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Simple Summary: Tumors are composed of different cancer cells with varying degrees of treatment
resistance, which compete for a shared resource. Adaptive therapy is an evolution-based treatment
approach that exploits this competition between heterogeneous cancer cells. The approach permits a
significant number of drug-sensitive cells to survive, with less dose or with treatment breaks, so that
they suppress the proliferation of drug-resistant cells via competition. How can one decide when
to stop or resume treatment for each patient? This study presents two mathematical models that
guide therapy on and off cycles in a patient-specific manner. The models were applied to melanoma
patients and predicted patient-specific adaptive therapy schedules that significantly delayed disease
progression with far less therapy (in terms of time on treatment) than the current standard of care.
The benefits of adaptive therapy varied between patients. Model-based predictive factors were
identified to predict the clinical time gain of individual patients.

Abstract: Adaptive therapy is an evolution-based treatment approach that aims to maintain tumor
volume by employing minimum effective drug doses or timed drug holidays. For successful adaptive
therapy outcomes, it is critical to find the optimal timing of treatment switch points in a patient-
specific manner. Here we develop a combination of mathematical models that examine interactions
between drug-sensitive and resistant cells to facilitate melanoma adaptive therapy dosing and switch
time points. The first model assumes genetically fixed drug-sensitive and -resistant popul tions
that compete for limited resources. The second model considers phenotypic switching between
drug-sensitive and -resistant cells. We calibrated each model to fit melanoma patient biomarker
changes over time and predicted patient-specific adaptive therapy schedules. Overall, the models
predict that adaptive therapy would have delayed time to progression by 6–25 months compared to
continuous therapy with dose rates of 6–74% relative to continuous therapy. We identified predictive
factors driving the clinical time gained by adaptive therapy, such as the number of initial sensitive
cells, competitive effect, switching rate from resistant to sensitive cells, and sensitive cell growth rate.
This study highlights that there is a range of potential patient-specific benefits of adaptive therapy
and identifies parameters that modulate this benefit.

Keywords: adaptive therapy; mathematical model; melanoma; clinical time gain

1. Introduction

Current targeted therapies in melanoma are based on continuous treatment. Pa-
tients with advanced BRAFV600E mutant melanoma are eligible for targeted therapy
with BRAF and MEK-inhibitors, with objective tumor response rates in up to 75% of the
patients [1]. Despite impressive initial responses, a majority of patients with metastatic
melanoma experience disease progression. Median progression-free survival ranges from
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11–15 months [2,3]. In melanoma, a major driver of this resistance is intratumor het-
erogeneity [4]. Adaptive therapy is an evolutionarily inspired treatment strategy that
exploits this heterogeneity, specifically harnessing competition between different cancer
cell types for limited resources [5,6]. Standard treatments using maximum tolerated dose
(MTD) rapidly remove drug-sensitive populations. If drug-resistant cells are present be-
fore treatment [7–9], then this aggressive MTD treatment alters the competition between
drug-sensitive cells with drug-resistant populations. MTD treatments release resistant
cells from the competition with their sensitive counterparts via a competitive release. As a
result, the resistant cells rapidly come to dominate the tumor [10,11]. Several studies have
shown that phenotypic switching between sensitive and resistance types provides another
avenue for acquired resistance during therapy [8,12,13]. Once resistant cells dominate,
treatment fails since it no longer prevents tumor growth. The goal of adaptive therapy
is to control each patient’s tumor volume by allowing a significant number of sensitive
cells to survive through treatment breaks or dose-modulation. The central mechanism of
adaptive therapy is competition, in that any remaining sensitive cells can compete with
the resistant population, effectively suppressing their growth and significantly extending
progression-free survival [14–16].

Adaptive therapy has successfully controlled cancers in preclinical xenograft model
systems [17,18]. An ongoing metastatic castrate-resistant prostate cancer clinical trial at
Moffitt Cancer Center (NCT02415621) has shown that adaptive therapy can delay disease
progression for 27 months using just a 53% cumulative drug rate compared to standard of
care (MTD) [19]. For melanoma, previous work has shown that intermittent dosing of a
BRAF inhibitor, vemurafenib, given to patient-derived mouse model systems, controlled
tumor volumes significantly better than continuous therapy [20]. However, this fixed inter-
mittent strategy is less likely to be effective in patients due to inter-patient heterogeneity.
In fact, a trial that explored fixed 5 weeks on/3 weeks off dosing of a BRAF/MEK inhibitor
regimen, dabrafenib + trametinib, demonstrated a lower median progression-free survival
than standard, continuous dosing in patients with metastatic melanoma [21]. Our group
has previously shown that a mathematically driven adaptive approach can work in vivo
using xenograft mouse models of melanoma [22]. We posit that this personalized treatment
approach, whereby mathematical models facilitate optimizing a patient’s treatment regime
based on their current tumor state and historic response, will be far more effective.

