Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Use of ICI in the Third-Line Setting
3. The Use of ICI in the Second-Line Setting
4. The Use of ICI in the First-Line Maintenance Setting
5. The Use of ICI in the First-Line Setting
6. The Use of ICI in the Peri-Operative/Adjuvant Setting
7. Hyper-Progression
8. Future Directions and Combination Strategies to Improve Immune Engagement
9. Discussion
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, J.O.; Smyth, E.C. Gastroesophageal cancer: Navigating the immune and genetic terrain to improve clinical outcomes. Cancer Treat. Rev. 2019, 84, 101950. [Google Scholar] [CrossRef] [PubMed]
- Sehdev, A.; Catenacci, D.V.T. Gastroesophageal cancer: Focus on epidemiology, classification, and staging. Discov. Med. 2013, 16, 103–111. [Google Scholar] [PubMed]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.C.C.M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Lin, D.; Khan, U.; Goetze, T.O.; Reizine, N.; Goodman, K.A.; Shah, M.A.; Catenacci, D.V.; Al-Batran, S.-E.; Posey, J.A. Gastroesophageal Junction Adenocarcinoma: Is There an Optimal Management? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, e88–e95. [Google Scholar] [CrossRef]
- Sehdev, A.; Catenacci, D.V. Perioperative therapy for locally advanced gastroesophageal cancer: Current controversies and consensus of care. J. Hematol. Oncol. 2013, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Louvet, C.; André, T.; Tigaud, J.; Gamelin, E.; Douillard, J.; Brunet, R.; François, E.; Jacob, J.; Levoir, D.; Taamma, A.; et al. Phase II Study of Oxaliplatin, Fluorouracil, and Folinic Acid in Locally Advanced or Metastatic Gastric Cancer Patients. J. Clin. Oncol. 2002, 20, 4543–4548. [Google Scholar] [CrossRef]
- Al-Batran, S.-E.; Atmaca, A.; Hegewisch-Becker, S.; Jaeger, D.; Hahnfeld, S.; Rummel, M.J.; Seipelt, G.; Rost, A.; Orth, J.; Knuth, A.; et al. Phase II Trial of Biweekly Infusional Fluorouracil, Folinic Acid, and Oxaliplatin in Patients with Advanced Gastric Cancer. J. Clin. Oncol. 2004, 22, 658–663. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Moiseyenko, V.; Tjulandin, S.; Majlis, A.; Constenla, M.; Boni, C.; Rodrigues, A.; Fodor, M.; Chao, Y.; Voznyi, E.; et al. Phase III Study of Docetaxel and Cisplatin Plus Fluorouracil Compared with Cisplatin and Fluorouracil As First-Line Therapy for Advanced Gastric Cancer: A Report of the V325 Study Group. J. Clin. Oncol. 2006, 24, 4991–4997. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Chao, J.; Muro, K.; Al-Batran, S.E.; Klempner, S.J.; Wainberg, Z.A.; Shah, M.A.; Rha, S.Y.; Ohtsu, A.; Liepa, A.M.; et al. Toward a Treatment Sequencing Strategy: A Systematic Review of Treatment Regimens in Advanced Gastric Cancer/Gastroesophageal Junction Adenocarcinoma. Oncologist 2021, 26, e1704–e1729. [Google Scholar] [CrossRef]
- Ali, S.M.; Sanford, E.M.; Klempner, S.J.; Rubinson, D.A.; Wang, K.; Palma, N.A.; Chmielecki, J.; Yelensky, R.; Palmer, G.A.; Morosini, D.; et al. Prospective Comprehensive Genomic Profiling of Advanced Gastric Carcinoma Cases Reveals Frequent Clinically Relevant Genomic Alterations and New Routes for Targeted Therapies. Oncologist 2015, 20, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Lyons, T.G.; Ku, G.Y. Systemic therapy for esophagogastric cancer: Targeted therapies. Chin. Clin. Oncol. 2017, 6, 48. [Google Scholar] [CrossRef]
- Maron, S.B.; Catenacci, D.V. Novel Targeted Therapies for Esophagogastric Cancer. Surg. Oncol. Clin. N. Am. 2017, 26, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Maron, S.B.; Chase, L.M.; Lomnicki, S.; Kochanny, S.; Moore, K.L.; Joshi, S.S.; Landron, S.; Johnson, J.; Kiedrowski, L.A.; Nagy, R.J.; et al. Circulating Tumor DNA Sequencing Analysis of Gastroesophageal Adenocarcinoma. Clin. Cancer Res. 2019, 25, 7098–7112. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Kang, Y.-K.; Park, H.; Uronis, H.E.; Lee, K.-W.; Ng, M.C.H.; Enzinger, P.C.; Park, S.H.; Gold, P.J.; Lacy, J.; et al. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): A single-arm, phase 1b–2 trial. Lancet Oncol. 2020, 21, 1066–1076. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Maron, S.B.; Chatila, W.K.; Millang, B.; Chavan, S.S.; Alterman, C.; Chou, J.F.; Segal, M.F.; Simmons, M.Z.; Momtaz, P.; et al. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 821–831. [Google Scholar] [CrossRef]
