Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Population
2.2. Imaging
2.3. Treatment Planning
2.4. Pseudo-CT Generation
2.5. Dose Calculations
2.6. HU-Comparability
2.7. Digital Reconstructed Radiograph (DRR) Comparability
2.8. Gamma Analysis
2.9. Dose-Volume Histogram
2.10. Statistical Analysis
3. Results
3.1. Population
3.2. HU Comparability
3.3. DRR Comparability
3.4. Local and Global Gamma Analysis
3.5. DVH Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soffietti, R.; Abacioglu, U.; Baumert, B.; Combs, S.E.; Kinhult, S.; Kros, J.M.; Marosi, C.; Metellus, P.; Radbruch, A.; Freixa, S.S.V.; et al. Diagnosis and treatment of brain metastases from solid tumors: Guidelines from the European Association of Neuro-Oncology (EANO). Neuro-Oncology 2017, 19, 162–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, M.N.; Figura, N.B.; Arrington, J.A.; Yu, H.-H.M.; Etame, A.B.; Vogelbaum, M.A.; Soliman, H.; Czerniecki, B.J.; Forsyth, P.A.; Han, H.S.; et al. Management of brain metastases in breast cancer: A review of current practices and emerging treatments. Breast Cancer Res. Treat. 2020, 180, 279–300. [Google Scholar] [CrossRef]
- Mamon, H.J.; Yeap, B.Y.; Jänne, P.A.; Reblando, J.; Shrager, S.; Jaklitsch, M.T.; Mentzer, S.; Lukanich, J.M.; Sugarbaker, D.J.; Baldini, E.H.; et al. High Risk of Brain Metastases in Surgically Staged IIIA Non–Small-Cell Lung Cancer Patients Treated with Surgery, Chemotherapy, and Radiation. J. Clin. Oncol. 2005, 23, 1530–1537. [Google Scholar] [CrossRef]
- Fecci, P.E.; Champion, C.D.; Hoj, J.; McKernan, C.M.; Goodwin, C.R.; Kirkpatrick, J.P.; Anders, C.K.; Pendergast, A.M.; Sampson, J.H. The Evolving Modern Management of Brain Metastasis. Clin. Cancer Res. 2019, 25, 6570–6580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, J.H.; Kotecha, R.; Chao, S.T.; Ahluwalia, M.S.; Sahgal, A.; Chang, E.L. Current approaches to the management of brain metastases. Nat. Rev. Clin. Oncol. 2020, 17, 279–299. [Google Scholar] [CrossRef]
- Di Carlo, C.; Trignani, M.; Caravatta, L.; Vinciguerra, A.; Augurio, A.; Perrotti, F.; Di Tommaso, M.; Nuzzo, M.; Giancaterino, S.; Falco, M.D.; et al. Hippocampal sparing in stereotactic radiotherapy for brain metastases: To contour or not contour the hippocampus? Cancer Radiother. 2018, 22, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Carass, A.; Jog, A.; Prince, J.L.; Lee, J. MR to CT Registration of Brains using Image Synthesis. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 19–21 August 2014; Volume 9034, p. 903419. [Google Scholar]
- Karlsson, M.; Karlsson, M.G.; Nyholm, T.; Amies, C.; Zackrisson, B. Dedicated Magnetic Resonance Imaging in the Radiotherapy Clinic. Int. J. Radiat. Oncol. 2009, 74, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K. Basic principles of magnetic resonance imaging. Rinsho byori. Jpn. J. Clin. Pathol. 2000, 48, 614–620. [Google Scholar]
- Prusator, M.T.; Zhao, T.; Kavanaugh, J.A.; Santanam, L.; Dise, J.; Goddu, S.M.; Mitchell, T.J.; Zoberi, J.E.; Kim, T.; Mutic, S.; et al. Evaluation of a new secondary dose calculation software for Gamma Knife radiosurgery. J. Appl. Clin. Med. Phys. 2020, 21, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Dinkla, A.M.; Wolterink, J.M.; Maspero, M.; Savenije, M.H.; Verhoeff, J.J.; Seravalli, E.; Išgum, I.; Seevinck, P.R.; Berg, C.A.V.D. MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. Int. J. Radiat. Oncol. 2018, 102, 801–812. [Google Scholar] [CrossRef]
