Next Article in Journal
Nanopore Sequencing Reveals Global Transcriptome Signatures of Mitochondrial and Ribosomal Gene Expressions in Various Human Cancer Stem-like Cell Populations
Next Article in Special Issue
Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development
Previous Article in Journal
Dinaciclib, a Bimodal Agent Effective against Endometrial Cancer
Previous Article in Special Issue
Integrative Transcriptomic Network Analysis of Butyrate Treated Colorectal Cancer Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review

1
Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France
2
Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France
3
Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France
4
Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France
5
U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France
*
Authors to whom correspondence should be addressed.
Cancers 2021, 13(5), 1137; https://doi.org/10.3390/cancers13051137
Submission received: 24 December 2020 / Revised: 2 February 2021 / Accepted: 1 March 2021 / Published: 6 March 2021
(This article belongs to the Collection Regulatory and Non-Coding RNAs in Cancer Epigenetic Mechanisms)

Abstract

:

Simple Summary

Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation.

Abstract

The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.

1. Introduction

With 417,367 new cases and 97,370 deaths each year, endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide after breast cancer [1].
Although the mechanisms underlying endometrial carcinogenesis are not fully understood, current evidence suggests that alterations of the epigenome drive both the expression of oncogenes and downregulation of tumor suppressors thereby promoting tumor initiation and progression in EC. Three epigenetic systems are currently known to modify gene expression: DNA methylation, histone modifications and RNA-associated silencing [2,3,4,5,6].
Micro-RNAs (miRNAs) are a family of small noncoding RNAs, 21–25 nucleotides in length that are involved in epigenetic mechanisms. miRNAs are transcribed by RNA polymerase II [7] or III [8] as long primary transcripts (pri-miRNAs) in the nucleus and then cleaved by RNAse III to become miRNAs. Each miRNA has the potential to regulate a variety of genes (usually around 500), while each gene is typically targeted by several different miRNAs [9,10,11,12]. It is well recognized that miRNAs are important regulators of genes which play crucial roles in fundamental biological processes such as proliferation, differentiation and survival [13,14,15,16,17]. miRNAs may also play a decisive role in the control of chromatin structure and gene expression by directly influencing the post-transcriptional regulation of important chromatin- and DNA-modifying enzymes. Recent studies have shown that a number of miRNAs, including miR-129-2 and miR-152, can be epigenetically silenced by hyper-methylation of their respective DNA locus in EC [14,18,19,20,21,22,23,24,25]. It has also been reported that miR-191 is able to down- or upregulate the level of methylation of certain genes in EC [14].
We recently published a systematic review focusing on the use of miRNAs in the management of EC [26]. In contrast, there is, to the best of our knowledge, no recent review of the role of miRNA as epigenetic modifiers in EC. In this review, we cover all epigenetic phenomena that have been correlated with a role for miRNAs in the tumorigenesis of EC [6,26] including the influence of miRNAs on the expression of tumor-related genes.

2. Methods

This systematic review was carried out using the following databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Figure 1):
MEDLINE, PubMed (the Internet portal of the National Library of Medicine, http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed; accessed on 30 September 2020), the Cochrane Library, Cochrane databases “Cochrane Reviews”, and “Clinical Trials” (http://www3.interscience.wiley.com/cgi-bin/mrwhome/106568753/HOMEDARE; accessed on 30 September 2020).
We used the following terms: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin.
The database search was further supplemented with original articles, reviews, and meta-analyses, including the studies cited therein. Only articles published in English or French between November 1, 2008 and September 30, 2020 were included.
The miRNAs are presented according to their expression levels in EC tissue compared to the healthy surrounding tissues, their function (tumor suppressor or oncomiRNA), and the degree of DNA methylation in miRNA loci and in CpG islands of target genes.

3. Results

Data were collected from 190 original articles and 11 reviews identifying a potential role for 313 different miRNAs in EC.
A model of the different roles of miRNA as epigenetic modifiers in EC is shown in Figure 2 with the three epigenetic mechanisms known to involve miRNAs. Figure 2A miRNAs can act as tumor suppressors or as oncomiRNAs. Figure 2B CpG-rich domains of miRNA loci can be hypo- or hyper-methylated. Figure 2C TET1 expression is downregulated by miR-191 through the mRNA–miRNA interaction in the 3′-untranslated regions of TET1.