- Maron, S.B.; Alpert, L.; Kwak, H.A.; Lomnicki, S.; Chase, L.; Xu, D.; O’Day, E.; Nagy, R.J.; Lanman, R.B.; Cecchi, F.; et al. Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 696–713. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, D.V.; Kang, Y.-K.; Saeed, A.; Yamaguchi, K.; Qin, S.; Lee, K.-W.; Kim, I.-H.; Oh, S.C.; Li, J.; Turk, H.M.; et al. FIGHT: A randomized, double-blind, placebo-controlled, phase II study of bemarituzumab (bema) combined with modified FOLFOX6 in 1L FGFR2b+ advanced gastric/gastroesophageal junction adenocarcinoma (GC). J. Clin. Oncol. 2021, 39, 4010. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, O.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Karaszewska, B.; Kang, Y.-K.; Chung, H.; Shankaran, V.; Siena, S.; Go, N.F.; Yang, H.; Schupp, M.; Cunningham, D. A Multicenter Phase II Study of AMG 337 in Patients with MET-Amplified Gastric/Gastroesophageal Junction/Esophageal Adenocarcinoma and Other MET-Amplified Solid Tumors. Clin. Cancer Res. 2018, 25, 2414–2423. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, D.V.T.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.-Y.; Hart, J.; et al. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease. Cancer Discov. 2020, 11, 308–325. [Google Scholar] [CrossRef]
- De Mello, R.A.; Lordick, F.; Muro, K.; Janjigian, Y.Y. Current and Future Aspects of Immunotherapy for Esophageal and Gastric Malignancies. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 237–247. [Google Scholar] [CrossRef]
- Zhou, K.I.; Peterson, B.F.; Serritella, A.; Thomas, J.; Reizine, N.; Moya, S.; Tan, Y.-H.C.; Wang, Y.; Catenacci, D.V.T. Spatial and Temporal Heterogeneity of PD-L1 Expression and Tumor Mutational Burden in Gastroesophageal Adenocarcinoma at Baseline Diagnosis and after Chemotherapy. Clin. Cancer Res. 2020, 26, 6453–6463. [Google Scholar] [CrossRef]
- Chénard-Poirier, M.; Smyth, E.C. Immune Checkpoint Inhibitors in the Treatment of Gastroesophageal Cancer. Drugs 2019, 79, 1–10. [Google Scholar] [CrossRef]
- Lin, E.M.; Gong, J.; Klempner, S.J.; Chao, J. Advances in immuno-oncology biomarkers for gastroesophageal cancer: Programmed death ligand 1, microsatellite instability, and beyond. World J. Gastroenterol. 2018, 24, 2686–2697. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.-P.; et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Joshi, S.S.; Maron, S.B.; Catenacci, D.V. Pembrolizumab for treatment of advanced gastric and gastroesophageal junction adenocarcinoma. Futur. Oncol. 2018, 14, 417–430. [Google Scholar] [CrossRef]
- Taieb, J.; Moehler, M.; Boku, N.; Ajani, J.A.; Ruiz, E.Y.; Ryu, M.-H.; Guenther, S.; Chand, V.; Bang, Y.-J. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat. Rev. 2018, 66, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.; Gambardella, V.; Cervantes, A.; Fleitas, T. Checkpoint inhibitors for gastroesophageal cancers: Dissecting heterogeneity to better understand their role in first-line and adjuvant therapy. Ann. Oncol. 2021, 32, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.-J.; De Vita, F.; Landers, G.; Yen, C.-J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability–High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895. [Google Scholar] [CrossRef] [PubMed]
- Boku, N.; Kang, Y.-K.; Satoh, T.; Chao, Y.; Kato, K.; Chung, H.; Chen, J.-S.; Muro, K.; Kang, W.; Yoshikawa, T.; et al. A Phase 3 Study of nivolumab (Nivo) in previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer: Updated results and subset analysis by PD-L1 expression (ATTRACTION-02). Ann. Oncol. 2017, 28, v209. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.-J.; Ruiz, E.; Van Cutsem, E.; Lee, K.-W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.-H.; Chung, H.-C.; Evesque, L.; et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroglu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Kato, K.; Cho, B.C.; Takahashi, M.; Okada, M.; Lin, C.-Y.; Chin, K.; Kadowaki, S.; Ahn, M.-J.; Hamamoto, Y.; Doki, Y.; et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 1506–1517. [Google Scholar] [CrossRef]