- Kazemifar, S.; McGuire, S.; Timmerman, R.; Wardak, Z.; Nguyen, D.; Park, Y.; Jiang, S.; Owrangi, A. MRI-only brain radiotherapy: Assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approach. Radiother. Oncol. 2019, 136, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnstone, E.; Wyatt, J.J.; Henry, A.M.; Short, S.C.; Sebag-Montefiore, D.; Murray, L.; Kelly, C.G.; McCallum, H.M.; Speight, R. Systematic Review of Synthetic Computed Tomography Generation Methodologies for Use in Magnetic Resonance Imaging–Only Radiation Therapy. Int. J. Radiat. Oncol. 2018, 100, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Arabi, H.; Dowling, J.A.; Burgos, N.; Han, X.; Greer, P.B.; Koutsouvelis, N.; Zaidi, H. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI -guided radiation planning in the pelvic region. Med. Phys. 2018, 45, 5218–5233. [Google Scholar] [CrossRef]
- Largent, A.; Barateau, A.; Nunes, J.-C.; Mylona, E.; Castelli, J.; Lafond, C.; Greer, P.B.; Dowling, J.A.; Baxter, J.; Saint-Jalmes, H.; et al. Comparison of Deep Learning-Based and Patch-Based Methods for Pseudo-CT Generation in MRI-Based Prostate Dose Planning. Int. J. Radiat. Oncol. 2019, 105, 1137–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Largent, A.; Barateau, A.; Nunes, J.; Lafond, C.; Greer, P.B.; Dowling, J.A.; Baxter, J.; Saint-Jalmes, H.; Acosta, O.; de Crevoisier, R. 45 A comparison of pseudo-CT generation methods for prostate MRI-based dose planning: Deep learning, patch-based, atlas-based and bulk-density methods. Eur. J. Med. Phys. 2019, 68, 28. [Google Scholar] [CrossRef]
- Edmund, J.M.; Nyholm, T. A review of substitute CT generation for MRI-only radiation therapy. Radiat. Oncol. 2017, 12, 28. [Google Scholar] [CrossRef]
- Lucia, F.; Key, S.; Dissaux, G.; Goasduff, G.; Lucia, A.-S.; Ollivier, L.; Pradier, O.; Schick, U. Inhomogeneous tumor dose distribution provides better local control than homogeneous distribution in stereotactic radiotherapy for brain metastases. Radiother. Oncol. 2019, 130, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. Inform. Aktuell 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Olberg, S.; Zhang, H.; Kennedy, W.R.; Chun, J.; Rodriguez, V.; Zoberi, I.; Thomas, M.A.; Kim, J.S.; Mutic, S.; Green, O.L.; et al. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Med. Phys. 2019, 46, 4135–4147. [Google Scholar] [CrossRef]
- Hoffmann, L.; Alber, M.; Söhn, M.; Elstrøm, U.V. Validation of the Acuros XB dose calculation algorithm versus Monte Carlo for clinical treatment plans. Med. Phys. 2018, 45, 3909–3915. [Google Scholar] [CrossRef]
- Stanhope, C.W.; Drake, D.G.; Liang, J.; Alber, M.; Söhn, M.; Habib, C.; Willcut, V.; Yan, D. Evaluation of machine log files/MC-based treatment planning and delivery QA as compared to ArcCHECK QA. Med. Phys. 2018, 45, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
- Seuntjens, J.; Lartigau, E.; Cora, S.; Ding, G.X.; Goetsch, S.; Nuyttens, J. ICRU Report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J. ICRU 2014, 14, 1–160. [Google Scholar]
- Shaw, E.; Kline, R.; Gillin, M.; Souhami, L.; Hirschfeld, A.; Dinapoli, R.; Martin, L. Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int. J. Radiat. Oncol. 1993, 27, 1231–1239. [Google Scholar] [CrossRef]
- Gregoire, V.; Mackie, T.R.; De Neve, W.; Gospodarowicz, M.; Purdy, J.A.; Van Herck, M.; Niemierko, A. The international commission on radiation units and measurements. J. ICRU 2010, 10, 55–59. [Google Scholar]
- Yoon, M.; Park, S.Y.; Shin, D.; Lee, S.B.; Pyo, H.R.; Kim, D.Y.; Cho, K.H. A new homogeneity index based on statistical analysis of the dose-volume histogram. J. Appl. Clin. Med. Phys. 2007, 8, 9–17. [Google Scholar] [CrossRef]
- Julious, S.A. Sample sizes for clinical trials with Normal data. Stat. Med. 2004, 23, 1921–1986. [Google Scholar] [CrossRef]
- Bland, M. An Introduction to Medical Statistics, 3rd ed.; Oxford Medical Publications: Oxford, UK, 2000. [Google Scholar]
- Low, D.A.; Harms, W.B.; Mutic, S.; Purdy, J.A. A technique for the quantitative evaluation of dose distributions. Med. Phys. 1998, 25, 656–661. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, J.-I.; Park, S.-Y.; Oh, D.H.; Kim, S.-T. Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans. Radiat. Oncol. 2018, 13, 175. [Google Scholar] [CrossRef]