Several challenges exist in designing adaptive therapies. First, optimizing the timing
of treatment withdrawal and re-challenge for each patient is difficult to implement in
clinical practice. Second, it is critical to identify predictive factors for selecting patients who
will likely benefit the most from this adaptive therapy. The effectiveness of adaptive therapy
will vary among patients, as observed in the prostate cancer trial [19]. Several mathematical
models have already been developed to address these challenges. Combined with in vitro
experiments, an agent-based model predicted that spatially constrained competition drove
an effective control of resistant cell growth [14]. Another agent-based model developed by
Gallaher et al. assumed a cost of resistance, with resistant cells having a slower growth
rate in the absence of treatment [15]. They modeled resistance as a continuous phenotypic
trait and revealed three key factors for successful adaptive therapy: the proportion of
resistant cells before the start of treatment, the rate of cancer cell migration, and the speed
of evolution towards more resistant phenotypes. An ordinary differential equation model
developed by Hansen et al. identified thresholds for the level of initial resistance for
successful adaptive therapy [16]. West et al. developed an evolutionary game theory model
to determine the optimal timing of multi-drug adaptive therapies [23]. Brady-Nicholls et al.
developed patient-specific mathematical models that explain prostate cancer inter-tumor
dynamics that can guide intermittent androgen deprivation therapy [24]. Mathematical
modeling has shown the consequences of having spontaneous versus induced resistance
responses to therapy [25]. Strobl et al. showed how cancer cells’ turnover rate within the
tumor influences benefits derived from adaptive therapy [26]. More general and more
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in-depth mathematical analyses by Viossat and Noble predicted the clinical benefits of
tumor containment therapy [27].

Here we present two different ordinary differential equation models that assume
different modes of competition between sensitive and resistant populations. We then
calibrate both models to a cohort of eight patients with metastatic melanoma. By simulating
adaptive therapy schedules with these models, we identify predictive factors that correlate
with the largest clinical gains compared to continuous MTD therapy. The first model is a
Lotka-Volterra competition model (LV) [28], where genetically fixed drug-sensitive and
-resistant populations compete for limited resources. The model assumes resistant cell
growth inhibition by a drug-sensitive population. The second model considers phenotypic
switching (SW). In addition to competition within and between cell phenotypes, this model
allows for switching from sensitive to resistant states or vice-versa when treatment is on or
off, respectively. We estimated model parameters by minimizing the difference between
model prediction and patient data. For each patient, we used longitudinal data from a
serologic marker that is used to monitor advanced melanoma.

The cohort of patients had advanced/metastatic melanoma. All were treated with
continuous therapy at MTD. Their therapy consisted of BRAF/MEK inhibitors (either
vemurafenib + cobimetinib, or dabrafenib + trametinib). Several had disease progression
within 6 months of treatment (Figure 1). While melanoma does not have an ideal biomarker
of burden, LDH (Lactate dehydrogenase) is clinically used in melanoma treatment decision
making as a correlate of tumor burden and cancer dynamics. LDH is the only serologic
marker used for monitoring advanced melanoma in the US [29]. Elevated serum LDH is
associated with worse outcomes in patients treated with BRAF/MEK inhibitors, based on
the results of a pooled analysis of three trials involving dabrafenib/trametinib with over
600 patients [30]. In the cohort of our current study, all patients had an elevated LDH at the
start of treatment, and serial LDH levels were measured in blood at baseline and during
routine blood draws approximately every 2–4 weeks (Figure S1, Table S1). LDH was used
as a biomarker to correlate with melanoma tumor burden, which could only be measured
directly in patients with computed tomography (CT) imaging every 2 to 3 months. It is
worth noting that an elevated level of LDH appeared to correlate with disease response and
progression determined by CT imaging (Figure S1, Table S1). Temporal LDH profiles for
each of the eight patients highlight heterogeneous responses, with some rapidly developing
therapy resistance (P6–8), while others took longer to progress (P1–5). Please note that the
initial tumor burden level is also different across the patients (LDH range: ~300 to 1500).
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Figure 1. The tumor burdens (measured by LDH level units/liter) of eight melanoma patients in 
months since the beginning of therapy. All eight patients received continuous MTD of targeted 
therapy (BRAF and MEK inhibitor). 

2. Materials and Methods 
2.1. Mathematical Modeling 
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imposes a death rate on S due to therapy. In the absence of treatment, we set 𝛿 = 0. Fur-
thermore, we assume that treatment stops any proliferation by sensitive cells, and so we 
set 𝑟ௌ = 0 when treatment is on and 𝑟ௌ  0 when treatment is off. We made this assump-
tion since the drugs (BRAF/MEK inhibitors) in this study have shown growth inhibition 
as well as apoptosis promotion [22]. The two populations, S and R, share the same carry-
ing capacity 𝐾, the maximum size of the tumor due to nutrient and space constraints. The 
coefficient 𝐶 scales the degree to which sensitive cells inhibit the growth rate of resistant 
cells. If C > 1 (or C < 1), then sensitive cells have a greater (or smaller) competitive effect 
on resistant cells than resistant cells have on themselves.  

