Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials & Methods
4.1. Biosignature
4.2. Study Design
4.3. Patients and Sample Preparation
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collaborative, G.; Correa, C.; McGale, P.; Taylor, C.; Wang, Y.; Clarke, M.; Davies, C.; Peto, R.; Bijker, N.; Solin, L.; et al. Overview of the randomized trials of radiotherapy in ductal carcinoma in situ of the breast. J. Natl. Cancer Institute. Monogr. 2010, 2010, 162–177. [Google Scholar] [CrossRef]
- Lari, S.A.; Kuerer, H.M. Biological Markers in DCIS and Risk of Breast Recurrence: A Systematic Review. J. Cancer 2011, 2, 232–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Dumitru, D.; Catanuto, G.; Rocco, N.; Nava, M.B.; Benson, J. Management of ductal carcinoma in situ in the modern era. Minerva Chir. 2018, 73, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Rakovitch, E.; Nofech-Mozes, S.; Hanna, W.; Sutradhar, R.; Baehner, F.L.; Miller, D.P.; Fong, C.; Gu, S.; Tuck, A.; Sengupta, S.; et al. Multigene Expression Assay and Benefit of Radiotherapy After Breast Conservation in Ductal Carcinoma in Situ. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [Green Version]
- Bhutiani, N.; Vuong, B.; Egger, M.E.; Eldredge-Hindy, H.; McMasters, K.M.; Ajkay, N. Evaluating patterns of utilization of gene signature panels and impact on treatment patterns in patients with ductal carcinoma in situ of the breast. Surgery 2019, 166, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Barrio, A.V.; Van Zee, K.J. Controversies in the Treatment of Ductal Carcinoma in situ. Annu. Rev. Med. 2017, 68, 197–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinmann, S.; Leo, M.C.; Francisco, M.; Jenkins, C.L.; Barry, T.; Leesman, G.; Linke, S.P.; Whitworth, P.W.; Patel, R.; Pellicane, J.; et al. Validation of a Ductal Carcinoma In Situ Biomarker Profile for Risk of Recurrence after Breast-Conserving Surgery with and without Radiotherapy. Clin. Cancer Res. 2020, 26, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Bremer, T.; Whitworth, P.W.; Patel, R.; Savala, J.; Barry, T.; Lyle, S.; Leesman, G.; Linke, S.P.; Jirstrom, K.; Zhou, W.; et al. A Biological Signature for Breast Ductal Carcinoma In Situ to Predict Radiotherapy Benefit and Assess Recurrence Risk. Clin. Cancer Res. 2018, 24, 5895–5901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnberg, F.; Garmo, H.; Folkvaljon, Y.; Holmberg, L.; Karlsson, P.; Sandelin, K.; Linke, S.; Simin, K.; Leesman, G.; Barry, T.; et al. A Validation of DCIS Biological Risk Profile in a Randomised Study for Radiation Therapy with 20 Year Follow-Up (SweDCIS). 2017. Available online: https://www.sabcs.org/Portals/SABCS2016/Documents/SABCS-2017-Abstracts.pdf (accessed on 1 October 2021).
- Warnberg, F.; Garmo, H.; Emdin, S.; Hedberg, V.; Adwall, L.; Sandelin, K.; Ringberg, A.; Karlsson, P.; Arnesson, L.G.; Anderson, H.; et al. Effect of radiotherapy after breast-conserving surgery for ductal carcinoma in situ: 20 years follow-up in the randomized SweDCIS Trial. J. Clin. Oncol. 2014, 32, 3613–3618. [Google Scholar] [CrossRef] [PubMed]
- Emdin, S.O.; Granstrand, B.; Ringberg, A.; Sandelin, K.; Arnesson, L.G.; Nordgren, H.; Anderson, H.; Garmo, H.; Holmberg, L.; Wallgren, A.; et al. SweDCIS: Radiotherapy after sector resection for ductal carcinoma in situ of the breast. Results of a randomised trial in a population offered mammography screening. Acta Oncol. 2006, 45, 536–543. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.; Winter, K.; Hudis, C.; Kuerer, H.M.; Rakovitch, E.; Smith, B.L.; Sneige, N.; Moughan, J.; Shah, A.; Germain, I.; et al. RTOG 9804: A prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J. Clin. Oncol. 