Role of Serum Free Light Chain Assay in Relapsed/Refractory Multiple Myeloma. A Real-Life Unicentric Retrospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Disease Characteristics at Diagnosis and Relapse
2.3. Statistical Analysis
3. Results
3.1. Patient’s Characteristics at Diagnosis
3.2. Secretory Status, Treatment Response and Relapse Type
3.3. Serum Free Light Chain Response Evaluation at Diagnosis and Disease Relapse
3.4. Predictive Parameters at Relapse: Role of Serum Free Light Chains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple Myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerecke, C.; Fuhrmann, S.; Strifler, S.; Schmidt-Hieber, M.; Einsele, H.; Knop, S. The Diagnosis and Treatment of Multiple Myeloma. Deutsch. Ärztebl. Int. 2016, 113, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulos, M.A.; Kanellias, N.; Roussou, M.; Gavriatopoulou, M.; Migkou, M.; Panagiotidis, I.; Eleutherakis-Papaiakovou, E.; Ziogas, D.C.; Fotiou, D.; Giannouli, S. Oligosecretory and Non-Secretory Multiple Myeloma: Incidence, Clinical Characteristics and Outcomes. Clin. Lymphoma Myeloma Leuk. 2017, 17, 115. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladè, J.; Mateos, M.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, 328–346. [Google Scholar] [CrossRef]
- Larson, D.; Kyle, R.A.; Rajkumar, S.V. Prevalence and monitoring of oligosecretory myeloma. N. Engl. J. Med. 2012, 367, 580–581. [Google Scholar] [CrossRef] [Green Version]
- Schieferdecker, A.; Hörber, S.; Ums, M.; Besemer, B.; Bokemeyer, C.; Peter, A.; Weisel, K. Comparison of three different serum-free light-chain assays—implications on diagnostic and therapeutic monitoring of multiple myeloma. Blood Cancer J. 2020, 10, 2. [Google Scholar] [CrossRef]
- Bossuyt, X.; Delforge, M.; Reynders, M.; Dillaerts, D.; Sprangers, B.; Fostier, K.; Poesen, K.; Vercammen, M. Diagnostic thresholds for free light chains in multiple myeloma depend on the assay used. Leukemia 2018, 32, 1815–1818. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, 538–548. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Harousseau, J.L.; Durie, B.; Anderson, K.C.; Dimopoulos, M.; Kyle, R.; Blade, J.; Richardson, P.; Orlowski, R.; Siegel, D.; et al. Consensus recommendations for the uniform reporting of clinical trials: Report of the International Myeloma Workshop Consensus Panel 1. Blood 2011, 117, 4691–4695. [Google Scholar] [CrossRef] [Green Version]
- Durie, B.G.M.; Harousseau, J.L.; Miguel, J.S.; Bladé, J.; Barlogie, B.; Anderson, K.; Gertz, M.; Dimopoulos, M.; Westin, J.; Sonneveld, P.; et al. International uniform response criteria for multiple myeloma. Leukemia 2006, 20, 1467–1473. [Google Scholar] [CrossRef] [Green Version]
