Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Immuno-Oncology Database and Study Population
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonia, S.J.; Borghaei, H.; Ramalingam, S.S.; Horn, L.; De Castro Carpeno, J.; Pluzanski, A.; Burgio, M.A.; Garassino, M.; Chow, L.Q.M.; Gettinger, S.; et al. Four-year survival with nivolumab in patients with previously treated advanced non-small-cell lung cancer: A pooled analysis. Lancet Oncol. 2019, 20, 1395–1408. [Google Scholar] [CrossRef]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2017, 377, 1345–1356. [Google Scholar] [CrossRef]
- Zhang, D.; Tailor, T.D.; Kim, C.; Atkins, M.B.; Braithwaite, D.; Akinyemiju, T. Immunotherapy Utilization Among Patients With Metastatic NSCLC: Impact of Comorbidities. J. Immunother. 2021, 44, 198–203. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Couzin-Frankel, J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013, 342, 1432–1433. [Google Scholar] [CrossRef]
- Asnani, A. Cardiotoxicity of Immunotherapy: Incidence, Diagnosis, and Management. Curr. Oncol. Rep. 2018, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Chen, H. Cardiotoxicity of Anticancer Therapeutics. Front. Cardiovasc. Med. 2018, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Escudier, M.; Cautela, J.; Malissen, N.; Ancedy, Y.; Orabona, M.; Pinto, J.; Monestier, S.; Grob, J.J.; Scemama, U.; Jacquier, A.; et al. Clinical Features, Management, and Outcomes of Immune Checkpoint Inhibitor-Related Cardiotoxicity. Circulation 2017, 136, 2085–2087. [Google Scholar] [CrossRef]
- Jain, V.; Mohebtash, M.; Rodrigo, M.E.; Ruiz, G.; Atkins, M.B.; Barac, A. Autoimmune Myocarditis Caused by Immune Checkpoint Inhibitors Treated with Antithymocyte Globulin. J. Immunother. 2018, 41, 332–335. [Google Scholar] [CrossRef]
- Cheng, F.; Loscalzo, J. Autoimmune Cardiotoxicity of Cancer Immunotherapy. Trends Immunol. 2017, 38, 77–78. [Google Scholar] [CrossRef]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Thompson, J.A. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline Summary. J. Oncol. Pr. 2018, 14, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. Management of Immunotherapy-Related Toxicities, Version 1.2019. J. Natl. Compr. Cancer Netw. 2019, 17, 255–289. [Google Scholar] [CrossRef]
- Deurenberg, P.; Yap, M.; van Staveren, W.A. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, M.S.; Steinberg, S.M.; Hankins, L.A.; Ihde, D.C.; Johnson, B.E. Obesity and therapy-related toxicity in patients treated for small-cell lung cancer. J. Natl. Cancer Inst. 1995, 87, 361–366. [Google Scholar] [CrossRef]
- Cortellini, A.; Bersanelli, M.; Santini, D.; Buti, S.; Tiseo, M.; Cannita, K.; Perrone, F.; Giusti, R.; De Tursi, M.; Zoratto, F.; et al. Another side of the association between body mass index (BMI) and clinical outcomes of cancer patients receiving programmed cell death protein-1 (PD-1)/Programmed cell death-ligand 1 (PD-L1) checkpoint inhibitors: A multicentre analysis of immune-related adverse events. Eur. J. Cancer 2020, 128, 17–26. [Google Scholar] [CrossRef]
- Daly, L.E.; Power, D.G.; O’Reilly, A.; Donnellan, P.; Cushen, S.J.; O’Sullivan, K.; Twomey, M.; Woodlock, D.P.; Redmond, H.P.; Ryan, A.M. The impact of body composition parameters on ipilimumab toxicity and survival in patients with metastatic melanoma. Br. J. Cancer 2017, 116, 310–317. [Google Scholar] [CrossRef]
- Hirsch, L.; Bellesoeur, A.; Boudou-Rouquette, P.; Arrondeau, J.; Thomas-Schoemann, A.; Kirchgesner, J.; Gervais, C.; Jouinot, A.; Chapron, J.; Giraud, F.; et al. The impact of body composition parameters on severe toxicity of nivolumab. Eur. J. Cancer 2020, 124, 170–177. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Body Mass Index—BMI. 2021. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 10 September 2021).