3.1. Expression Profile of miRNAs of Epigenetic Modifiers Associated with Malignant Endometrial Tissue Compared with Healthy Endometrial Tissue

A summary of these data is provided in Table 1.
This systematic review identified 105 original articles and two literature reviews reporting the expression pattern of miRNAs [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135]. Of the 69 articles comparing neoplastic endometrial tissue with the surrounding healthy tissue, 39 were published after October 31, 2018 and were not presented in our previous review [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,53,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,94,96,98,99,100,101,102,103,131,132,133,134]. Overall, the 69 studies included an average of 82 endometrial tumor samples (minimum 4, maximum 579) and 22 healthy endometrial samples (minimum 5, maximum 56). Nineteen articles reported that the miRNAs were extracted from paraffin and 26 from frozen tissue. On-chip hybridization techniques (15 articles) or direct RT-qPCR (96 articles) were used to measure the expression levels of the miRNAs. We identified 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels (Table A1).
Endometrial tumors showed the following miRNA expression levels compared with healthy endometrial tissues:
-Increased miRNA expression: miR-7, miR-let-7a, miR-let-7f, miR-let-7g, miR-9, miR-9-3p, miR-10a, miR-17, miR-18a-3p, miR-19b, miR-25-5p, miR-27a, miR-30d, miR-31, miR-34a, miR-95,miR-96, miR-103, miR-106a, miR-106b, miR-106b-93-25, miR-107, miR-129-2, miR-130b, miR-135a, miR-135b, miR-141, miR-142-5p, miR-145, miR-146, miR-146b-5p, miR-150, miR-151, miR-153, miR-155, miR-181a, miR-181c-3p, miR-181c, miR-182, miR-183, miR-183-3p, miR-184, miR-185a, miR-185, miR-186, miR-191, miR-193-3p, miR-194, miR-200 family (miR-200a, miR-200b…), miR-203, miR-205, miR-210, miR-215, miR-219-2, miR-221, miR-223, miR-218, miR-301, miR-325, miR-326, miR-330, miR-331, miR-331-3p, miR-337, miR-363, miR-373, miR-423, miR-425, miR-429, miR-432, miR-449, miR-449a, miR-499, miR-518d-5p, miR-520c-5p, miR-522, miR-526a, miR-616, miR-625, miR-874, miR-891a, miR-940, miR-1202, miR-1224, miR-1269, miR-5787 and miR-6749-5p
-Decreased miRNA expression: miR-Let-7c, miR-1-2, miR-6, miR-10b, miR-15b, miR-20a-5p, miR-20b-5p, miR-21, miR-21-5p, miR-23a*, miR-27b-3p, miR-29c, miR-29c-3p, miR-29b, miR-30a-3p, miR-30a-5p, miR-30c, miR-31, miR-32, miR-33b, miR-34b, miR-99a, miR-99a-3p, miR-99b, miR-100, miR-101, miR-101-2, miR-107-5p, miR124, miR-126, miR-127-3p, miR-130b, miR-133, miR-133b, miR-136, miR-137, miR-139, miR-139-5p, miR-142, miR-143, miR-145, miR-144-3p, miR-146a, miR-148b, miR-149, miR-152, miR-184, miR-185, miR-185-5p, miR-193b, miR-193, miR-193a-5p-YY1-APC, miR-194, miR-195, miR-196a, miR-196a-5p, miR-197, miR-199b, miR-199b-3p, miR-199b-5p, miR-202-3p, miR-203, miR-204, miR-204-5p, miR-205-5p, miR-214, miR-214-3p, miR-216b, miR-221, miR-302a-5p, miR-328-3p, miR-320a, miR-335, miR-337-3p, miR-338-3p, miR-340-5p, miR-361, miR-367-3p, miR-368, miR-369, miR-370, miR-376a, miR-376c, miR-377, miR-377-5p, miR-381, miR-409, miR-410, miR-411, miR-424, miR-424*, miR-424-3p, miR-431, miR-432, miR-449a, miR-451, miR-455-5p, miR-483-5p, 487b, miR-495, miR-496, miR-503, miR-516, miR-516b, miR-542-3p, miR-542-5p, miR-543, miR-589-5p, miR-596, miR-610, miR-630, miR-632, miR-638, miR-646, miR-652, miR-758, miR-760, miR-874, miR-1247, miR-1296, miR-3926-1, miR-4429, miR-4461, miR-6076 and miR-6511b