- Shen, L.; Kato, K.; Kim, S.-B.; Ajani, J.A.; Zhao, K.; He, Z.; Yu, X.; Shu, Y.; Luo, Q.; Wang, J.; et al. RATIONALE 302: Randomized, phase 3 study of tislelizumab versus chemotherapy as second-line treatment for advanced unresectable/metastatic esophageal squamous cell carcinoma. J. Clin. Oncol. 2021, 39, 4012. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line, Advanced Gastric Cancer. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Kato, K.; Chung, H.; Minashi, K.; Lee, K.-W.; Cho, H.; Kang, W.; Komatsu, Y.; Tsuda, M.; Yamaguchi, K.; et al. Interim safety and clinical activity of nivolumab (Nivo) in combination with S-1/capecitabine plus oxaliplatin in patients (pts) with previously untreated unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer: Part 1 study of ATTRACTION-04 (ONO-4538-37). Ann. Oncol. 2017, 28, v228–v229. [Google Scholar] [CrossRef] [Green Version]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Muro, K.; Fuchs, C.S.; Golan, T.; Geva, R.; Hara, H.; Jalal, S.I.; Borg, C.; Doi, T.; Wainberg, Z.A.; et al. KEYNOTE-059 cohort 2: Safety and efficacy of pembrolizumab (pembro) plus 5-fluorouracil (5-FU) and cisplatin for first-line (1L) treatment of advanced gastric cancer. J. Clin. Oncol. 2017, 35, 4012. [Google Scholar] [CrossRef]
- Daniel, V.C.; Wainberg, Z.; Charles, S.F.; Garrido, M.; Bang, Y.-J.; Muro, K.; Savage, M.; Wang, J.; Koshiji, M.; Rita, P.D.; et al. KEYNOTE-059 cohort 3: Safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. Ann. Oncol. 2017, 28, iii153. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study. Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [Google Scholar] [CrossRef]
- Chau, I.; Doki, Y.; Ajani, J.A.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. Nivolumab (NIVO) plus ipilimumab (IPI) or NIVO plus chemotherapy (chemo) versus chemo as first-line (1L) treatment for advanced esophageal squamous cell carcinoma (ESCC): First results of the CheckMate 648 study. J. Clin. Oncol. 2021, 39, LBA4001. [Google Scholar] [CrossRef]
- Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S. Effect of Camrelizumab vs Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients with Advanced or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925. [Google Scholar] [CrossRef]
- Shen, L.; Lu, Z.-H.; Wang, J.-Y.; Shu, Y.-Q.; Kong, L.; Yang, L.; Wang, B.-H.; Wang, Z.-W.; Ji, Y.-H.; Cao, G.-C.; et al. LBA52 Sintilimab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced or metastatic esophageal squamous cell cancer: First results of the phase III ORIENT-15 study. Ann. Oncol. 2021, 32, S1330. [Google Scholar] [CrossRef]
- Xu, R.-H.; Wang, F.; Cui, C.; Yao, J.; Zhang, Y.; Wang, G.; Feng, J.; Yang, S.; Fan, Y.; Shi, J.; et al. 1373MO JUPITER-06: A randomized, double-blind, phase III study of toripalimab versus placebo in combination with first-line chemotherapy for treatment naive advanced or metastatic esophageal squamous cell carcinoma (ESCC). Ann. Oncol. 2021, 32, S1041. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yanez, P.E.; Luo, S.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2+ metastatic gastric or gastroesophageal junction (G/GEJ) cancer: Initial findings of the global phase 3 KEYNOTE-811 study. J. Clin. Oncol. 2021, 39, 4013. [Google Scholar] [CrossRef]
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroğlu, M.; Ryu, M.-H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coşkun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results From JAVELIN Gastric 100. J. Clin. Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Högner, A.; Thuss-Patience, P. Immune Checkpoint Inhibition in Oesophago-Gastric Carcinoma. Pharmaceuticals 2021, 14, 151. [Google Scholar] [CrossRef]
- Kim, J.H.; Ryu, M.-H.; Park, Y.S.; Ma, J.; Lee, S.Y.; Kim, D.; Kang, Y.-K. Predictive biomarkers for the efficacy of nivolumab as ≥ third-line therapy in patients with advanced gastric cancer (AGC): From a subset analysis of ATTRACTION-2 phase III trial. J. Clin. Oncol. 2019, 37, 152. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Squibb, B.M. Bristol Myers Squibb Reports Second Quarter Financial Results for 2021. 2021. Available online: https://www.bloomberg.com/press-releases/2021-07-28/bristol-myers-squibb-reports-second-quarter-financial-results-for-2021 (accessed on 7 October 2021).
- Janjigian, Y.; Ajani, J.; Moehler, M.; Garrido, M.; Gallardo, C.; Shen, L.; Yamaguchi, K.; Wyrwicz, L.; Skoczylas, T.; Bragagnoli, A.; et al. LBA7 Nivolumab (NIVO) plus chemotherapy (Chemo) or ipilimumab (IPI) vs chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer/esophageal adenocarcinoma (GC/GEJC/EAC): CheckMate 649 study. Ann. Oncol. 2021, 32, S1329–S1330. [Google Scholar] [CrossRef]
- NCCN. NCCN Guidelines and Clinical Resources. Available online: https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf (accessed on 21 June 2021).