- Dispenzieri, A.; Kyle, R.; Merlini, G.; Miguel, J.S.; Ludwig, H.; Hajek, R.; Palumbo, A.; Jagannath, S.; Blade, J.; Lonial, S.; et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009, 23, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Caers, J.; Garderet, L.; Kortüm, K.M.; O’Dwyer, M.E.; van de Donk, N.W.C.J.; Binder, M.; Maria Dold, S.; Gay, F.; Corre, J.; Beguin, Y.; et al. European myeloma network recommendations on tools for the diagnosis and monitoring of multiple myeloma: What to use and when. Haematologica 2018, 103, 1772–1784. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Kyle, R.A.; Rajkumar, S.V. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 2009, 23, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Rajkumar, S.V.; Palumbo, A.; Moreau, P.; Orlowski, R.; Bladé, J.; Sezer, O.; Ludwig, H.; Dimopoulos, M.A.; Attal, M.; et al. International myeloma working group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. Blood 2011, 117, 6063–6073. [Google Scholar] [CrossRef] [Green Version]
- Patel, U.H.; Drabick, J.J.; Malysz, J.; Talamo, G. Nonsecretory and Light Chain Escape in Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2018, 18, 515–519. [Google Scholar] [CrossRef]
- Kühnemund, A.; Liebisch, P.; Bauchmüller, K.; zur Hausen, A.; Veelken, H.; Wäsch, R.; Engelhardt, M. ‘Light-chain escape-multiple myeloma’-an escape phenomenon from plateau phase: Report of the largest patient series using LC-monitoring. J. Cancer Res. Clin. Oncol. 2009, 135, 477–484. [Google Scholar] [CrossRef]
- Yong, K.; Delforge, M.; Driessen, C.; Fink, L.; Flinois, A.; Gonzalez-McQuire, S.; Safaei, R.; Karlin, L.; Mateos, M.; Raab, M.S.; et al. Multiple myeloma: Patient outcomes in real-world practice. Br. J. Haematol. 2016, 175, 252–264. [Google Scholar] [CrossRef]
- Palumbo, A.; Rajkumar, S.V.; San Miguel, J.F.; Larocca, A.; Niesvizky, R.; Morgan, G.; Landgren, O.; Hajek, R.; Einsele, H.; Anderson, K.C.; et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J. Clin. Oncol. 2014, 32, 587–600. [Google Scholar] [CrossRef]
- Ludwig, H.; Sonneveld, P.; Davies, F.; Bladé, J.; Boccadoro, M.; Cavo, M.; Morgan, G.; de la Rubia, J.; Delforge, M.; Dimopoulos, M.; et al. European Perspective on Multiple Myeloma Treatment Strategies in 2014. Oncologist 2014, 19, 829–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markovic, U.; Leotta, V.; Tibullo, D.; Giubbolini, R.; Romano, A.; Del Fabro, V.; Parrinello, N.L.; Cannizzaro, M.T.; Di Raimondo, F.; Conticello, C. Serum free light chains and multiple myeloma: Is it time to extend their application? Clin. Case Rep. 2020, 8, 617–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age | |
---|---|
median in years (range) | 64 (31–80) |
<65 years, N (%) | 74 (57) |
65–75 years, N (%) | 47 (36) |
>75 years, N (%) | 9 (7) |
Gender | |
male, N (%) | 73 (56) |
female, N (%) | 57 (44) |