3.2. DNA Methylation Levels of miRNA Loci in Malignant and Healthy Endometrial Tissues

A summary of these data is presented in Table 2.
We identified nine articles [21,22,23,24,25,135,136,137,138] which studied the degree of DNA methylation in miRNA loci. Among these, eight articles compared neoplastic endometrial tissue with the surrounding healthy tissue [22,23,24,25,135,136,137,138], while one article compared cancer tissues from various stages [21].
The following techniques were used to determine the relative methylation levels of miRNA loci: combined bisulfite restriction analysis (COBRA) using the DNA methylation kit (Zymo®, Research, Irvine, CA, USA), the EpiTect Bisulfite Kit (Qiagen®, Valencia, CA, USA) (a methylation sodium bisulfite kit), anti-5-methylcytosine monoclonal antibodies, methylation-specific multiplex ligation-dependent probe amplification, 5-aza-2′-deoxycytidine (5-AZA; a DNA methylation inhibitor) and/or Trichostatin A (TSA; a histone deacetylase inhibitor).
Endometrial tumors showed the following degrees of methylation in miRNA loci compared with healthy endometrial tissue:
-miRNAs with hypo-methylated loci: miR-130a/b, miR-182, miR-200b, miR-208a, miR-222, miR-625
-miRNAs with hyper-methylated loci: miR-34b, miR-124a-1, miR-124a-2, miR-124a-3, miR-129-2, miR-137, miR-152, miR-638, miR-663

3.3. DNA Methylation Levels of miRNA Loci in Malignant Endometrial Iissue

A summary of these data is provided in Table 2.
We identified two articles that reported the DNA methylation levels of miRNA target genes [14,139].
Two techniques were used to determine the relative methylation level of the miRNA target genes: immunoprecipitation of hydroxymethylated DNA followed by quantitative PCR, and anti-5-methylcytosine monoclonal antibodies.
Endometrial tumors showed the following alterations in the methylation of miRNA target genes:
-miR-30d increased the methylation of the H19 locus (although this miRNA does not act as a methyltransferase).
-miRNA-191 downregulated TET1 expression, an enzyme that is involved in the removal of methylated DNA in the loci of adenomatous polyposis coli (APC) and other tumor suppressor genes.