As a second variant of the therapy model, we consider the case where phenotypic 
plasticity (3)-(4) allows for switching between drug-sensitive and resistant cell types (SW, 
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This model is a direct extension of the first model, and as such, all overlapping pa-
rameters are the same. There are two key differences. First, sensitive cells no longer have 
a scaled effect on resistant cells, and so C = 1. Second, sensitive cells can switch to resistant 
ones at rate 𝛼, or resistant cells to sensitive ones at rate 𝛽, depending on whether treat-
ment is on or off. Please note that 𝛼 is non-zero when treatment is on and zero otherwise, 
whereas 𝛽 is non-zero when treatment is off and zero when treatment is on.  

To more easily visualize and understand the dynamics of these two models, we non-
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Figure 1. The tumor burdens (measured by LDH level units/liter) of eight melanoma patients in
months since the beginning of therapy. All eight patients received continuous MTD of targeted
therapy (BRAF and MEK inhibitor).
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Model calibration (see methods) to the melanoma patient LDH data provided a suite of
parameter sets that fit the patient data equally well, defining a virtual cohort of patients [31].
Using this virtual cohort, we used the models to predict what might have been the patient’s
responses to different adaptive therapy schedules. Our results show that adaptive therapies
can delay the time to progression up to several months with less cumulative drug dose
rate compared to the continuous MTD regime. Furthermore, we identified key model
parameters that determine the benefit of adaptive therapy that could be used to select
patients suitable for this evolutionary therapeutic approach.

2. Materials and Methods
2.1. Mathematical Modeling

The first model uses Lotka-Volterra (LV) competition Equations (1) and (2) to describe
the competition between two distinct cancer cell populations, drug-sensitive (S) and drug-
resistant (R) cells (Figure 2A):

dS
dt

= rS

(
1− S + R

K

)
S− δS, (1)

dR
dt

= rR

(
1− C ∗ S + R

K

)
R, (2)

where rS, R indicate the intrinsic growth rates of S and R, respectively. The term δ > 0
imposes a death rate on S due to therapy. In the absence of treatment, we set δ = 0.
Furthermore, we assume that treatment stops any proliferation by sensitive cells, and so we
set rS = 0 when treatment is on and rS > 0 when treatment is off. We made this assumption
since the drugs (BRAF/MEK inhibitors) in this study have shown growth inhibition as
well as apoptosis promotion [22]. The two populations, S and R, share the same carrying
capacity K, the maximum size of the tumor due to nutrient and space constraints. The
coefficient C scales the degree to which sensitive cells inhibit the growth rate of resistant
cells. If C > 1 (or C < 1), then sensitive cells have a greater (or smaller) competitive effect on
resistant cells than resistant cells have on themselves.

As a second variant of the therapy model, we consider the case where phenotypic
plasticity (3) and (4) allows for switching between drug-sensitive and resistant cell types
(SW, Figure 2B):

dS
dt

= rS

(
1− S + R

K

)
S− δS− αS + βR, (3)

dR
dt

= rR

(
1− S + R

K

)
R + αS− βR. (4)

This model is a direct extension of the first model, and as such, all overlapping
parameters are the same. There are two key differences. First, sensitive cells no longer have
a scaled effect on resistant cells, and so C = 1. Second, sensitive cells can switch to resistant
ones at rate α, or resistant cells to sensitive ones at rate β, depending on whether treatment
is on or off. Please note that α is non-zero when treatment is on and zero otherwise, whereas
β is non-zero when treatment is off and zero when treatment is on.

To more easily visualize and understand the dynamics of these two models, we non-
dimensionalized them (τ = rRt, S = S/K, R = R/K) and examined their dynamics in
the phase plane of S vs. R. In the LV model, the competition coefficient C and initial
populations (S(0), R(0)) determine the number of intermittent therapy cycles before resis-
tance dominates (Figure 2A). Intermittent therapy results in more on-off treatment cycles
when both C and S(0) are large (Figure 2A bottom panel). In the SW model (Figure 2B),
intermittent therapy results in more on-off treatment cycles when both the initial sensitive
population (S(0)) and the switching rate from resistant to sensitive populations (β) are large
(Figure 2B bottom panel). These analyses help focus our attention on the key parameters
that might determine the efficacy of adaptive therapy.
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(𝑉 = 𝑆  𝑅) at time 𝑡, and 𝐿 is the actual tumor burden of each patient at time 𝑡. Here, 
we assume that LDH is directly proportional to S + R, and the basal (normal) level of LDH 
is 100 units per liter, as LDH is also produced by normal tissue [32]. The LV model pa-
rameter set includes intrinsic growth rates, carrying capacity, death rate, and the compe-
tition coefficient. Note, we assume that sensitive cells do not divide when treatment is on 