- Rha, S.Y.; Lee, C.-K.; Kim, H.S.; Kang, B.; Jung, M.; Kwon, W.S.; Bae, W.K.; Koo, D.-H.; Shin, S.-J.; Jeung, H.-C.; et al. A multi-institutional phase Ib/II trial of first-line triplet regimen (Pembrolizumab, Trastuzumab, Chemotherapy) for HER2-positive advanced gastric and gastroesophageal junction cancer (PANTHERA Trial): Molecular profiling and clinical update. J. Clin. Oncol. 2021, 39, 218. [Google Scholar] [CrossRef]
- Van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; Henegouwen, M.V.B.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, J.V.; Preston, S.R.; O’Neill, B.; Lowery, M.A.; Baeksgaard, L.; Crosby, T.; Cunningham, M.; Cuffe, S.; Griffiths, G.O.; Roy, R.; et al. Neo-AEGIS (Neoadjuvant trial in Adenocarcinoma of the Esophagus and Esophago-Gastric Junction International Study): Preliminary results of phase III RCT of CROSS versus perioperative chemotherapy (Modified MAGIC or FLOT protocol). (NCT01726452). J. Clin. Oncol. 2021, 39, 4004. [Google Scholar] [CrossRef]
- Hoeppner, J.; Lordick, F.; Brunner, T.; Glatz, T.; Bronsert, P.; Röthling, N.; Schmoor, C.; Lorenz, D.; Ell, C.; Hopt, U.T.; et al. ESOPEC: Prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016, 16, 503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrillo, A.; Pompella, L.; Tirino, G.; Pappalardo, A.; Laterza, M.M.; Caterino, M.; Orditura, M.; Ciardiello, F.; Lieto, E.; Galizia, G.; et al. Perioperative Treatment in Resectable Gastric Cancer: Current Perspectives and Future Directions. Cancers 2019, 11, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.L.; Motoyama, S.; Lièvre, A.; et al. Adjuvant nivolumab (NIVO) in resected esophageal or gastroesophageal junction cancer (EC/GEJC) following neoadjuvant chemoradiotherapy (CRT): Expanded efficacy and safety analyses from CheckMate 577. J. Clin. Oncol. 2021, 39, 4003. [Google Scholar] [CrossRef]
- Ende, T.V.D.; de Clercq, N.C.; Henegouwen, M.I.V.B.; Gisbertz, S.S.; Geijsen, D.; Verhoeven, R.; Meijer, S.L.; Schokker, S.; Dings, M.; Bergman, J.J.; et al. Neoadjuvant Chemoradiotherapy Combined with Atezolizumab for Resectable Esophageal Adenocarcinoma: A Single-arm Phase II Feasibility Trial (PERFECT). Clin. Cancer Res. 2021, 27, 3351–3359. [Google Scholar] [CrossRef]
- Catenacci, D.V.T. A PERFECT Biomarker-focused Study of Neoadjuvant IO for Esophagogastric Cancer. Clin. Cancer Res. 2021, 27, 3269–3271. [Google Scholar] [CrossRef]
- Adashek, J.J.; Subbiah, I.M.; Matos, I.; Garralda, E.; Menta, A.K.; Ganeshan, D.M.; Subbiah, V. Hyperprogression and immunotherapy: Fact, fiction, or alternative fact? Trends Cancer 2020, 6, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Peng, Z.; Gong, J.; Zhang, X.; Li, J.; Lu, M.; Lu, Z.; Shen, L. Hyperprogression after immunotherapy in patients with malignant tumors of digestive system. BMC Cancer 2019, 19, 705. [Google Scholar] [CrossRef] [Green Version]
- Champiat, S.; Besse, B.; Marabelle, A. Hyperprogression during immunotherapy: Do we really want to know? Ann. Oncol. 2019, 30, 1028–1031. [Google Scholar] [CrossRef]
- Merz, V.; Zecchetto, C.; Simionato, F.; Cavaliere, A.; Casalino, S.; Pavarana, M.; Giacopuzzi, S.; Bencivenga, M.; Tomezzoli, A.; Santoro, R.; et al. A phase II trial of the FGFR inhibitor pemigatinib in patients with metastatic esophageal–gastric junction/gastric cancer trastuzumab resistant: The FiGhTeR trial. Ther. Adv. Med Oncol. 2020, 12. [Google Scholar] [CrossRef]
- Reizine, N.; Peterson, B.; Moya, S.; Wang, Y.; Tan, Y.-H.C.Y.H.; Eng, O.S.; Bilimoria, M.; Lengyel, E.; Turaga, K.; Catenacci, D.V.T. Complete Response in a Patient With Chemorefractory EGFR-Amplified, PD-L1–Positive Metastatic Gastric Cancer Treated By Dual Anti-EGFR and Anti–PD-1 Monoclonal Antibody Therapy. JCO Precis. Oncol. 2020, 4, 1180–1186. [Google Scholar] [CrossRef]
- Raufi, A.G.; Almhanna, K. Immune checkpoint inhibitors for esophageal cancer: Are we moving in the right direction? Ann. Transl. Med. 2019, 7, S102. [Google Scholar] [CrossRef]