4. Discussion

This is the first systematic literature review on miRNAs in EC that focus on their roles in the control of chromatin structure and gene expression. We identified 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. In addition, endometrial tumors displayed six hypo-methylated and nine hyper-methylated miRNA loci in comparison to normal endometrial tissue. Finally, two miRNAs were reported to be involved in specific epigenetic phenomena: miR-30d was found to directly methylate the CpG promoter of the H19 gene while miR-191 was able to downregulate the expression of TET1, an enzyme that usually removes methylated bases in the promoter region of tumor suppressors like APC, thereby decreasing their expression [139].
In our previous review [26], we included 30 articles published between November 1, 2008 and October 31, 2018 studying the expression pattern of miRNAs in neoplastic endometrial tissue compared to healthy adjacent tissue. We described 110 miRNAs with decreased expression in EC, 133 with increased expression in EC, and 18 with discordant functions. The current systematic review includes 115 new original articles and three literature reviews published after November 1, 2018 emphasizing the strong current interest in this area. We here confirm the involvement of 313 miRNAs: (48 miRNAs with decreased expression, 140 with increased expression and 22 with discordant expression) including the four miRNAs most frequently involved in EC, miR-182, miR-183, the miR-200 family and miR-205 [28,46,68].
We previously described a role for miR-182 in the inhibition of cullin-5 which is accompanied by increased proliferation [110]. These findings were recently confirmed by Devor et al. who showed that miR-182 is often overexpressed in endometrial adenocarcinoma where it directly targets and inhibits cullin-5 [25]. Similarly, Jia et al. reported that LRIG2, a tumor suppressor gene mainly expressed in the ovaries and uterus, contain a putative binding site for miR-182 [140]. As a result, overexpression of miR-182 in EC overrides the inhibitory effects of LRIG2 on cell growth and the glycolytic metabolism [47].
We also reported that overexpression of miR-183 is associated with a poorer prognosis for EC patients both in terms of overall survival and progression-free survival. These findings were confirmed by a recent study based on the cancer genome atlas for miRNA expression [99].
The miR-200 family is implicated in the PI3K/AKT/mTOR signaling pathway, at least in part through downregulation of the PTEN tumor suppressor [141,142,143]. This was recently confirmed by Chen et al. who reported that miR-200c binds directly to PTEN and PTENP1 in endometrioid EC [102]. In agreement, a different study reported that estrogen stimulation increases the expression of miR-200c which is accompanied by decreased PTEN expression and activation of the PI3K-AKT pathway thereby promoting increased cellular survival [67].
In our previous study, we highlighted a potential prognostic role for miR-205. Since then, Zhao et al. have reported that miR-205 is closely related to overall survival using the Cancer Genome Atlas database that includes 164 miRNAs implicated in EC [42]. Donkers et al. also observed that miR-205 is consistently upregulated in EC. However, since miR-205 is also upregulated in lung and ovarian cancer [144,145], miR-205 might not be useful by itself as a diagnostic test for EC, although it may still serve as a prognostic biomarker.
Various studies have focused on the involvement of miRNAs in EC [26,146] but without exploring the underlying epigenetic mechanisms. miRNA levels can be increased or decreased in EC which, at least in part, can be due to differential methylation. To date, the methylation level of miRNA loci or of their target genes have been reported for only 17 miRNAs. However, differential methylation status has been reported for multiple genes in EC [147], indicating that epigenetic inactivation of gene promoters may be common in this disease. Importantly, aberrant DNA methylation appears to be more frequent in EC than genetic alterations. Interestingly, other studies have highlighted an association between hyper-methylation of six different miRNA loci (124a-1, 124a-3, 1-1, 148a, 152 and 18b) in other cancer types including gastric cancer as well as in colorectal cancers with microsatellite instability (MSI) [148,149,150].
Huang et al. reported that miR-129-2 functions as a tumor suppressor through negative regulation of SOX4, an oncogene frequently overexpressed in EC [138]. Importantly, methylation of the miR-129-2 locus was found in 68% of 117 EC patients with elevated SOX4 expression. Methylation of miR-129-2 has also been related to MSI and hypermethylated hMLH1. Therefore, oncogene activation may be caused either by methylation-mediated silencing of miRNA loci with an inhibitory action on oncogene expression and by direct demethylation of the oncogene promoter [142]. A better understanding of the methylation patterns of MMR genes that can be inherited over generations and may cause familial tumorigenesis such as Lynch syndrome (25% of MSI tumors) may lead to better treatment for these women who experience a 60% lifetime risk of EC [151].
A study by Tsuruta et al. highlighted a role for miR-152. Specifically, the expression of miR-152, that plays a role as a tumor suppressor can be reduced by aberrant DNA methylation. Treatment with 5-azacytidine, a demethylation agent, is able to restore the expression of miR-152. Aberrant methylation of the promoter of miR-152 has also been reported for other cancers including acute lymphoblastic leukemia, gastrointestinal cancer and cholangiocarcinoma [152,153,154,155].