Figure 2. Tumor dynamics for the two mathematical models of tumor growth and treatment. (A) Upper panel: LV
model structure. S: drug-sensitive cancer cell population, outgoing arrow: death by a therapy, R: drug-resistant cancer
cell population, the line to R from S: inhibition of R growth via competition, circular arrow: growth. Bottom panel:
temporal dynamics under intermittent therapy simulation with two different competition coefficients (C = 1.1 on the
left and C = 1.4 on the right) and two different initial conditions (S = 0.4 and S = 0.7 with R = 0.05 in both scenarios,
S = S

K , R = R
K ). Coordinates: non-dimensionalized sensitive cell S (horizontal axis) and resistant R (vertical axis). (1,0)

represents S = K & R = 0, (0,1) represents S = 0, & R = K. Rate of change of R with respect to time is zero along the pale
blue solid line when treatment is on and off. The rate of change of S is zero along the pale blue dotted line when treatment
is off. When treatment is on, the rate of change of S is zero along with y-axis. Temporal dynamics of the two cell types
are traced along trajectories for intermittent treatment (red: on and blue: off). (B) Upper panel: SW model structure. S:
drug-sensitive cancer cell population, outgoing arrow: death by therapy, R: drug-resistant cancer cell population, a line
from S to R: switching from S to R during treatment on, a line from R to S: switching from R to S during treatment holidays,
circular arrow: growth. Bottom panel: Temporal dynamics under intermittent therapy simulation with two different R->S
switching rates (β) and two different initial conditions (the same as for LV simulations). The rate of change of resistant cell
population with respect to time is zero along two solid lines (pale blue: treatment off and pale red: treatment on). The rate
of change of S is zero along the pale blue dotted line when treatment is off.

2.2. Parameter Estimation

We identified model parameters that minimized the difference between model predic-
tions and patient data (5) (Figure 1). The cost function for this optimization is to minimize
L2 norm of the difference,

min
→
θ

‖V
(

t;→
θ

)
− L(t)‖2

2 , (5)

where →
θ

is the entire model parameter set, and V is the predicted total tumor burden

(V = S + R) at time t, and L is the actual tumor burden of each patient at time t. Here, we
assume that LDH is directly proportional to S + R, and the basal (normal) level of LDH is
100 units per liter, as LDH is also produced by normal tissue [32]. The LV model parameter
set includes intrinsic growth rates, carrying capacity, death rate, and the competition
coefficient. Note, we assume that sensitive cells do not divide when treatment is on (rS = 0,
with therapy on). All patient data is for continuous treatment (at the time of writing, we do
not have intermittent therapy results for such patients). Thus, a parameter set for the LV
model is θ = {S0, K, δ, rR, C}, where S0 is the initial level of LDH produced by sensitive
cells and R0 = LDH0 − S0, where LDH0 is LDH level at a time t0, is the initial level of
LDH produced by resistant cells. In the SW model, the transition rate from resistant to
sensitive is assumed to be zero when treatment is on. The parameter set for the SW model
is θ = {S0, K, δ, rR, α}. We employed a steepest descent optimization algorithm with
implicit filtering [33] to identify best-fit parameters for both models (see Supplementary
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Excel file). Parameter estimations were conducted in MATLAB using the implicit filtering
algorithm [33]. We generated patient-specific parameter estimates for each model. The
fits to the individual patient data are shown in Figures S2 and S3, Figure 3A,D. The
distributions of estimated parameters, variability assessment by interquartile ranges, and
L2 norm of the errors are presented in Figures S4−S7. In addition, we perturbed one of the
estimated parameter sets 10% and made model predictions with the perturbed parameters
(Figures S8 and S9). A few predictions still fit to the data well (close to the data, small error
in Figures S8 and S9), while most predictions failed to explain the data (Figures S8 and S9).
Across patients, under the LV model, time to progression is negatively correlated with the
intrinsic growth rate of resistant cells (rR) and the competition coefficient (C) (Figure 3B).
Under the SW model, time to progression is negatively correlated with the intrinsic growth
rate of resistant cells (Figure 3E).
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Figure 3. Mathematical model calibration and adaptive therapy simulation. (A) LV model fits to the temporal LDH data
from eight patients. R2 = 0.84 when comparing the real patient LDH (horizontal axis) to the simulated tumor LDH (vertical
axis). (B) Time to progression under continuous therapy is negatively correlated with both the estimated intrinsic growth
rate of resistant cells (ρ = −0.77) and the competition coefficient (ρ = −0.64). (C) Adaptive therapy and continuous therapy
simulation for patient #1 (P1) using the calibrated LV model. Cyan dots: LDH data of P1, cyan line: LV model fits. Green:
predicted adaptive therapy (dark green: mean and shaded region: standard error). (D) SW model fits to the temporal
LDH data for the eight patients. R2 = 0.81 when comparing the real patient LDH (horizontal axis) and simulated tumor
LDH (vertical axis). (E) Time to progression under continuous therapy is negatively correlated with the estimated intrinsic
growth rate of resistant cells (ρ = −0.67). (F) Adaptive therapy and continuous therapy simulation for patient 1 (P1) using
the calibrated SW model. Cyan dots: P1 LDH data, cyan line: SW model fit. Green: predicted adaptive therapy (dark green:
mean and shaded region: standard error).