Time of diagnosis | |
years 2000–2005, N (%) | 10 (8) |
years 2006–2010, N (%) | 30 (23) |
years 2011–2015, N (%) | 63 (48) |
years 2016–2019, N (%) | 27 (21) |
CRAB criteria (130 patients) | |
anemia (Hb < 10 g/dL) | 64 (49) |
bone lesions (>1 lesion) | 120 (92) |
renal insufficiency (Creatinine > 2 mg/dL) | 10 (8) |
hypercalcemia (>11.5 mg/dL) | 10 (8) |
LDH (99 patients) | |
normal | 84 (85) |
elevated | 15 (15) |
FISH risk stratification (57 patients) | |
standard | 46 (81) |
high | 11 (19) |
R-ISS staging (60 patients) | |
stage I-II | 48 (80) |
stage III | 12 (20) |
Extramedullary disease (130 patients) | |
no | 126 (97) |
yes | 4 (3) |
Treatment Lines | |
---|---|
median, N (range) | 4 (3–8) |
≤4 lines, N (%) | 72 (55) |
>4 lines, N (%) | 58 (45) |
Stem cell transplantation (63 patients) | |
single ASCT, N (%) | 32 (51) |
double ASCT, N (%) | 21 (33) |
ASCT + Allogeneic, N (%) | 10 (16) |
Paraprotein (isotype) | |
secreting, N (%) | 130 (100) |
IgG-heavy chain, N (%) | 97 (75) |
IgA-heavy chain, N (%) | 18 (14) |
Secretion type (130 patients) | |
normo-secretory, N (%) | 106 (82) |
oligo-secretory, N (%) | 9 (7) |
micromolecolar, N (%) | 15 (11) |
Normo-secretory to unmeasurable switch (106 patients) | |
no switch | 77 (72) |
oligo-secretory switch after ≤3 lines | 17 (16) |
oligo-secretory switch after >3 lines | 4 (4) |
micromolecular secretory switch | 4 (4) |
nonproducer secretory switch | 4 (4) |
First Line | Second Line | Third Line | Fourth Line | ||||||
---|---|---|---|---|---|---|---|---|---|
Patients N. (%) | 130 (100) | 130 (100) | 130 (100) | 88 (68) | |||||
Secretory disease | normo-secretory | 130 | 106 (82) | 130 | 87 (67) | 130 | 82 (63) | 88 | 57 (65) |
oligo-secretory/ micromolecular | 24 (18) | 43 (33) | 49 (37) | 31 (35) | |||||
Cytogenetic risk | standard | 55 | 46 (84) | 12 | 10 (83) | 15 | 10 (67) | 8 | 5 (62) |
high | 11 (16) | 2 (17) | 5 (33) | 3 (38) | |||||
Baseline LDH | normal | 99 | 84 (85) | 114 | 91 (80) | 113 | 92 (81) | 78 | 67 (86) |
increased | 15 (15) | 23 (20) | 21 (19) | 11 (14) | |||||
ECOG | <3 | 130 | 104 | 130 | 103 | 130 | 101 | 88 | 53 |
≥3 | 26 | 27 | 29 | 35 | |||||
Treatement type | continuous | 130 | 48 (37) | 130 | 72 (55) | 130 | 91 (70) | 88 | 58 (66) |
fixed duration | 82 (63) | 58 (45) | 39 (30) | 30 (34) | |||||
Treatement type | triplets | 50 | 23 (46) | 89 | 26 (29) | 99 | 23 (23) | 58 | 19 (33) |
doublets | 27 (54) | 63 (71) | 76 (77) | 39 (67) | |||||
Response | CR | 130 | 31 (24) | 130 | 22 (17) | 130 | 14 (11) | 88 | 6 (7) |
VGPR | 36 (28) | 15 (12) | 12 (9) | 10 (11) | |||||
PR | 42 (32) | 61 (47) | 55 (42) | 32 (36) | |||||
<PR | 21 (16) | 32 (24) | 49 (38) | 40 (46) | |||||
Relapse type | clinical | 130 | 90 (69) | 130 | 96 (74) | 109 | 88 (81) | 74 | 56 (76) |