We previously demonstrated that miR-137 is hyper-methylated in human endometrial tumors and confirmed that it acts as a tumor suppressor through epigenetic silencing [23]. Hyper-methylation of miR-137 was found in both endometrioid and serous endometrial cancer (p < 0.01), and was associated with loss of miR-137 expression. Hyper-methylation of the loci coding for miR-137 has also been reported for other cancers such as squamous cell carcinoma of the neck and head [156,157] and is associated with poorer overall survival [158]. The presence of MiR-137 in bowel lavage fluid is used as a prognostic marker for colorectal cancer, in oral rinses for head and neck squamous cell carcinoma, and in urine for bladder cancer [159,160].
miR-130a/b, miR-200b and miR-625 contain several CpG sites in their loci. The miR-130b and miR-200 family are involved in the regulation of the epithelial-mesenchymal transition pathway and tumor metastasis. Li et al. assessed the methylation status of these CpG islands in both endometrioid EC and normal endometrial tissue and reported that they were hypo-methylated in EC. The expression of miR-130b increased in EC cells after treatment with demethylation agents [135].
Moreno-Moya et al. showed another epigenetic phenomenon used by miRNAs: miR-30d is overexpressed in EC where it is able to methylate the H19 locus, which is associated with reproductive and endocrine system disorders as well as epithelial cell proliferation. When the methylation is reversed, H19 is upregulated in endometrial epithelial cells [139]. Yang et al. also reported a role for miRNA in DNA methylation. They demonstrated that miR-191 was upregulated in EC tissue in comparison with the adjacent normal tissue and that its knockdown repressed EC cell proliferation. miR-191 targets TET1, a methylcytosine dioxygenase which functions in the removal of genome-wide methylation DNA marks, thereby decreasing the expression of TET1 in EC. This results in hypermethylation of the promoter region of APC, a tumor suppressor and other tumor suppressors, thereby decreasing their expression [14].
Over the last 5 years, up to 754 miRNAs [17] have been identified as potential biomarkers in EC, some of which are correlated with lymph node involvement, advanced FIGO stage, metastatic status, or histologic type [17,40,103,118,161,162]. Increasing our knowledge of the miRNA expression status or the methylation state of key miRNA loci may help to better stratify patients. It is important to note that the molecular classification of EC has revealed considerable heterogeneity of tumors with comparable histologic type and grade but with different genes and epimutations. Future research should also be directed toward matching miRNAs to molecular classification subgroups of tumors. For the molecular classification of EC, type I tumors include PTEN, beta-catenin and KRAS gene mutations. PTEN mutations represent 94% of the tumors in the subgroup “POLE” and 88% of the “MSI-hypermutated” tumor subgroup [163]. They are frequently detected in patients with aberrant methylation of the MLH1 promoter regions that cause inactivation of the mismatch repair (MMR) gene [164,165]. The miR-200 family, miR-183 and miR-21 have been shown to target the PTEN gene, and their expression levels in endometrial tissue can be used to predict the risk of tumor progression from endometrial hyperplasia to invasive EC [102,122]. TP53 mutations, corresponding to the “Copy Number High” subgroups, are more common in grade 3 tumors, which are associated with poorer survival than other tumor groups. miR-34a has been found to be downregulated in p53-mutated ovarian cancer; miR-34a being the direct target of the tumor suppressor p53 gene [166].
The current European pathologic classification of EC is probably not sufficiently accurate to predict recurrence risk, often leading to over- or under-treatment [167]. Sensitive and specific molecular prognostic biomarkers are needed to better adapt surgery and adjuvant therapies. In this setting, various studies have demonstrated that miRNA can be used as a diagnostic tool for nodal status or for lymphovascular space involvement [10,162]. Promising trials are underway to investigate the usefulness of these miRNAs, particularly in blood or urine samples, to improve the management of patients with EC. The GYNO-MIR (NCT03776630) clinical trial explores the potential of novel biomarkers based on plasma miRNAs for a better management of pelvic gynecologic tumors. The aim of this clinical trial is to validate a 5 miRNA index as a diagnostic marker to assess the risk of lymph node metastases in EC and ovarian cancer from patient plasma samples taken during surgery and one month later. The Urinary miRNA (NCT03824613) clinical trial explores the accuracy of the predictive value of miRNA in distinguishing EC patients from healthy subjects, and if miRNA correlates with the final histology and/or the subtype of EC. Nevertheless, while stage I and stage II EC are largely curable, more advanced malignancies often progress to a chemo- and radio-resistant phenotypes. Aberrant DNA methylation is widespread in endometrial tumors and is associated with chemoresistance. Although single-agent epigenetic therapies have demonstrated some efficacy, the combination of an epigenetic therapy with conventional chemotherapy holds a greater promise by restoring the sensitivity to chemotherapy in patients with chemo-resistant EC [168].
This systematic review has some specific limitations. First, our literature search yielded only a few studies covering the degree of DNA methylation. This might be explained by the fact that the involvement of miRNA involvement in DNA methylation is a relatively new field of research that is yet to be explored. The second limitation is the general lack of research articles focusing on de novo carcinogenesis of type II EC and the use of molecular classifiers of EC.