3. Results
3.1. Adaptive Therapy Delays Time to Progression

Both the LV and SW models provide fits to the patient LDH data (Figure 3A,D,
R2 = 0.84 and R2 = 0.81, respectively, when comparing actual to predicted across all patient
data points). Model parameterization generated multiple similar fits to the data with a
similar error. Since there is no single ideal fit, we used the top 50 fits for each model and
each patient, resulting in a cohort of 400 virtual patients (8 patients; 50 virtual patients
for each real patient for each model, LV and SW, respectively). Using this virtual cohort,
we simulated both continuous and adaptive therapy for each of the virtual patients. For
adaptive therapy simulations, we assumed treatment dose per treatment day is the same as
the dose in continuous therapy. We stopped treatment when a patient’s LDH level dropped
to 50% of their initial LDH. Treatment remained off until the LDH grew back to its initial
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level. We estimated time to disease progression as the moment when a virtual patient’s
LDH reached 150% of the patient’s initial LDH. For each virtual patient, we determined
the time gained from adaptive therapy relative to continuous therapy by subtracting the
time to progression under continuous therapy from under adaptive therapy. The LV model
predicts that adaptive therapy delayed the progression of patient #1 by 4.5 months on
average (Figure 3C. continuous (cyan) vs. adaptive (green)) with an average cumulative
dose rate of ~54% of continuous therapy. It is worth noting that the cumulative dose
rate in this study refers to the percentage of time on therapy, not the actual dose, since
we are simulating treatment on and off days with the same dose (effect of the drug) per
unit time (day). Of note, the one free parameter, the intrinsic growth rate of the sensitive
population, was set to be the same as that of the resistant population. The SW model
predicts a significant improvement from adaptive therapy (~6.8 months) with an average
cumulative dose rate of ~46% of continuous therapy (Figure 3F). We fixed two of the free
parameters by setting the growth rates of sensitive cells to be the same as the estimated
resistant cell growth rates (rS = rR, when the treatment is off), and the transition rate
to be 45% of the resistant cell-intrinsic growth rate (β = 0.45rR, when the treatment is
off). To assess the robustness of model predictions, we simulated adaptive therapy for
patient 1 with new choices of rR and δ. Specifically, we fixed all the other parameters and
re-estimated the two parameters rR and δ. We varied the free parameters rS (rS = 5–200%
of the new rR) for the LV model and (rS ∈ [0.05rR

new, 2rR
new], β ∈ [0.05rR

new, 0.95rR
new],

when the therapy is off) for the SW model. The LV model predicted that adaptive therapy
delayed progression 3–7.2 months. The SW model predicted up to 22 months of progression
delay (Figure S10).

3.2. Key Parameters That Determine Clinical Gains

Both forms of the mathematical model predicted that adaptive therapy would be
beneficial, but the patient-specific benefits were substantially different across the eight
patients (Figure 4A). The LV model predicted that the average time gained for patient #1
was about 3.5 months, while that for patient #8 was only about one month (Figure 4A).

To further explore the significant differences across the eight patients in the LV model,
we simulated patient-specific adaptive therapies using the cohort of 400 virtual patients
over a broad range of intrinsic growth rates (rS = 5–200% of the estimated rR). The esti-
mated competition coefficient, C, and the estimated initial size of the sensitive population
(S0/K) are key for determining the benefit (time gained) of adaptive therapy relative to
continuous therapy (Figure 4B). In Figure 4B, each colored dot is an average virtual patient
of rS = 5–200% of the estimated rR per each estimated parameter set obtained from the
real patients. If the initial sensitive cell percentage is smaller than 10%, time to tumor
progression under adaptive therapy is not significantly different from continuous therapy
(time gained ≤ 1 month, patient #3, #7, #8). The larger the competition coefficient (C), the
more time was gained (Figure 4B), provided that the initial sensitive cell population ranges
from 10% to 40% of carrying capacity. Adaptive therapy is most successful for tumors with
a high initial number of sensitive cells (>40% of K, see patients #1). For adaptive therapy,
the percent time on treatment varied between patients (i.e., the cumulative dose rate of 12%
to 100% of continuous therapy), with an overall average of 65%. In the simulations, we
assume treatment dose per treatment day in adaptive therapy is the same as continuous
therapy. The drug dose implies time on the drug. The cumulative dose rate of 12% means
12% of the time on the drug compared to continuous therapy.
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the average dose rate relative to continuous therapy.

