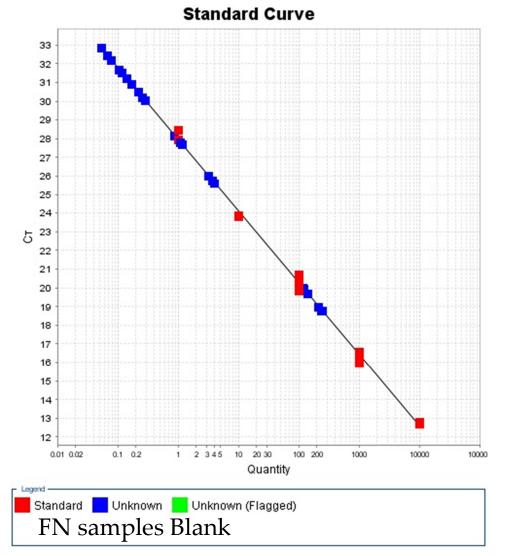

## Supplementary Materials: The Potential of Colonic Tumor Tissue *Fusobacterium Nucleatum* to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients

Pamela Pignatelli, Lorena Iezzi, Martina Pennese, Paolo Raimondi, Anna Cichella, Danilo Bondi, Rossella Grande, Roberto Cotellese, Nicola Di Bartolomeo, Paolo Innocenti, Adriano Piattelli and Maria Cristina Curia




**Figure S1.** The figure shows the amounts of dietary meat, vegetable and fruit, divided into high and low. Most of the sample had a diet rich in meat (66% of the patients), fruit (68.6% of the patients) and poor in vegetables (71.4% of the patients). Low fruit intake: <150 g/die; High fruit intake: 150–450 g/die; Low vegetable intake: <200 g/die; High vegetable intake: 200–400 g/die; Low meat intake: 0–400 g/we; High meat intake: 400–600 g/we.

## **DIET QUALITY**

|      | Fusobacterium nucleatum           |        |                                |       |                             |        | Porphyromonas gingivalis       |        |
|------|-----------------------------------|--------|--------------------------------|-------|-----------------------------|--------|--------------------------------|--------|
| Case | Oral (Med = 108.69, IQR = 300.63) |        | adj t (Med = 2.19, IQR = 8.96) |       | T (Med = 4.78, IQR = 68.20) |        | Oral (Med = 0.34, IQR = 38.88) |        |
|      | CFU/mL                            | SD     | CFU/mL                         | SD    | CFU/mL                      | SD     | CFU/mL                         | SD     |
| 1C   | 0                                 | 0      | 0.34                           | 0.05  | 0.58                        | 0.06   | 0                              | 0      |
| 2C   | 0.21                              | 0.02   | 0                              | 0     | 0.01                        | 0      | 2209.92                        | 1.77   |
| 3C   | 208.92                            | 9.89   | 23.36                          | 0.92  | 54.59                       | 1.68   | 0.48                           | 0.045  |
| 4C   | 157.98                            | 4.34   | 11.42                          | 0.79  | 202.81                      | 12.95  | 196.46                         | 18.64  |
| 5C   | 2.38                              | 0.10   | 0                              | 0     | 0.01                        | 0      | 0                              | 0      |
| 6C   | 12.01                             | 0.05   | 22.53                          | 0.42  | 604.84                      | 46.39  | 6.96                           | 1.42   |
| 7C   | 51.46                             | 5.13   | 220.84                         | 7.72  | 207.11                      | 15.40  | 0.07                           | 0.04   |
| 8C   | 76.54                             | 10.97  | 5.02                           | 0.06  | 63.24                       | 4.89   | 0                              | 0      |
| 9C   | 133.92                            | 7.64   | 7.97                           | 0.18  | 4.31                        | 0.15   | 0                              | 0      |
| 10C  | 3083.20                           | 426.06 | 0                              | 0     | 26.21                       | 1.14   | 0                              | 0      |
| 11C  | 38.82                             | 0.12   | 0.48                           | 0.02  | 0.66                        | 0.05   | 0                              | 0      |
| 12C  | 105.81                            | 11.23  | 3.42                           | 0.07  | 2.01                        | 0.03   | 64.11                          | 6.93   |
| 13C  | 111.56                            | 3.64   | 3.74                           | 0     | 159.82                      | 0.31   | 2.63                           | 0.25   |
| 14C  | 177.15                            | 27.27  | 0                              | 0     | 0                           | 0      | 0                              | 0      |
| 15C  | 1.55                              | 0.46   | 1.56                           | 0.44  | 0.55                        | 0.02   | 0.19                           | 0.01   |
| 16C  | 302.55                            | 18.29  | 2.19                           | 0.32  | 94.75                       | 110.63 | 0                              | 0      |
| 17C  | 48.45                             | 0.44   | 0.23                           | 0.09  | 0.32                        | 0.08   | 0.12                           | 0      |
| 18C  | 307.52                            | 4.99   | 40.68                          | 1.07  | 307.52                      | 4.99   | 1.00                           | 0      |
| 19C  | 132.92                            | 1.85   | 1.21                           | 0.24  | 85.41                       | 30.13  | 0.05                           | 0.01   |
| 20C  | 525.98                            | 53.76  | 3.49                           | 0.93  | 3.54                        | 1.43   | 1961.24                        | 401.80 |
| 21C  | 19.79                             | 0.21   | 28.08                          | 0.38  | 3.91                        | 0.42   | 234.68                         | 2.92   |
| 22C  | 1800.40                           | 83.60  | 3.68                           | 0.70  | 9.00                        | 1.35   | 0                              | 0      |
| 23C  | 1.20                              | 0.07   | 1.16                           | 0.31  | 0.03                        | 0      | 2.38                           | 0.50   |
| 24C  | 2.42                              | 0.19   | 8.63                           | 0.32  | 45.29                       | 3.09   | 1.15                           | 0.03   |
| 25C  | 0.33                              | 0.02   | 0.06                           | 0.01  | 0.27                        | 0.05   | 41.14                          | 1.10   |
| 26C  | 8421.99                           | 774.58 | 18.43                          | 2.01  | 7.22                        | 1.67   | 0                              | 0      |
| 27C  | 33.86                             | 1.29   | 0                              | 0     | 5.82                        | 0.21   | 0                              | 0      |
| 28C  | 0                                 | 0      | 0                              | 0     | 0                           | 0      | 655.00                         | 47.93  |
| 29C  | 1724.62                           | 34.79  | 0                              | 0     | 0.01                        | 0      | -                              | -      |
| 30C  | 0                                 | 0      | 0                              | 0     | 23.53                       | 0.70   | 269.36                         | 27.64  |
| 31C  | 172.13                            | 12.82  | 1551.87                        | 26.46 | 5833.85                     | 249.62 | 32.10                          | 5.79   |
| 32C  | 2156.26                           | 51.12  | 10.10                          | 1.23  | 0.12                        | 0.01   | -                              | -      |
| 33C  | 130                               | 3.34   | 0                              | 0     | 0                           | 6.05   | -                              | -      |
| 34C  | 3.41                              | 0.27   | 0.05                           | 0     | 0.02                        | 0.01   | -                              | -      |
| 35C  | 2210.54                           | 276.64 | 2.18                           | 0.03  | 84.02                       | 2.53   | -                              | -      |
| 36C  | 1781.30                           | 15.69  | 6.18                           | 0.55  | 5.25                        | 0.69   | -                              | -      |