- Blagden, S.P.; Charman, S.C.; Sharples, L.D.; Magee, L.R.; Gilligan, D. Performance status score: Do patients and their oncologists agree? Br. J. Cancer 2003, 89, 1022–1027. [Google Scholar] [CrossRef]
- Baser, S.; Shannon, V.R.; Eapen, G.A.; Jimenez, C.A.; Onn, A.; Lin, E.; Morice, R.C. Smoking cessation after diagnosis of lung cancer is associated with a beneficial effect on performance status. Chest 2006, 130, 1784–1790. [Google Scholar] [CrossRef]
- Gajra, A.; Marr, A.S.; Ganti, A.K. Management of patients with lung cancer and poor performance status. J. Natl. Compr. Cancer Netw. 2014, 12, 1015–1025. [Google Scholar] [CrossRef]
- West, H.J.; Jin, J.O. JAMA Oncology Patient Page. Performance Status in Patients With Cancer. JAMA Oncol. 2015, 1, 998. [Google Scholar] [CrossRef]
- Ottaiano, A.; De Divitiis, C.; Capozzi, M.; Avallone, A.; Pisano, C.; Pignata, S.; Tafuto, S. Obesity and Cancer: Biological Links and Treatment Implications. Curr. Cancer Drug Targets 2018, 18, 231–238. [Google Scholar] [CrossRef]
- Sarfati, D.; Koczwara, B.; Jackson, C. The impact of comorbidity on cancer and its treatment. CA Cancer J. Clin. 2016, 66, 337–350. [Google Scholar] [CrossRef]
- Ethun, C.G.; Bilen, M.A.; Jani, A.B.; Maithel, S.K.; Ogan, K.; Master, V.A. Frailty and cancer: Implications for oncology surgery, medical oncology, and radiation oncology. CA Cancer J. Clin. 2017, 67, 362–377. [Google Scholar] [CrossRef]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, B.E.; Rebeiro, P.F.; Caribbean, Central and South America Network for HIV Epidemiology (CCASAnet). Brief Report: Assessing and Interpreting the Association Between Continuous Covariates and Outcomes in Observational Studies of HIV Using Splines. J. Acquir. Immune Defic. Syndr. 2017, 74, e60–e63. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Lee, J.H.; Gide, T.N.; Menzies, A.M.; Guminski, A.; Carlino, M.S.; Breen, E.J.; Yang, J.Y.H.; Ghazanfar, S.; Kefford, R.F.; et al. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy. Clin. Cancer Res. 2019, 25, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Figaro, M.K.; Kritchevsky, S.B.; Resnick, H.E.; Shorr, R.I.; Butler, J.; Shintani, A.; Penninx, B.W.; Simonsick, E.M.; Goodpaster, B.H.; Newman, A.B.; et al. Diabetes, inflammation, and functional decline in older adults: Findings from the Health, Aging and Body Composition (ABC) study. Diabetes Care 2006, 29, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Pomatto, L.C.D.; Davies, K.J.A. The role of declining adaptive homeostasis in ageing. J. Physiol. 2017, 595, 7275–7309. [Google Scholar] [CrossRef]
- Xu, W.; Wong, G.; Hwang, Y.Y.; Larbi, A. The untwining of immunosenescence and aging. Semin. Immunopathol. 2020, 42, 559–572. [Google Scholar] [CrossRef] [PubMed]
- Luoma, A.M.; Suo, S.; Williams, H.L.; Sharova, T.; Sullivan, K.; Manos, M.; Bowling, P.; Hodi, F.S.; Rahma, O.; Sullivan, R.J.; et al. Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. Cell 2020, 182, 655–671.e622. [Google Scholar] [CrossRef] [PubMed]
- Isik, B.; Alexander, M.P.; Manohar, S.; Vaughan, L.; Kottschade, L.; Markovic, S.; Lieske, J.; Kukla, A.; Leung, N.; Herrmann, S.M. Biomarkers, Clinical Features, and Rechallenge for Immune Checkpoint Inhibitor Renal Immune-Related Adverse Events. Kidney Int. Rep. 2021, 6, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef]
- Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol. 2005, 115, 911–919, quiz 920. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Prado, Y.; Ben Shimol, J.; Samson, O. Body mass index and immune-related adverse events in patients on immune checkpoint inhibitor therapies: A systematic review and meta-analysis. Cancer Immunol. Immunother. 2021, 70, 89–100. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Jiang, C.; Peng, K.; He, W.; Wang, L.; Jin, Y.; Xia, L. The predictive value of body mass index on prognosis and adverse events of cancers treated with immunotherapy: A systematic review and meta-analysis. Cancer Immunol. Immunother. 2021, 70, 2323–2335. [Google Scholar] [CrossRef] [PubMed]
- Monirul, S.; Rigal, M.; Chouahnia, K.; Le Jouan, M.; Apparuit, M.; Paix, A.; Jacolot, A.; Zelek, L.; Duchemann, B. Budget Impact Analysis of Fixed Dose Versus Weight-Based Dosing Regimen of Nivolumab and Pembrolizumab in the Treatment of Non-Small Cell Lung Cancer. Vaccines 2020, 8, 730. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; Gerber, D.E.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef]
- Sauer, C.; Krauss, J.; Jager, D.; Zschabitz, S.; Haag, G.M.; Walle, T.; Sauer, S.; Kiermeier, S.; Friederich, H.C.; Maatouk, I. eHealth intervention to manage symptoms for patients with cancer on immunotherapy (SOFIA): A study protocol for a randomised controlled external pilot trial. BMJ Open 2021, 11, e047277. [Google Scholar] [CrossRef] [PubMed]
Variables | Overall (N = 684) | irAEs | p-Value * | ||
---|---|---|---|---|---|
0 (N = 396) | 1 (N = 164) | ≥2 (N = 124) | |||
N (%) | N (%) | N (%) | N (%) | ||
Age at first dose (years) | |||||
≤54 | 147 (21.5) | 77 (19.4) | 36 (21.9) | 34 (27.4) | 0.50 |
55–64 | 175 (25.6) | 98 (24.8) | 44 (26.8) | 33 (26.6) | |
65–74 | 207 (30.3) | 124 (31.3) | 48 (29.3) | 35 (28.2) | |
≥75 | 155 (22.7) | 97 (24.5) | 36 (21.9) | 22 (17.7) | |
Sex | |||||
Male | 394 (57.6) | 224 (56.6) | 88 (53.7) | 82 (66.1) | 0.09 |
Female | 290 (42.4) | 172 (43.4) | 76 (46.3) | 42 (33.9) | |
Race | |||||
White | 424 (62.0) | 220 (55.6) | 107 (65.2) | 97 (78.2) | <0.01 |
Black | 182 (26.6) | 130 (32.8) | 39 (23.8) | 13 (10.5) | |
Other | 78 (11.4) | 46 (11.6) | 18 (11.0) | 14 (11.3) | |
Smoking status | |||||
Never | 288 (42.1) | 156 (39.4) | 69 (42.1) | 63 (50.8) | 0.27 |
Former | 330 (48.3) | 201 (50.8) | 78 (47.6) | 51 (41.1) | |
Current | 66 (9.6) | 39 (9.8) | 17 (10.4) | 10 (8.1) | |
Comorbidities | |||||
0 | 82 (12.0) | 40 (10.1) | 18 (11.0) | 24 (19.4) | 0.04 |
1 | 131 (19.2) | 80 (20.2) | 30 (18.3) | 21 (16.9) | |
2 | 157 (22.9) | 88 (22.2) | 34 (20.7) | 35 (28.2) | |
≥3 | 314 (45.9) | 188 (47.5) | 82 (50.0) | 44 (35.5) | |
ECOG PS at first dose | |||||
0 | 189 (27.6) | 75 (18.9) | 52 (31.7) | 62 (50.0) | <0.01 |
1 | 348 (50.9) | 203 (51.3) | 87 (53.1) | 58 (46.8) | |
≥2 | 147 (21.5) | 118 (29.8) | 25 (15.2) | 4 (3.2) | |
Cancer type | |||||
Lung | 269 (39.3) | 184 (46.5) | 59 (36.0) | 26 (21.0) | <0.01 |
Melanoma | 204 (29.8) | 75 (18.9) | 53 (32.3) | 76 (61.3) | |
Other | 211 (30.9) | 137 (34.6) | 52 (31.7) | 22 (17.7) | |
Metastasis | |||||
No | 120 (17.5) | 62 (15.7) | 35 (21.3) | 23 (18.6) | 0.26 |
Yes | 564 (82.5) | 334 (84.3) | 129 (78.7) | 101 (81.4) | |
Lines of ICI therapy | |||||
1 | 262 (38.3) | 126 (31.8) | 63 (38.4) | 73 (58.9) | <0.01 |
2 | 290 (42.4) | 177 (44.7) | 73 (44.5) | 40 (32.3) | |