To explore the significant differences of adaptive therapy response across the eight
patients in the SW model, we simulated adaptive therapy using the cohort of 400 virtual
patients generated from fitting the SW model to the patient data (Figures 1 and 3D).
Adaptive therapy is predicted to delay progression even more (Figure 4C vs. Figure 4A)
with this model. Among the eight patients, adaptive therapy increased patient #1’s time to
progression by up to 7 months while patient #8 still gained only one month on average
when we fixed two of the free parameters rS(= rR) and β(= 0.45rR) when the therapy is
off (rS = 0, β = 0, when the therapy is on). We further ran a suite of simulations with
the virtual cohort and compared the average time gained. It is worth noting again that
most model parameters were estimated from each patient LDH (Figure 1 except for two
parameters, the intrinsic growth rate of sensitive cells (rS) and the switching rate from
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resistant to sensitive during treatment holidays (β). For these two free parameters (rS, β),
we considered a range of values (rS ∈ [0.05rR, 2rR], β ∈ [0.05rR, 0.95rR]). A larger
switching rate (β) results in a larger time gained from adaptive therapy (Figure 4D). This
effect occurred for all patients. Interestingly, changing the intrinsic growth rate of sensitive
cells had little impact on the efficacy of adaptive therapy if the switching rate is low (time
gained ≤ 2 months for all rS if β < 0.1rR). When the switching rate was larger than 0.1rR, a
tumor composed of slower growing sensitive cells responded better to adaptive therapy
(increasing time gained relative to continuous therapy). The cumulative dose rates of
adaptive therapy varied substantially over the ranges of parameters. For large switching
and slow-growing tumors, the cumulative dose rate was 20% of continuous therapy, while
for low switching rates and fast-growing tumors, the rate was 74% of continuous therapy.

Both model formulations demonstrate that, in general, adaptive therapy can be effec-
tive in delaying tumor progression using significantly less drug than continuous therapy.
For the LV model, adaptive therapy is most effective if tumors are composed of a suffi-
ciently large number of sensitive cells initially (>40% of carrying capacity K). Adaptive
therapy gains superiority as the sensitive cells have a higher competition coefficient (C)
and exert more significant inhibition on resistant cells through competition. The SW model
highlights that adaptive therapy could be beneficial if drug-sensitive and -resistant states
are phenotypically plastic. The predicted time gained is about 20 months if the switching
rate from drug-resistant to drug-sensitive cells is large, and the sensitive cell growth rate is
slow during treatment holidays. Even if the switching rate is very low, adaptive therapy
can delay time to progression from 2–5 months. Taken together, our simulations show the
potential benefits of adaptive therapy and identify the key parameters and conditions for
adaptive therapy to be superior in controlling tumor volume relative to continuous therapy.

3.3. A Different Treatment-Stopping Criterion

So far, for adaptive therapy, we used 50% of the initial tumor burden as the treatment-
stopping criterion. This criterion was implemented in the first clinical trial of adaptive
therapy for castrate-resistant prostate cancer [19]. Would a less aggressive treatment stop
criterion be better? We simulated a suite of adaptive therapy simulations with a new
stopping criterion of 20% reduction to address this question. Therapy is held off if the
tumor burden decreases to below 20% of the initial burden. The tumor is re-challenged
with therapy when the burden returns to its initial value.

The LV model predicts that a 20% stopping criterion is indeed a better threshold
if tumors are already responding well to adaptive therapy. In Figure 4B, we showed
that tumors respond well if the initial population size of sensitive cells is high, and the
competitive effect of sensitive on resistant cells is large. Under these conditions, the
20% threshold is more effective in controlling tumor burden than the 50% threshold
(Figure 5A, Patient #1 under the 20% threshold adaptive therapy gained 7–20 months over
continuous therapy vs. Figure 4B, Patient #1 under the 50% threshold gained 3–7 months
over continuous therapy). We observed a similar pattern in the SW model. A lower
threshold is more effective if tumors are already responding well. If the switching rate from
resistant to sensitive cells is large and the intrinsic growth rate of sensitive cells is small,
adaptive therapy with either the 50% or 20% threshold substantially delays progression
relative to continuous therapy. Under these conditions, an adaptive therapy with the 20%
threshold delays progression up to 5 months more (up to 25 months gained Figure 5B vs.
up to 20 months gained with 50% threshold Figure 4D). Taken together, a smaller tumor
burden reduction criterion may be more effective in delaying tumor progression when
the tumors underlying dynamics satisfy specific conditions, such as a large number of
initially sensitive cells, strong competitive inhibition of resistant cells by sensitive ones, a
high switching rate from R to S, and a slow-growing sensitive population.
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3.4. Progression-Free Survival