**Table S1.** *Fn* and *Pg* quantities in the oral cavity and matched adjacent non-neoplastic mucosa (adj t) and cancer tissue (T) by qPCR.

The numerical values (CFU) represent the mean of triplicate determinations with standard deviation (SD). The concentration of the PCR products was converted to CFU using five serial dilutions (1:10) employed to create the standard curve (ranging from  $4.7 \times 10^{11}$  CFU/mL = 6.3 ng/µl to  $4.7 \times 10^{7}$  CFU/mL =  $6.3 \times 10^{4}$  ng/µl for *Fn*; from  $6 \times 10^{10}$  CFU/mL =  $5.9 \times 10^{-1}$  ng/µl to  $6 \times 10^{6} = 5.9 \times 10^{-5}$  ng/µl for *Pg*). Med: median; IQR: interquartile range.



**Figure S2.** The figure shows a representative example of a standard curve obtained by Real-Time PCR to quantize bacterial DNA (*Fn* and *Pg*) in the samples.

Red squares: five Fn ATCC 25586 serial dilutions used as standard. Quantity CFU/mL [DNA ng/µl]

- 1.  $10000 = 4.7 \times 10^{11} = 6.3$
- 2.  $1000 = 4.7 \times 10^{10} = 6.3 \times 10^{-1}$
- 3.  $100 = 4.7 \times 10^{9} = 6.3 \times 10^{-2}$
- 4.  $10 = 4.7 \times 10^8 = 6.3 \times 10^{-3}$
- 5.  $1 = 4.7 \times 10^{7} = 6.3 \times 10^{-4}$

For *Pg*: five ATCC 33277 serial dilutions used as standard. Quantity CFU/mL [DNA  $ng/\mu$ ]

- 1.  $6 \times 10^{10} = 5.9 \times 10^{-1}$
- 2.  $6 \times 10^{9} = 5.9 \times 10^{-2}$
- 3.  $6 \times 10^{8} = 5.9 \times 10^{-3}$
- 4.  $6 \times 10^{7} = 5.9 \times 10^{-4}$
- 5.  $6 \times 10^{6} = 5.9 \times 10^{-5}$

**Table S2.** Statistical analysis of the comparison between *Fn* in brushing, tumor tissue, and adjacent non-neoplastic tissue.

| Fn                                                 | Wilcoxon Test    | Robust Test      | Effect Size       |
|----------------------------------------------------|------------------|------------------|-------------------|
| Brushing vs. tumor tissue                          | p = 0.004        | p = 0.059        | $d_{unb} = 0.332$ |
| Brushing vs. adjacent non-neoplastic tissue        | p < 0.001        | p = 0.038        | $d_{unb} = 0.382$ |
| Tumor tissue vs. adjacent non-neoplastic<br>tissue | <i>p</i> = 0.100 | <i>p</i> = 0.066 | dunb = 0.253      |

Wilcoxon signed-rank test and robust paired sample *t*-test were used because of the non-normal distributions of data.



**Copyright:** © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).