biochemical | 40 (31) | 34 (26) | 21 (19) | 18 (24) | |||||
Extramedullary disease | no | 130 | 126 (97) | 130 | 126 (97) | 130 | 126 (97) | 88 | 86 (98) |
yes | 4 (3) | 4 (3) | 4 (3) | 2 (2) | |||||
Lenalidomide refcractory | no | 130 | N.E. | 130 | 111 (85) | 130 | 54 (42) | 88 | 23 (26) |
yes | N.E. | 19 (15) | 76 (58) | 65 (74) |
Therapy | First Line | Second Line | Third Line | Fourth Line | Cohort | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Involved pre-FLC | <138 mg/mL | 28 | 9 (32) | 41 | 14 (34) | 71 | 33 (46) | 55 | 25 (45) | 195 | 82 (42) |
≥138 mg/mL | 19 (68) | 27 (66) | 38 (54) | 30 (55) | 113 (58) | ||||||
Pre-FLCr | <25 | 28 | 10 (36) | 41 | 23 (56) | 71 | 39 (55) | 55 | 33 (60) | 195 | 105 (54) |
≥25 | 18 (64) | 18 (44) | 32 (45) | 22 (40) | 90 (46) | ||||||
Involved post-FLC | <138 mg/mL | 41 | 14 (34) | 71 | 33 (46) | 68 | 26 (38) | 49 | 19 (39) | 229 | 93 (41) |
≥138 mg/mL | 27 (66) | 38 (54) | 42 (62) | 30 (61) | 136 (59) | ||||||
Post-FLCr | <25 | 41 | 23 (56) | 71 | 39 (55) | 68 | 36 (56) | 49 | 26 (53) | 229 | 124 (55) |
≥25 | 18 (44) | 32 (45) | 32 (44) | 23 (47) | 105 (45) | ||||||
First sFLC alteration | <6 months | 12 | 9 (75) | 18 | 11 (61) | 26 | 16 (62) | 24 | 19 (79) | 80 | 55 (69) |
6–12 months | 2 (17) | 7 (39) | 9 (35) | 4 (17) | 22 (27) | ||||||
>12 months | 1 (8) | 0 | 1 (3) | 1 (4) | 3 (4) | ||||||
Anticipation sFLC type | No alteration | 17 | 5 (29) | 35 | 17 (48) | 34 | 8 (24) | 29 | 5 (17) | 115 | 35 (30) |
sFLC + M-Pr. | 8 (47) | 7 (20) | 17 (50) | 13 (45) | 45 (40) | ||||||
sFLC alone | 4 (24) | 11 (32) | 9 (26) | 11 (38) | 35 (30) |
Category | n. | Median PFS1, Months (95% CI) | p | n. | Median PFS2, Months (95% CI) | p | n. | Median PFS3, Months (95% CI) | p | n. | Median PFS4, Months (95% CI) | p | n. | Cohort’s Median PFS, Months (95% CI) | p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Involved pre–FLC | <138 mg/mL | 9 | 21 (2–28) | 0.59 | 14 | 11 (6–19) | 0.34 | 33 | 20 (7–23) | 0.0002 | 25 | 10 (7–19) | 0.03 | 82 | 13 (10–20) | 0.0086 |
≥138 mg/mL | 19 | 16 (8–29) | 27 | 10 (8–20) | 38 | 6 (5–8) | 30 | 7 (5–12) | 113 | 8 (7–10) | ||||||
Pre–FLCr | <25 | 10 | 21 (2–28) | 0.98 | 23 | 14 (8–19) | 0.71 | 39 | 17 (7–23) | 0.0009 | 33 | 9 (7–15) | 0.33 | 105 | 13 (9–17) | 0.0065 |
≥25 | 18 | 14 (6–26) | 18 | 8 (4–19) | 32 | 6 (5–8) | 22 | 7 (5–12) | 90 | 8 (6–10) | ||||||
Involved post–FLC | <138 mg/mL | 14 | 28 (13–45) | 0.46 | 33 | 20 (10–29) | 0.16 | 26 | 15 (6–22) | 0.059 | 19 | 11 (6–15) | 0.13 | 93 | 16 (11–22) | 0.014 |
≥138 mg/mL | 27 | 24 (11–29) | 38 | 15 (10–24) | 42 | 7 (6–10) | 30 | 7 (5–9) | 136 | 11 (8–14) | ||||||
Post–FLCr | <25 | 23 | 28 (21–35) | 0.8 | 39 | 20 (11–29) | 0.13 | 36 | 11 (7–20) | 0.03 | 26 | 11 (7–15) | 0.01 | 124 | 16 (12–20) | 0.0079 |