2015, 33, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringberg, A.; Nordgren, H.; Thorstensson, S.; Idvall, I.; Garmo, H.; Granstrand, B.; Arnesson, L.G.; Sandelin, K.; Wallgren, A.; Anderson, H.; et al. Histopathological risk factors for ipsilateral breast events after breast conserving treatment for ductal carcinoma in situ of the breast--results from the Swedish randomised trial. Eur. J. Cancer 2007, 43, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solin, L.J.; Gray, R.; Hughes, L.L.; Wood, W.C.; Lowen, M.A.; Badve, S.S.; Baehner, F.L.; Ingle, J.N.; Perez, E.A.; Recht, A.; et al. Surgical Excision Without Radiation for Ductal Carcinoma in Situ of the Breast: 12-Year Results From the ECOG-ACRIN E5194 Study. J. Clin. Oncol. 2015, 33, 3938–3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, B.; Winter, K.A.; Woodward, W.; Kuerer, H.M.; Sneige, N.; Rakovitch, E.; Smith, B.L.; Germain, I.; Hartford, A.C.; O’Rourke, M.A.; et al. Randomized Phase III Trial Evaluating Radiation Following Surgical Excision for Good-Risk Ductal Carcinoma In Situ: Long-Term Report From NRG Oncology/RTOG 9804. J. Clin. Oncol. 2021, 39, 3574–3582. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Bremer, T.; Cox, C.; Whitworth, P.; Patel, R.; Patel, A.; Brown, E.; Gold, L.; Rock, D.; Riley, L.; et al. Correction to: The Clinical Utility of DCISionRT((R)) on Radiation Therapy Decision Making in Patients with Ductal Carcinoma In Situ Following Breast-Conserving Surgery. Ann. Surg. Oncol. 2021, 28, 5974–5984. [Google Scholar] [CrossRef] [PubMed]
- Wadsten, C.; Heyman, H.; Holmqvist, M.; Ahlgren, J.; Lambe, M.; Sund, M.; Warnberg, F. A validation of DCIS registration in a population-based breast cancer quality register and a study of treatment and prognosis for DCIS during 20 years. Acta Oncol. 2016, 55, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Vicini, F.; Shah, C.; Shivers, S.; He, W.; Karlsson, P.; Holmberg, E.; Leo, M.C.; Huang, Y.; Weinmann, S.; Warnberg, F.; et al. Abstract PD5-04: DCIS biosignature reclassified patients who met RTOG 9804 or ECOG-ACRIN E5194 ‘low-risk’ clinico-pathologic criteria into an elevated invasive risk group who benefited significantly from radiation therapy. In Proceedings of the San Antonio Breast Cancer Virtual Symposium, San Antonio, TX, USA, 8–11 December 2020. [Google Scholar]
- Royston, P.; Lambert, P.C. Flexible Parametric Survival Analysis in Stata: Beyond the Cox Model; Stata Press: College Station, TX, USA, 2011. [Google Scholar]
- Crowther, M.J.; Lambert, P.C. Parametric multi-state survival models: Flexible modelling allowing transition-specific distributions with application to es-timating clinically useful measures of effect differences. Stat. Med. 2017, 36, 4719–4742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors | SweDCIS Trial Cohort (n = 1046) | Validation Cohort Negative Margins (n = 504) | ||
---|---|---|---|---|
Mean Age, (sd, min-max) | 57.0 (9.1, 29–79) | 57.6 (9.1, 29–79) | ||
Age group, n (%) | ||||
<50 | 252 | (24) | 116 | (23) |
50–69 | 722 | (69) | 348 | (69) |
≥70 | 72 | (7) | 40 | (8) |
Year of diagnosis, n (%) | ||||
1987–1994 | 602 | (58) | 295 | (59) |
1995–2000 | 444 | (42) | 209 | (41) |
Mode of detection, n (%) | ||||
Screening | 823 | (79) | 414 | (82) |
Non-screening | 220 | (21) | 89 | (18) |
Missing | 3 | (0) | 1 | (0) |
Palpable, n (%) | ||||
Yes | 236 | (23) | 110 | (22) |
No | 784 | (75) | 394 | (78) |
Missing | 26 | (2) | - | - |
Size, n (%) | ||||
≤1 cm | 476 | (46) | 240 | (48) |
>1 cm | 533 | (51) | 264 | (52) |
Missing | 37 | (3) | - | - |
Surgical margins, n (%) | ||||
Negative | 857 | (82) | 504 | (100) |