≥3 | 132 (19.3) | 93 (23.5) | 28 (17.1) | 11 (8.9) | |
ICI dose | |||||
1–2 | 186 (27.2) | 140 (35.4) | 29 (17.7) | 17 (13.7) | <0.01 |
3–4 | 186 (27.2) | 98 (24.7) | 52 (31.7) | 36 (29.0) | |
5–10 | 156 (22.8) | 83 (21.0) | 45 (27.4) | 28 (22.6) | |
≥11 | 156 (22.8) | 75 (18.9) | 38 (23.2) | 43 (34.7) | |
ICI modalities | |||||
Nivolumab | 263 (38.5) | 181 (45.7) | 57 (34.8) | 25 (20.2) | <0.01 |
Pembrolizumab | 191 (27.9) | 125 (31.6) | 41 (25.0) | 25 (20.2) | |
Ipilimumab | 81 (11.8) | 32 (8.1) | 27 (16.5) | 22 (17.7) | |
Nivolumab + Ipilumumab | 71 (10.4) | 13 (3.3) | 18 (11.0) | 40 (32.3) | |
Other | 78 (11.4) | 45 (11.4) | 21 (12.8) | 12 (9.7) |
Pre-treatment BMI (kg/m2) | Had irAEs/Total | Rate (%) of irAEs and 95% CI | cOR and 95% CI | aOR and 95% CI |
---|---|---|---|---|
<25 | 115/322 | 35.7 (30.7, 41.1) | REF | REF |
25 to <30 | 102/217 | 47.0 (40.0, 53.7) | 1.60 (1.12, 2.27) | 1.46 (1.02, 2.11) |
≥30 | 71/145 | 49.0 (40.9, 57.0) | 1.73 (1.16, 2.57) | 1.47 (0.96, 2.23) |
p-trend < 0.01 | p-trend = 0.04 |
Subgroup | Had irAEs/Total (%) | aOR and 95% CI | p-Interaction |
---|---|---|---|
Age at first dose of ICI (years) | |||
<65 | 147/322 (45.7) | 2.18 (1.36, 3.51) | 0.02 |
≥65 | 141/362 (39.0) | 1.08 (0.69, 1.69) | |
Sex | |||
Male | 170/394 (43.1) | 1.31 (0.84, 2.02) | 0.29 |
Female | 118/290 (40.7) | 1.73 (1.04, 2.89) | |
Race | |||
White | 204/424 (48.1) | 1.72 (1.13, 2.61) | 0.18 |
Non-white | 84/260 (32.3) | 1.16 (0.67, 1.99) | |
Multimorbidity | |||
No | 93/213 (43.7) | 4.20 (2.11, 8.37) | <0.01 |
Yes | 195/471 (41.4) | 1.03 (0.69, 1.52) | |
Pre-treatment ECOG | |||
<2 | 259/537 (48.2) | 1.48 (1.03, 2.13) | 0.50 |
≥2 | 29/147 (19.7) | 1.01 (0.41, 2.48) | |
Cancer type | |||
Lung | 85/269 (31.6) | 1.34 (0.78, 2.33) | 0.99 |
Melanoma | 129/204 (63.2) | 1.32 (0.69, 2.51) | |
ICI dosage | |||
1–4 | 134/372 (36.1) | 1.29 (0.81, 2.05) | 0.92 |
≥5 | 154/312 (49.4) | 1.42 (0.87, 2.30) | |
ICI type | |||
Nivolumab † | 82/263 (31.2) | 0.93 (0.54, 1.60) | 0.21 |
Pembrolizumab ‡ | 66/191 (34.6) | 1.92 (1.00, 3.71) | |
Ipilumumab § | 107/152 (70.4) | 1.21 (0.55, 2.65) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Shah, N.J.; Cook, M.; Blackburn, M.; Serzan, M.T.; Advani, S.; Potosky, A.L.; Madhavan, S.; Belouali, A.; Atkins, M.B.; et al. Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis. Cancers 2021, 13, 6109. https://doi.org/10.3390/cancers13236109
Zhang D, Shah NJ, Cook M, Blackburn M, Serzan MT, Advani S, Potosky AL, Madhavan S, Belouali A, Atkins MB, et al. Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis. Cancers. 2021; 13(23):6109. https://doi.org/10.3390/cancers13236109
Chicago/Turabian StyleZhang, Dongyu, Neil J. Shah, Michael Cook, Matthew Blackburn, Michael T. Serzan, Shailesh Advani, Arnold L. Potosky, Subha Madhavan, Anas Belouali, Michael B. Atkins, and et al. 2021. "Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis" Cancers 13, no. 23: 6109. https://doi.org/10.3390/cancers13236109
APA StyleZhang, D., Shah, N. J., Cook, M., Blackburn, M., Serzan, M. T., Advani, S., Potosky, A. L., Madhavan, S., Belouali, A., Atkins, M. B., & Braithwaite, D. (2021). Association between Body Mass Index and Immune-Related Adverse Events (irAEs) among Advanced-Stage Cancer Patients Receiving Immune Checkpoint Inhibitors: A Pan-Cancer Analysis. Cancers, 13(23), 6109. https://doi.org/10.3390/cancers13236109