., Stadlmann, S., Spagnoli, G. C., Droeser, R. A., & Singer, G. (2021). High Density of CD16+ Tumor-Infiltrating Immune Cells in Recurrent Ovarian Cancer Is Associated with Enhanced Responsiveness to Chemotherapy and Prolonged Overall Survival. Cancers, 13(22), 5783. https://doi.org/10.3390/cancers13225783