- Kim, J.-I.; Park, S.-Y.; Kim, H.J.; Ye, S.-J.; Park, J.M. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT. Radiat. Oncol. 2014, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Heilemann, G.; Poppe, B.; Laub, W. On the sensitivity of common gamma-index evaluation methods to MLC misalignments in Rapidarc quality assurance. Med. Phys. 2013, 40, 031702. [Google Scholar] [CrossRef] [PubMed]
- Fredh, A.; Scherman, J.B.; Fog, L.S.; Munck af Rosenschold, P. Patient QA systems for rotational radiation therapy: A comparative experimental study with intentional errors. Med. Phys. 2013, 40, 031716. [Google Scholar] [CrossRef]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L.; et al. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med. Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Chun, M.; Wu, H.G.; Chie, E.K.; Kim, H.J.; Kim, J.H.; Park, J.M. Gamma analysis with a gamma criterion of 2%/1 mm for stereotactic ablative radiotherapy delivered with volumetric modulated arc therapy technique: A single institution experience. Oncotarget 2017, 8, 76076–76084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, D.; Van Leemput, K.; Edmund, J.M. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis. Med. Phys. 2016, 43, 4742–4752. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, M.; Brock, K.K. Quality Assurance of Serial 3D Image Registration, Fusion, and Segmentation. Int. J. Radiat. Oncol. 2008, 71 (Suppl. 1), S33–S37. [Google Scholar] [CrossRef]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, e43–e76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demol, B.; Boydev, C.; Korhonen, J.; Reynaert, N. Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T 1-weighted MR images. Med. Phys. 2016, 43, 6557–6568. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, T.; Nyberg, M.; Karlsson, M.G.; Karlsson, M. Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat. Oncol. 2009, 4, 54. [Google Scholar] [CrossRef]
- Dearnaley, D.P.; Jovic, G.; Syndikus, I.; Khoo, V.; Cowan, R.A.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Huddart, R.A.; Jose, C.C.; et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: Long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014, 15, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Bronnimann, C.; Huchet, A.; Benech-Faure, J.; Dutriaux, C.; Saut, O.; Blais, E.; Mollier, O.; Trouette, R.; Vendrely, V. Interval between planning and frameless stereotactic radiosurgery for brain metastases: Are our margins still accurate? Neuro-Oncol. Pract. 2020, 7, 211–217. [Google Scholar] [CrossRef]
- Paradis, E.; Cao, Y.; Lawrence, T.S.; Tsien, C.I.; Feng, M.; Vineberg, K.; Balter, J.M. Assessing the Dosimetric Accuracy of Magnetic Resonance-Generated Synthetic CT Images for Focal Brain VMAT Radiation Therapy. Int. J. Radiat. Oncol. 2015, 93, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, P.; Martin, J.; Sidhom, M.; Hunter, P.; Pichler, P.; Choi, J.H.; Best, L.; Smart, J.; Young, T.; Jameson, M.; et al. A Multi-center Prospective Study for Implementation of an MRI-Only Prostate Treatment Planning Workflow. Front. Oncol. 2019, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Lagendijk, J.J.; Raaymakers, B.W.; Raaijmakers, A.J.; Overweg, J.; Brown, K.J.; Kerkhof, E.M.; Van Der Put, R.W.; Hårdemark, B.; Van Vulpen, M.; Van Der Heide, U.A. MRI/linac integration. Radiother. Oncol. 2008, 86, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-L.; Eppinga, W.; Seravalli, E.; Hackett, S.; Brand, E.; Ruschin, M.; Lee, Y.K.; Atenafu, E.G.; Sahgal, A. Dosimetric feasibility of the hybrid Magnetic Resonance Imaging (MRI)-linac System (MRL) for brain metastases: The impact of the magnetic field. Radiother. Oncol. 2017, 125, 273–279. [Google Scholar] [CrossRef] [PubMed]