- Kono, K.; Nakajima, S.; Mimura, K. Current status of immune checkpoint inhibitors for gastric cancer. Gastric Cancer 2020, 23, 565–578. [Google Scholar] [CrossRef]
- Baba, Y.; Nomoto, D.; Okadome, K.; Ishimoto, T.; Iwatsuki, M.; Miyamoto, Y.; Yoshida, N.; Baba, H. Tumor immune microenvironment and immune checkpoint inhibitors in esophageal squamous cell carcinoma. Cancer Sci. 2020, 111, 3132–3141. [Google Scholar] [CrossRef]
- Mimura, K.; Kua, L.-F.; Xiao, J.-F.; Asuncion, B.R.; Nakayama, Y.; Syn, N.; Fazreen, Z.; Soong, R.; Kono, K.; Yong, W.-P. Combined inhibition of PD-1/PD-L1, Lag-3, and Tim-3 axes augments antitumor immunity in gastric cancer–T cell coculture models. Gastric Cancer 2021, 24, 611–623. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesinski, T.; Caglevic, C.; Chung, H.C.; et al. Pembrolizumab versus paclitaxel for previously treated patients with PD-L1–positive advanced gastric or gastroesophageal junction cancer (GC): Update from the phase III KEYNOTE-061 trial. J. Clin. Oncol. 2020, 38, 4503. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, K.-M. PD-L1 expression in gastric cancer: Interchangeability of 22C3 and 28-8 pharmDx assays for responses to immunotherapy. Mod. Pathol. 2021, 34, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Krigsfeld, G.S.; Prince, E.A.; Pratt, J.; Chizhevsky, V.; Ragheb, J.W.; Novotny, J., Jr.; Huron, D. Analysis of real-world PD-L1 IHC 28-8 and 22C3 pharmDx assay utilisation, turnaround times and analytical concordance across multiple tumour types. J. Clin. Pathol. 2020, 73, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.; Chao, J.; Hendifar, A.; Klempner, S.J.; Gong, J. Checkpoint inhibition in advanced gastroesophageal cancer: Clinical trial data, molecular subtyping, predictive biomarkers, and the potential of combination therapies. Transl. Gastroenterol. Hepatol. 2019, 4, 63. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, Z.; Wang, H.; Ma, W.; Zhou, C.; Zhang, S. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model. BMC Immunol. 2016, 17, 29. [Google Scholar] [CrossRef]
- Quéméneur, L.; Beloeil, L.; Michallet, M.-C.; Angelov, G.; Tomkowiak, M.; Revillard, J.-P.; Marvel, J. Restriction of De Novo Nucleotide Biosynthesis Interferes with Clonal Expansion and Differentiation into Effector and Memory CD8 T Cells. J. Immunol. 2004, 173, 4945–4952. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Dong, T.; Yi, T.; Hu, J.; Zhang, Z.; Lin, S.; Niu, W. Impact of 5-Fu/oxaliplatin on mouse dendritic cells and synergetic effect with a colon cancer vaccine. Chin. J. Cancer Res. 2018, 30, 197–208. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
Trial | Line of Treatment | Year | Size | Study Arms | SCC/AC | EsoSCC/GEJAC/GC | Asian (%) | Biomarker/Histo | Biomarker Incidence | Ab | OS HR |
---|---|---|---|---|---|---|---|---|---|---|---|
3L Studies | |||||||||||
KN-059 | 3L (cohort 1) | 2018 [28] | 259 | Pembro only (n = 259) | 0/100 | 0/51.4/48.3 | 15.8 | CPS ≥ 1 | 57.1% | 22C3 | ORR 11.6% |
ATTRCN-02 | 3L | 2017 [34] | 493 | Placebo (n = 163) vs. nivo (n = 330) | 0/100 | 0/5.5/62.5 | 100 | TPS ≥ 1 | 13.5% (among 192 pts) | 28-8 | 0.63 |
JVLN-300 | 3L | 2018 [35] | 371 | Paclitaxel or irinotecan (n = 186) vs. avelumab (n = 185) | 0/100 | 0/30/70 | 25 | TPS ≥ 1 | 26.8% (among 317 pts) | 73-10 | 1.1 (NS) |
2L Studies | |||||||||||
KN-061 | 2L | 2018 [36] | 592 | Paclitaxel (n = 296) vs. pembro (n = 296) | 0/100 | 0/31/69 | 30 | CPS ≥ 1 | 66.7% | 22C3 | 0.82 (NS) |
KN-181 | 2L | 2020 [37] | 628 | Paclitaxel, docetaxel or irinotecan (n = 314) vs. pembro (n = 314) | 64/36 | 64/36/0 | 39 | CPS ≥ 10 | 35.3% | 22C3 | 0.69 |
ATTRCN-3 | 2L | 2019 [38] | 419 | Paclitaxel or docetaxel (n = 209) vs. nivo (n = 210) | 100/0 | 100/0/0 | 96 | TPS ≥ 1 | TPS ≥ 1.48%, TPS ≥ 5.35%, TPS ≥ 10.29% | 28-8 | 0.77 |
RATIONALE-302 | 2L | 2021 [39] | 512 | Paclitaxel, docetaxel or irinotecan (n = 256) vs. tislelizumab (n = 256) | 100/0 | 100/0/0 | 79 | CPS ≥ 10 | 30.6% | SP263 | 0.7 |
1L Studies | |||||||||||