Positive | 115 | (11) | - | - |
Missing | 74 | (7) | - | - |
Nuclear grade, n (%) | ||||
1 | 216 | (21) | 155 | (31) |
2 | 221 | (21) | 164 | (32) |
3 | 272 | (26) | 185 | (37) |
Missing | 337 | (32) | - | - |
Radiotherapy, n (%) | ||||
Yes | 526 | (50) | 257 | (51) |
No | 520 | (50) | 247 | (49) |
Hormonal therapy, n (%) | ||||
Yes | 33 | (3) | 17 | (3) |
No | 1013 | (97) | 487 | (97) |
First ipsilateral events within 10-years, n (%) | ||||
New DCIS | 120 | (11) | 59 | (12) |
InvBE—Invasive BC | 87 | (8) | 31 | (6) |
InvBE—Metastases | 3 | (0) | - | - |
Censored—BC death | 1 | (0) | 1 | (0) |
Censored—other death | 57 | (5) | 30 | (6) |
Censored at end of follow-up | 778 | (74) | 383 | (76) |
First contralateral events within 10-years, n (%) | ||||
New DCIS | 16 | (2) | 7 | (1) |
Invasive BC | 46 | (4) | 21 | (4) |
Factors | DS Elevated Risk Group (DS > 3) | DS Low Risk Group (DS ≤ 3) | ||
---|---|---|---|---|
n | % | n | % | |
All | 264 | 52% | 240 | 48% |
Age | ||||
<50 years | 51 | 44% | 65 | 56% |
≥50 years | 213 | 55% | 175 | 45% |
Nuclear grade | ||||
1 | 65 | 42% | 90 | 58% |
2 | 74 | 45% | 90 | 55% |
3 | 125 | 68% | 60 | 32% |
Size | ||||
≤1 cm | 111 | 46% | 129 | 54% |
>1 cm | 153 | 58% | 111 | 42% |
‘Low/high-risk’ clinicopathology criteria | ||||
NG 1 or 2, Size ≤ 1 cm | 63 | 38% | 103 | 62% |
NG 3 or Size > 2.5 cm | 84 | 37% | 84 | 63% |
RTOG 9804 criteria * | 79 | 40% | 118 | 60% |
Total Ipsilateral Breast Event Risk (TotBE) at 10 Years Absolute Risk (CI 95%) * | Invasive Breast Cancer Event Risk (InvBE) at 10 Years Absolute Risk (CI 95%) * | |||
---|---|---|---|---|
Treatment | Elevated Risk (DS > 3), n = 264 | Low Risk (DS ≤ 3), n = 240 | Elevated Risk (DS > 3), n = 264 | Low Risk (DS ≤ 3), n =240 |
BCS without RT | 23.8% (14.8%–36.8%) | 12.9% (6.9%–23.5%) | 12.4% (7.2%–20.8%) | 7.7% (3.9%–14.9%) |
BCS plus RT | 8.3% (4.5%–15.3%) | 7.2% (3.5%–14.6%) | 3.1% (1.2%–8.1%) | 6.5% (3.2%–13.2%) |
Absolute risk difference | 15.5% (5.9%–25.0%) | 5.7% (−0.8%–12.2%) | 9.3% (2.0%–16.5%) | 1.2% (−5.7%–8.2%) |
Risk Group | Relative Rates for RT Treatment at 10 Years | |
---|---|---|
TotBE | InvBE | |
HR (CI 95%), p-Value * | HR (CI 95%), p-Value * | |
DS Elevated Risk (DS > 3), n = 264 | 0.32 (0.17–0.58), p < 0.001 | 0.24 (0.08–0.74), p = 0.013 |
DS Low Risk (DS ≤ 3), n = 240 | 0.53 (0.28–1.02), p = 0.059 | 0.84 (0.30–2.31), p = 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wärnberg, F.; Karlsson, P.; Holmberg, E.; Sandelin, K.; Whitworth, P.W.; Savala, J.; Barry, T.; Leesman, G.; Linke, S.P.; Shivers, S.C.; et al. Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS). Cancers 2021, 13, 6103. https://doi.org/10.3390/cancers13236103
Wärnberg F, Karlsson P, Holmberg E, Sandelin K, Whitworth PW, Savala J, Barry T, Leesman G, Linke SP, Shivers SC, et al. Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS). Cancers. 2021; 13(23):6103. https://doi.org/10.3390/cancers13236103
Chicago/Turabian StyleWärnberg, Fredrik, Per Karlsson, Erik Holmberg, Kerstin Sandelin, Pat W. Whitworth, Jess Savala, Todd Barry, Glen Leesman, Steven P. Linke, Steven C. Shivers, and et al. 2021. "Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS)" Cancers 13, no. 23: 6103. https://doi.org/10.3390/cancers13236103
APA StyleWärnberg, F., Karlsson, P., Holmberg, E., Sandelin, K., Whitworth, P. W., Savala, J., Barry, T., Leesman, G., Linke, S. P., Shivers, S. C., Vicini, F., Shah, C., Weinmann, S., Mann, G. B., & Bremer, T. (2021). Prognostic Risk Assessment and Prediction of Radiotherapy Benefit for Women with Ductal Carcinoma In Situ (DCIS) of the Breast, in a Randomized Clinical Trial (SweDCIS). Cancers, 13(23), 6103. https://doi.org/10.3390/cancers13236103