Main Patients Characteristics | N = 184 | % | |
---|---|---|---|
Gender | Male | 105 | 57.1 |
Female | 79 | 42.9 | |
Age median (range) | 60 (31–85) | ||
Primary Histology | Lung | 113 | 61.4 |
Breast | 30 | 16.3 | |
Melanoma | 21 | 11.4 | |
Kidney | 5 | 2.7 | |
GI | 12 | 6.5 | |
Bladder | 2 | 1.1 | |
Osteosarcoma | 1 | 0.5 | |
Planning target volume (PTV) (cm3) | Mean (range) | 6.44 (0.37–45.41) | |
Median | 3.89 | ||
Number of brain metastases | 1 | 114 | 62.0 |
2–3 | 59 | 32.0 | |
>3 | 11 | 6.0 | |
Mean (range) | 1 (1–6) | ||
Prescription dose | PD1 | 78 | 42.4 |
PD2 | 106 | 57.6 |
Dose | Bone | Soft-Tissue | DRR (20 Patients) |
---|---|---|---|
Mean (HU) | 175.50 | 13.54 | 86.16 |
Median (HU) | 179.58 | 13.70 | 80.30 |
SD | 63.15 | 1.96 | 19.80 |
Gamma Analysis | Dose | Overall | Training | Testing | p |
---|---|---|---|---|---|
Local Gamma Analysis | Median | 99.5 | 99.6 | 99.5 | 0.43 |
Mean | 99.1 | 99.3 | 99.1 | ||
SD | 0.53 | 0.54 | 0.54 | ||
Global Gamma Analysis | Median | 99.8 | 99.9 | 99,8 | 0.83 |
Mean | 99.7 | 99.8 | 99.7 | ||
SD | 0.39 | 0.18 | 2.12 |
DVH Feature | Initial | Synthetic | Absolute Difference | Relative Difference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Median | Mean | SD | Median | Mean | SD | Median | Mean | SD | p | % | |
PTV Volume (mL) | 3.89 | 6.44 | 7.98 | ||||||||
Dmin (Gy) | 22.56 | 22.20 | 1.84 | 22.85 | 22.46 | 1.87 | 0.30 | 0.26 | 0.34 | 0.15 | 1.17 |
Dmax (Gy) | 32.94 | 29.89 | 4.54 | 33.11 | 30.28 | 4.57 | 0.41 | 0.39 | 0.28 | 0.38 | 1.30 |
Dmean (Gy) | 28.21 | 26.83 | 2.78 | 28.42 | 27.19 | 2.80 | 0.38 | 0.37 | 0.24 | 0.19 | 1.38 |
D2 (Gy) | 32.25 | 29.30 | 4.34 | 32.44 | 29.62 | 4.64 | −0.42 | −0.32 | 1.79 | 0.47 | −1.09 |
D50 (Gy) | 27.99 | 26.85 | 2.86 | 28.19 | 27.12 | 3.24 | −0.38 | −0.27 | 1.69 | 0.37 | −1.01 |
D98 (Gy) | 24.18 | 23.89 | 1.48 | 24.43 | 24.09 | 2.11 | −0.32 | −0.20 | 1.51 | 0.26 | −0.84 |
Reference Isodose Volume (mL) | 11.46 | 14.43 | 12.94 | 11.76 | 15.02 | 13.34 | 0.30 | 0.60 | 0.72 | 0.65 | 4.16 |
Half Reference Dose Volume (mL) | 46.93 | 61.92 | 50.05 | 48.05 | 62.99 | 51.34 | −1.21 | −0.42 | 1.06 | 0.83 | −0.68 |
Conformation Index | 1.39 | 1.44 | 0.22 | 1.42 | 1.48 | 0.25 | 0.03 | 0.02 | 0.06 | 0.10 | 4.86 |
Ihomogeneity1 | 1.43 | 1.30 | 0.19 | 1.43 | 1.32 | 0.19 | 0 | −0.02 | 0.01 | 0.28 | −1.54 |
Ihomogeneity2 | 0.32 | 0.24 | 0.15 | 0.33 | 0.24 | 0.15 | 0.00 | −0.01 | 0.02 | 1 | −4.17 |
Ihomogeneity3 | 0.25 | 0.19 | 0.11 | 0.26 | 0.20 | 0.17 | 0.00 | −0.01 | 0.13 | 0.48 | −5.26 |
Dose Gradient | 4.34 | 4.87 | 2.03 | 4.26 | 4.70 | 2.00 | 0.05 | 0.17 | 0.51 | 0.39 | 3.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourbonne, V.; Jaouen, V.; Hognon, C.; Boussion, N.; Lucia, F.; Pradier, O.; Bert, J.; Visvikis, D.; Schick, U. Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers 2021, 13, 1082. https://doi.org/10.3390/cancers13051082
Bourbonne V, Jaouen V, Hognon C, Boussion N, Lucia F, Pradier O, Bert J, Visvikis D, Schick U. Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers. 2021; 13(5):1082. https://doi.org/10.3390/cancers13051082
Chicago/Turabian StyleBourbonne, Vincent, Vincent Jaouen, Clément Hognon, Nicolas Boussion, François Lucia, Olivier Pradier, Julien Bert, Dimitris Visvikis, and Ulrike Schick. 2021. "Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy" Cancers 13, no. 5: 1082. https://doi.org/10.3390/cancers13051082
APA StyleBourbonne, V., Jaouen, V., Hognon, C., Boussion, N., Lucia, F., Pradier, O., Bert, J., Visvikis, D., & Schick, U. (2021). Dosimetric Validation of a GAN-Based Pseudo-CT Generation for MRI-Only Stereotactic Brain Radiotherapy. Cancers, 13(5), 1082. https://doi.org/10.3390/cancers13051082