KN-062 | 1L | 2020 [40] | 763 | Cisplatin with 5FU or capecitabine plus placebo (n = 250) vs. cisplatin with 5FU or capecitabine plus pembro (n = 257) vs. pembro alone (n = 256) | 0/100 | 0/30/70 | 24.5 | CPS ≥ 1 | 100% | 22C3 | 0.85 (NS) for chemo + pembro vs. chemo, and 0.85 (NS) for chemo + pembro vs. chemo in CPS ≥ 10 |
ATTRCN-4 | 1L | 2020 [41] | 724 | Oxaliplatin with S-1 or capecitabine plus placebo (n = 362) vs. oxaliplatin with S-1 or capecitabine plus nivo (n = 362) | 0/100 | 0/0/100 | 100 | TPS ≥ 10 | 16% | 28-8 | 0.9 (NS) |
CM-649 | 1L | 2020 [42] | 1581 | Oxaliplatin with 5FU and leucovorin or oxaliplatin with capecitabine plus nivo (n = 789) vs. oxaliplatin with 5FU and leucovorin or oxaliplatin with capecitabine (n = 792) | 0/100 | 0/30/70 | 24 | CPS ≥ 5 | CPS ≥ 5.60%, CPS ≥ 1.82% | 28-8 | 0.71 in CPS ≥ 5, 0.77 in CPS ≥ 1 |
KN-059 | 1L (cohort 2) | 2019 [43] | 25 | Cisplatin with 5FU or capecitabine plus pembro (n = 25) | 0/100 | NR | 68 | CPS ≥ 1 | 64% | 22C3 | ORR 60% |
KN-059 | 1L (cohort 3) | 2019 [44] | 31 | Pembro only (n = 31) | 0/100 | NR | 48.4 | CPS ≥ 1 | 100% | 22C3 | ORR 25.8% |
ORIENT-16 | 1L | 2021 [45] | 650 | Capecitabine and oxaliplatin plus placebo (n = 323) vs. capecitabine and oxaliplatin plus sintilimab (n = 327) | 0/100 | 0/18.5/81.5 | 100 | CPS ≥ 5 | 61% | NR | 0.76, 0.66 in CPS ≥ 5 |
KN-590 | 1L | 2020 [46] | 749 | Cisplatin and 5FU plus pembro (n = 373) vs. cisplatin and 5FU plus placebo (n = 376) | 73/27 | 73/27/0 | 52 | CPS ≥ 10 | CPS ≥ 10.50%, SCC + CPS ≥ 10.52% | 22C3 | 0.57 in SCC + CPS ≥ 10, 0.62 in CPS ≥ 10, 0.72 in SCC, 0.73 in Asians |
CM-648 | 1L | 2021 [47] | 970 | Cisplatin and 5FU (n = 324) vs. cisplatin and 5FU plus nivo (n = 321) vs. nivo plus ipi (n = 325) | 100/0 | 100/0/0 | 70 | TPS ≥ 1 | 49% | 28-8 | 0.54 for nivo + chemo vs. chemo in TPS ≥ 1, 0.64 for nivo + ipi vs. chemo in TPS ≥ 1 |
ESCORT-1st | 1L | 2021 [48] | 596 | Cisplatin and paclitaxel plus placebo (n = 297) vs. cisplatin and paclitaxel plus camrelizumab (n = 298) | 100/0 | 100/0/0 | NR | NR | NR | NR | 0.7 |
ORIENT-15 | 1L | 2021 [49] | 659 | cisplatin and 5FU or cisplatin and paclitaxel plus placebo (n = 332) vs. cisplatin and 5FU or cisplatin and paclitaxel plus sintilimab (n = 327) | 100/0 | 100/0/0 | 97 | CPS ≥ 10 TPS ≥ 10% | CPS ≥ 10 57.8% TPS ≥ 10% 36.1% | NR | 0.62 for all patients, 0.63 in CPS ≥ 10 |
JUPITER-06 | 1L | 2021 [50] | 514 | Cisplatin and paclitaxel plus placebo followed by placebo maintenance (n = 257) vs. cisplatin and paclitaxel plus toripalimab followed by toripalimab maintenance (n = 257) | 100/0 | 100/0/0 | 100 | CPS ≥ 1 | CPS ≥ 1 78% CPS ≥ 10 41.2% | NR | 0.58, 0.61 in CPS ≥ 1 |
KN-811 | 1L | 2021 [51] | 264 | 5FU and cisplatin and trastuzumab or capecitabine and oxaliplatin and trastuzumab plus pembro (n = 133) vs. 5FU and cisplatin and trastuzumab or capecitabine and oxaliplatin and trastuzumab plus placebo (n = 131) | 0/100 | 0/30/70 | 30 | CPS ≥ 1 | 86% | 22C3 | ORR 74.4% in pembro + chemo vs. 51.1% in chemo + placebo |
MAHOGANY | 1L (cohort A) | 2021 | 43 | Margetuximab plus retifanlimab (n = 43) | 0/100 | 0/41.9/58.1 | 44.2 | CPS ≥ 1 | 100% | NR | Tumor shrinkage 85.7% |
JVLN gastric 100 | 1L maintenance | 2021 [52] | 499 | 5FU and oxaliplatin and leucovorin or capecitabine and oxaliplatin as maintenance (n = 250) vs. avelumab as maintenance (n = 249) | 0/100 | 0/28.8/71.2 | 29.8 | TPS ≥ 1% CPS ≥ 1 | TPS ≥ 1% 12.5%, CPS ≥ 1 64.3 | 73-10 and 22C3 | 0.91 (NS) |
Study Name/Title | Study Description/Arms and Intervention | Histology/Setting |
---|---|---|
1L, Locally Advanced Unresectable or Metastatic Setting | ||
LEAP-014 This is a phase 3, randomized study that evaluates the efficacy and safety of Pembrolizumab + Lenvatinib in combination with chemotherapy compared with standard of care | There will be 2 parts to the study: the Safety Run-in (Part 1) and the main study (Part 2). In part 1, participants will be treated with pembrolizumab plus lenvatinib plus chemotherapy. In part 2, participants (not including those participating in part 1) will be treated with pembrolizumab plus lenvatinib plus chemotherapy or pembrolizumab plus chemotherapy. | 1L, metastatic squamous cell carcinoma of the esophagus |