≥25 | 18 | 18 (8–27) | 32 | 14 (9–24) | 32 | 6 (5–10) | 23 | 7 (5–8) | 105 | 11 (7–13) |
Category | n. | Median PFS Triplets, Months (95% CI) | p | n. | Median PFS Doublets, Months 95% CI) | p | n. | Median PFS Continuous, Months (95% CI) | p | n. | Median PFS Fixed- Duration, Months (95% CI) | p | n. | Median PFS Oligo-sec., Months (95% CI) | p | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Involved pre-FLC | <138 mg/mL | 30 | 24 (8-29) | 0.03 | 34 | 15 (7-22) | 0.02 | 59 | 17 (9-24) | 0.0002 | 22 | 11 (6-16) | 0.29 | 36 | 20 (10-25) | 0.03 |
≥138 mg/mL | 35 | 8 (6-10) | 57 | 8 (6-12) | 79 | 7 (6-9) | 35 | 11 (8-17) | 50 | 9 (7-13) | ||||||
Pre-FLCr | <25 | 35 | 18 (11-29) | 0.004 | 48 | 15 (7-19) | 0.02 | 75 | 16 (9-20) | 0.0001 | 31 | 11 (6-16) | 0.23 | 46 | 18 (10-25) | 0.009 |
≥25 | 30 | 7 (5-9) | 43 | 8 (6-12) | 63 | 7 (5-9) | 26 | 10 (6-16) | 40 | 8 (6-11) | ||||||
Involved post-FLC | <138 mg/mL | 26 | 10 (8-17) | 0.6 | 42 | 20 (13-25) | 0.001 | 62 | 17 (11-22) | 0.01 | 31 | 16 (11-23) | 0.13 | 35 | 13 (8-20) | 0.2 |
≥138 mg/mL | 33 | 9 (6-18) | 60 | 10 (7-13) | 80 | 9 (7-12) | 57 | 14 (10-20) | 54 | 10 (7-17) | ||||||
Post- FLCr | <25 | 30 | 10 (8-16) | 0.76 | 56 | 19 (13-22) | 0.005 | 80 | 15 (10-20) | 0.007 | 45 | 19 (11-23) | 0.22 | 45 | 12 (8-20) | 0.3 |
≥25 | 29 | 7 (6-16) | 46 | 8 (6-13) | 62 | 8 (6-12) | 43 | 13 (7-18) | 44 | 10 (7-13ù7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovic, U.; Romano, A.; Bellofiore, C.; Condorelli, A.; Garibaldi, B.; Bulla, A.; Duminuco, A.; Del Fabro, V.; Di Raimondo, F.; Conticello, C. Role of Serum Free Light Chain Assay in Relapsed/Refractory Multiple Myeloma. A Real-Life Unicentric Retrospective Study. Cancers 2021, 13, 6017. https://doi.org/10.3390/cancers13236017
Markovic U, Romano A, Bellofiore C, Condorelli A, Garibaldi B, Bulla A, Duminuco A, Del Fabro V, Di Raimondo F, Conticello C. Role of Serum Free Light Chain Assay in Relapsed/Refractory Multiple Myeloma. A Real-Life Unicentric Retrospective Study. Cancers. 2021; 13(23):6017. https://doi.org/10.3390/cancers13236017
Chicago/Turabian StyleMarkovic, Uros, Alessandra Romano, Claudia Bellofiore, Annalisa Condorelli, Bruno Garibaldi, Anna Bulla, Andrea Duminuco, Vittorio Del Fabro, Francesco Di Raimondo, and Concetta Conticello. 2021. "Role of Serum Free Light Chain Assay in Relapsed/Refractory Multiple Myeloma. A Real-Life Unicentric Retrospective Study" Cancers 13, no. 23: 6017. https://doi.org/10.3390/cancers13236017
APA StyleMarkovic, U., Romano, A., Bellofiore, C., Condorelli, A., Garibaldi, B., Bulla, A., Duminuco, A., Del Fabro, V., Di Raimondo, F., & Conticello, C. (2021). Role of Serum Free Light Chain Assay in Relapsed/Refractory Multiple Myeloma. A Real-Life Unicentric Retrospective Study. Cancers, 13(23), 6017. https://doi.org/10.3390/cancers13236017