Finally, we compared the probability of progression-free survival of all virtual patients
under continuous, −50%, and −20% stopping adaptive therapies. Since we developed
two mathematical models, LV and SW, we generated two sets of Kaplan-Meier curves
(Figure 6, A: LV, B: SW). For these K-M curves, we used all virtual patients with either
the LV or the SW model. This “trial” group was then subjected to the two adaptive trial
procedures (−50% and −20% stopping threshold) and continuous therapy. Here, we
assume that tumor progression occurred when LDH levels reached 150% of their initial
LDH (Figure 6, A: LV, B: SW). The two models predicted a longer progression-free survival
under both adaptive therapies (p < 0.001), with a 20% threshold being superior to the 50%
stopping criterion.
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4. Discussion

The adaptive abiraterone trial for metastatic castration-resistant prostate cancer
(NCT02415621) extended time to progression over 27 months [19]. The success of this
trial has inspired three more clinical trials testing for the feasibility of adaptive therapy
in patients with castrate sensitive prostate cancer (NCT03511196), advanced melanoma
(NCT03543969), and thyroid cancer (NCT03630120). The actual real-world benefit from adap-
tive therapy would likely vary among patients, as already observed in [19]. Understanding
the underlying mechanism for this variability may be crucial for patient selection in future
clinical trials. As previous mathematical models have demonstrated [15,16,19,22,23,34],
the interaction between the drug-sensitive population and resistant population drives the
outcome of adaptive therapy. These competitive aspects have been further investigated
experimentally [35], but more work needs to be done to better understand how resistance
emerges and is maintained under different treatment strategies. A sensitive cell population
can inhibit the growth of a resistant population via competition. Sensitive cells can acquire
resistance, and resistant cells can be re-sensitized to the drug. To examine these interactions
in the context of metastatic melanoma, we developed two different mathematical models,
a standard Lotka-Volterra competition model (LV) with a varying competition coefficient
(effect of sensitive cells on resistant cell population) and an extension with phenotype
switching (SW) but with all competition coefficients set equal to 1. The LV model describes
the competition between distinct sensitive and resistant populations for a limited resource.
In contrast, the SW model assumes individual cells can acquire resistance when therapy is
on and become re-sensitized when therapy is off.

Our analyses and simulations of these two models demonstrate that adaptive therapy,
with timed treatment holidays, prolongs survival compared to standard of care (MTD
continuous therapy). We identified key tumor parameters where this benefit is most
significant. The LV model shows that adaptive therapy can extend the time to progression
significantly whenever the initial population of sensitive cells is large enough, and when
sensitive cells have a large competitive effect on resistant cells. When the initial number
of a resistant cell population is large, the clinical time gained is less significant (e.g., P4,
time gained: ~3 months). An even higher resistant cell initial percentage (e.g., R (0) = 50%)
required an increased competition coefficient or a higher transition rate from R to S for
a meaningful clinical gain (Figure S4). Under these conditions, we predict 1~2 years of
time gained with a relatively large fraction of the R population (~80% at the time of tumor
progression, see Figure S11). The SW model illustrates that adaptive therapy is most
beneficial whenever the re-sensitization rate of the resistant cell population to the sensitive
population is high, and the growth rate of sensitive cells is low. Under these constraints,
adaptive therapy can more than double the time to progression (max time of delay is
20 months in adaptive vs. 6 months with continuous therapy). Interestingly, tumors
without these properties did not respond well to the standard of care either (<3 months
of progression-free survival). In these cases, switching to alternative therapies as soon
as possible might be more desirable. For example, in metastatic melanoma, adding or
switching to immunotherapy may provide a clinical benefit, particularly for patients
expected to respond poorly to either adaptive therapy or continuous therapy. Taken
together, our study identified a patient group that may benefit the most from adaptive
therapy, with predicted clinical time gains for such patients. This study raises the challenge
and the opportunity of directing clinical research towards swiftly measuring the key
parameters for a given patient to facilitate truly personalized medicine and deciding on the
efficacy of adaptive therapy.