LEAP-015 This is a phase 3, randomized study that evaluates the efficacy and safety of Lenvatinib + Pembrolizumab in combination with chemotherapy compared with standard of care | This study consists of 2 parts: In part 1, participants will be treated with lenvatinib plus pembrolizumab and chemotherapy (either CAPOX or mFOLFOX6), and then followed for dose-limiting toxicities for 3 weeks. In part 2, participants will be randomly enrolled to receive either lenvatinib in combination with pembrolizumab and chemotherapy (CAPOX or mFOLFOX6) or chemotherapy alone (CAPOX or mFOLFOX6). | locally advanced unresectable or metastatic HER2-negative GEJ adenocarcinoma |
SKYSCRAPER-07 This is a phase 3, randomized study of atezolizumab with or without Tiragolumab (Anti-TIGIT Antibody) in patients with unresectable esophageal squamous cell carcinoma who did not have progression of disease after chemoradiotherapy | In the experimental arm A, participants will receive atezolizumab followed by tiragolumab. In the experimental arm B, participants will receive atezolizumab followed by tiragolumab matching placebo, and in arm C (placebo comparator), participants will receive Tiragolumab placebo + Atezolizumab placebo. Participants will receive matching placebos to tiragolumab and atezolizumab. | Unresectable squamous cell carcinoma of the esophagus, without progression after definitive chemoradiation |
KEYNOTE-859 This is a phase 3, randomized study of Pembrolizumab in combination with chemotherapy versus placebo in combination with chemotherapy among patients with HER2-negative, previously untreated, unresectable/metastatic GC or GEJ adenocarcinoma | In the experimental arm, the participants will receive pembrolizumab + physicians’ choice of either cisplatin and 5FU OR oxaliplatin + capecitabine. Participants who complete 35 administrations or achieve a complete response (CR) but progress after discontinuation can initiate a second course of pembrolizumab for up to 17 cycles (approximately 1 additional year). | 1L, untreated, unresectable or metastatic HER2-negative GC or GEJ adenocarcinoma |
KEYNOTE-811 This is a phase 3, randomized trial comparing Trastuzumab plus chemotherapy and Pembrolizumab with Trastuzumab plus chemotherapy and placebo as first-line treatment in participants with HER2-positive advanced GC or GEJ adenocarcinoma | Pembrolizumab or placebo will be administered in addition to trastuzumab, in the beginning of each cycle. For the global cohort, SOC chemotherapy will constitute either FP (Cisplatin + 5-FU) or CAPOX. The Japan cohort, will be treated with SOX chemotherapy consisting of S-1 (tegafur, 5-chloro-2,4-dihydroxypyridine [CDHP], and potassium oxonate [Oxo] and oxaliplatin). | locally advanced unresectable or metastatic HER2-positive GC or GEJ adenocarcinoma |
MAHOGANY This is a phase 2/3 study that evaluates Margetuximab in combination with INCMGA00012 and chemotherapy or MGD013 and chemotherapy for the treatment of metastatic or locally advanced, HER2-positive GC or GEJ cancer | In cohort A (single arm) the safety and efficacy of margetuximab plus INCMGA00012 will be evaluated. In cohort B part 1 (including 4 arms), patients will be randomly assigned to: margetuximab plus chemotherapy plus INCMGA00012 arm, margetuximab plus chemotherapy plus MGD013 arm, margetuximab plus chemotherapy arm, and trastuzumab plus chemotherapy arm. In cohort B part 2, a checkpoint inhibitor (INCMGA00012 or MGD013) will be selected and evaluated in another randomized 2 arm cohort, consisting of margetuximab plus chemotherapy plus INCMGA00012 or MGD013, or trastuzumab plus chemotherapy. | locally advanced unresectable or metastatic HER2-positive GC or GEJ adenocarcinoma |
1L Locoregional/Resectable Setting | ||