A key assumption of our analysis is that a patient’s initial tumor burden is tolerable
and not immediately life-threatening. Maintaining a potentially large tumor burden, as
opposed to focusing on shrinking tumors as fast as possible, can make both clinicians
and patients uneasy. There are cancers where an initial tumor burden is not tolerable and
may be life-threatening (e.g., aggressive glioblastoma or very painful tumors that may
be bleeding, etc.). There are, however, situations where a patient’s initial tumor burden
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is tolerable, and the patient is asymptomatic. In fact, maintaining the sum of all tumor
diameters (tumor burden) is one of the response evaluation criteria in the measurement of
solid tumors in clinical trials. Stable disease is defined as a <20% increase in the sum of
target lesions per the widely used RECIST 1.1 criterion (Response Evaluation Criteria in
Solid Tumors) [36]. There is increasing evidence that chronic control of disease burden is
more effective at improving patient survival, not only in cancers [19], but also in bacterial
infections [37–40]. Our proof of concept analysis on patients with advanced melanoma
treated with BRAF/MEK inhibitor targeted therapy illustrates that maintaining a tolerable
tumor burden may delay progression significantly.

The mathematical models presented here are simplified representations of what may
be happening in actual cancers under treatment. The models rest on the assumption that
two key cancer cell populations compete and interact with each other in a well-mixed
environment. In reality, a tumor is not a well-mixed population of cancer cells, but is a
spatially stratified population [41–44] that drives different pharmacokinetics [45] and is
impacted by the influence of a heterogeneous and dynamic microenvironment [46–49].
Such aspects could be incorporated in future studies; however, adding more complexity
does not guarantee a better understanding. For now, the clinical data is non-spatial (blood
levels of LDH). Therefore, while a spatial model may deliver a better representation of the
tumor in a more relevant context, it would be more complex and burdened with additional
assumptions that cannot be evaluated by blood biomarkers alone.

We chose our modeling approach as a starting point to better understand how dif-
ferent modes of drug-sensitive and -resistant interactions, distinct sensitive and resistant
subpopulations vs. phenotypic switching, impact the outcomes of adaptive therapy. The
results presented show the need to better understand the properties of the sensitive and
resistant populations. If they are genetically distinct and pre-existing, then for our cohort
of eight patients, adaptive therapy would provide less benefits to fewer of the patients than
if drug sensitivity and resistance are reversible phenotypically plastic states. These proper-
ties of the sensitive and resistant populations must be determined empirically. We have
previously examined the behavior of the metastatic melanoma cell line WM164 and found
it spears to exhibit this more phenotypically plastic behavior, whereas another melanoma
cell line 1205LU did not [22]. Therefore, there may be significant heterogeneity across
patients in terms of which resistance mechanisms are at play and how they emerge and
are maintained.

Equally as important as the phenotypic heterogeneity is the actual tumor burden—
accurate and frequent measurement of tumor burden is key to calibrating mathematical
models so that they can better reproduce tumor dynamics and make reliable predictions. In
the ongoing adaptive therapy prostate cancer trials, prostate-specific antigen (PSA) is used
as a marker for disease burden (NCT02415621 and NCT03511196). LDH is a standardized
systemic biomarker for melanoma, although it can also increase in certain conditions not
related to tumor burden, such as in patients with liver toxicity from drug treatment [50].
The modeling approach here assumed that this LDH level is linearly correlated with tumor
burden. In the cohort of this study, all patients had an elevated LDH level initially, which
decreased while responding to therapy, and then increased due to progression (Table S1
and Figure S1). Newer blood biomarkers, such as circulating tumor DNA levels, may
correlate better with tumor response and progression in melanoma patients [51]. However,
these biomarkers may only highlight the sensitive cell population, and all of them lack
spatial information. Development of novel imaging technologies is urgently needed to
allow for non-invasive serial assessment of tumor burden; not only would this provide
greater temporal resolution but would offer the opportunity to understand the spatial
dynamics better.

Our analysis of patients with advanced melanoma identifies tumor-specific conditions
(parameters) and resulting dynamics where adaptive therapy may lead to significant clinical
gains. Identifying such patients before treatment would accelerate clinical translation. Here,
we identify such parameters by calibrating our models to individual patient tumor burden
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dynamics. This study highlights another potential benefit of using mathematical models
in the clinic by supporting patient selection in clinical trials based on tumor parameter
identification. Having chosen the appropriate patients, the mathematical models can then
be tailored to each patient treatment response to predict and drive their next treatment
decision. This mathematical model driven treatment decision paradigm is especially critical
for adaptive therapy (and more generally, personalized medicine) since it directly facilitates
both therapy dosing and switch points. We therefore advocate for greater integration of
predictive mathematical models in the clinical decision process.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/4/823/s1, Figure S1: Patient LDH and image (CT) data, Table S1: Patient LDH and response
evaluation data, Figure S2: LV model calibration, Figure S3: SW model calibration, Figure S4. LV
model parameter variability assessment, Figure S5. L2 norm of LV model calibration errors, Figure
S6. SW model parameter variability assessment, Figure S7. L2 norm of SW model calibration errors,
Figure S8. LV model predictions with perturbed parameters, Figure S9. SW model predictions with
perturbed parameters, Figure S10. Model fitting to the patient 1 data, Figure S11. Model projection of
drug-resistant population (R).
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