KEYNOTE-585 This is a phase 3, randomized study of Pembrolizumab in combination with chemotherapy (XP or FP) versus placebo plus chemotherapy (XP or FP) as neoadjuvant or adjuvant treatment of patients with GC and GEJ adenocarcinoma | In the experimental arms: Neoadjuvant: Prior to surgery, participants receive 3 cycles of pembrolizumab PLUS cisplatin and capecitabine OR cisplatin and 5-FU. Adjuvant: 4 to 10 weeks post-surgery, participants receive 3 cycles of pembrolizumab PLUS cisplatin and capecitabine OR cisplatin and 5-FU, followed by pembrolizumab monotherapy for up to 11 additional cycles. This study also includes pembrolizumab + FLOT cohort and a placebo + FLOT cohort, both in the neoadjuvant and adjuvant settings. | localized GC or GEJ adenocarcinoma |
MATTERHORN This is a randomized, phase 3 study of neoadjuvant Durvalumab and FLOT chemotherapy followed by adjuvant Durvalumab for the treatment of resectable GC and GEJ Cancer | This study evaluates the efficacy of treatment with durvalumab or placebo combined with FLOT given before surgery (neoadjuvant setting) and durvalumab or placebo therapy combined with FLOT chemotherapy after surgery (adjuvant setting) | GC or GEJ adenocarcinoma with resectable disease |
ATTRACTION-05 This is a randomized study in patients with GC undergoing postoperative adjuvant chemotherapy | In the experimental (nivolumab) group, patients will get: Nivolumab + chemotherapy (S-1 therapy or CAPOX therapy is determined by the investigator). In the placebo comparator, patients will get placebo + chemotherapy. | Adjuvant, histologically confirmed GC, status post R0 resection |
DANTE This is a randomized phase 2 study of Atezolizumab in combination with FLOT versus FLOT alone in patients with GC or GEJ cancer | Eligible patients will be randomized to two arms: Arm A: patients will receive atezolizumab + FLOT before undergoing surgery. Following surgery, patients will receive additional cycles of atezolizumab + FLOT followed by atezolizumab alone. Arm B: FLOT alone: Patients will receive FLOT alone before surgery. Following surgery, patients will receive additional cycles of chemotherapy alone. | adenocarcinoma of the GEJ or GC (cT2, cT3, cT4, any N category, M0, or any T, N+, M0) that is considered medically and technically resectable |
EA2174 This is a phase 2/3 study of peri-operative Nivolumab with or without Ipilimumab for treatment of locoregional esophageal and GEJ adenocarcinoma | Arm A: Patients will be treated with carboplatin and paclitaxel and undergo radiation therapy as well. Arm B: Patients will be treated with carboplatin, paclitaxel, and radiation therapy as well as nivolumab. Arm C: Patients receive nivolumab only. Arm D: Patients will be treated with nivolumab plus ipilimumab. | esophageal or GEJ adenocarcinoma, staged as T1N1-3M0 or T2-3N0-2M0 |
Therapeutic Antibody/Studies | Diagnostic Antibody | Scoring System | Positivity Incidence | Comments |
---|---|---|---|---|
Pembrolizumab/KEYNOTES | 22C3 pharmDx assay | CPS Cut off ≥ 1 ≥10 (or other) | CPS ≥ 1, 50–60% CPS ≥ 10 15–25% | Good NPV, not great PPV; enrich for benefit at higher cut-offs |
Nivolumab/CHECKMATE, ATTRACTION | 28-8 pharmDx assay | TPS or CPS Cut off ≥ 1% or CPS > 5 | TPS ≥ 1 13.5–25% CPS ≥ 1 82% CPS ≥ 5 60% CPS ≥ 10? | Poor NPV TPS Not enriching |
Avelumab/JAVELIN | 73-10 pharmDx assay | TPS Cut off ≥ 1 | 10–26.8% | Poor NPV Not enriching |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paydary, K.; Reizine, N.; Catenacci, D.V.T. Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence. Cancers 2021, 13, 5929. https://doi.org/10.3390/cancers13235929
Paydary K, Reizine N, Catenacci DVT. Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence. Cancers. 2021; 13(23):5929. https://doi.org/10.3390/cancers13235929
Chicago/Turabian StylePaydary, Koosha, Natalie Reizine, and Daniel V. T. Catenacci. 2021. "Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence" Cancers 13, no. 23: 5929. https://doi.org/10.3390/cancers13235929
APA StylePaydary, K., Reizine, N., & Catenacci, D. V. T. (2021). Immune-Checkpoint Inhibition in the Treatment of Gastro-Esophageal Cancer: A Closer Look at the Emerging Evidence. Cancers, 13(23), 5929. https://doi.org/10.3390/cancers13235929