5. Conclusions

In this review, we provide an overview of all miRNAs reported to be involved in epigenetic regulation of EC. Further clarification with respect to which miRNA families are promoting oncogenesis, which miRNAs play a role as tumor suppressors and which miRNAs are directly involved in modification of DNA methylation constitute an exciting new area of research. Improved diagnosis, risk assessment, and treatment strategies based on miRNA represents a promising area but will require future research.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The English text was revised by Annette K. Larsen.

Conflicts of Interest

The authors declare no conflict of interest related to this work.

Appendix A

Table A1. MicroRNAs Regulation of epigenetic modifiers in endometrial cancer.
Table A1. MicroRNAs Regulation of epigenetic modifiers in endometrial cancer.
miRIncreased Expression level in Endometrial CancerDecreased Expression Level in Endometrial CancerMethylation ModifiedReference
miR-1 X [169]
miR-1-1 X [137]
miR-1-2 X [110]
miR-6 X [168]
miR-7X [169]
let-7aX [29]
let-7c X [29]
let-7fX [29]
let-7gX [29]
miR-9X [117,121,125,126]
miR-9*X [125]
miR-9-3pX [117]
miR-10aX [128,129,169]
miR-10b* X [125,169]
miR-10bXX [118]
miR-15a X [47,170]
miR-15bX [25,29]
miR-17X [136]
miR-17-5pX [128]
miR-18aX [125,136]
miR-18a-3pX [117]
miR-18bXX [137,169]
miR-19bX [126]
miR-20a-5p X [101]
miR-20b-5p X [56]
miR-21 X [118]
miR-21-5pX [27]
miR-23aX [128]
miR-23a*XX [125,169]
miR-23b X [169]
miR-23b-5p X [17]
miR-23c X [17]
miR-24-1* X [169]
miR-25X [128]
miR-25pX [142]
miR-26aX [126]
miR-26a1X [126]
miR-27aX [171,172]
miR-27b X [136]
miR-27b-3p X [89]
miR-28X [128]
miR-29b X [169]
miR-29c X [50]
miR-29c-3p X [48]
miR-30a-5p X [118]
miR-30a-3p X [134]
miR-30c X [116,130,173]
miR-30c2*X [169]
miR-30dX X[139]
miR-31XX [129,169]
miR-32 X [126]
miR-33a X [169]
miR-33b X [128]
miR-33b*X [169]
miR-34aXX [109,127,128]
miR-34b XX [136]
miR-34b* X [169]
miR-34c X [140,174]
miR-34c-3pXX [169]
miR-34c-5p X [169]
miR-95X [128,169]
miR-96X [121,125,129,169]
miR-98X [12]
miR-99a X [121,143]
miR-99a-3p X [119]
miR-99b X [129]
miR-100 X [121,125]
miR-101 X [169]
miR-101-2 X [110]
miR-103X [128,130]
miR-106aX [29,128,130,136]
miR-106b X [92,175]
miR-106b-93-25X [124]
miR-107X [128,130,176]
miR-107-5pX [103]
miR-123X [126]
miR-124a-1 XX[137]
miR-124a-2 XX[137]
miR-124a-3 X [137]
miR-125a-3pX [169]
miR-125b-1X [126]
miR-125b-2XX [177]
miR-126 X [113]
miR-127-3p X [125,169]
miR-129-2 XX[138]
miR-129-3p X [25]
miR-129-5p X [169]
miR-130a X[135]
miR-130bXXX[128]
miR-132* X [169]
miR-133aXX [25,169]
miR-133b X [129,169,177]
miR-134X [169]
miR-135a*X [29,169]
miR-135aX [117,177]
miR-135bX [29,117,118,121,169,177,178]
miR-136 X [169]
miR-136* X [169]
miR-137 XX[23,25]
miR-139 X [110]
miR-139-3pX [161]
miR-139-5p X [90,169]
miR-140-3p X [169]
miR-140-5p X [169]
miR-141X [29,121,125,128,178]
miR-142 X [68]
miR-142-3pXX [136]
miR-142-5pXX [129,177]
miR-143XX [161,169]
miR-143* X [169]
miR-145 X [161,169]
miR-145* X [169]
miR-145aX [126]
miR-146X [126]
miR-146aXX [126]
miR-148a X [137,173]
miR-148a-3pX [169]
miR-148b X [52]
miR-150*X [136]
miR-151X [128]
miR-152 XX[21,125,130,137,169]
miR-153X [100]
miR-155X [128,129,175]
miR-181aX [12,115,130]
miR-181cX [126]
miR-181c-3pX [119]
miR-182X X [25,29,121,122,127,128,129,169,178]
miR-183X [29,122,126,127,128,169,178]
miR-183-3pX [13]
miR-183-5pX [13]
miR-184XX [128,162]
miR-185XX [94,130]
miR-185aX [168]
miR-185-5pX [13]
miR-186X [29,47]
miR-188-5pX [169]
miR-190bX [132]
miR-191X X[14,128]
miR-193 X [130]
miR-193a X [129]
miR-193a-3pX [109]
miR-193a-5pX [169]
miR-193b X [129]
miR-194XX [128,179,180]
miR-195 X [118,169]
miR-196a-5p X [119]
miR-196b X [169]
miR-197 X [87]
miR-198X [169]
miR-199a-5p X [169]
miR-199b-5p X [117,125,169]
miR-199b-3p X [125,169]
miR-199b X [121]
miR-200 X [181]
miR-200aX [29,114,121,125,127,128,129,169,177,178]
miR-200a-5pX [117]
miR-200a*X [121,169,178]
miR-200bX X[29,114,121,125,129,169,174,177]
miR-200b*X [125,169,178]
miR-200cXX [29,40,121,125,126,128,129,169,177,178]
miR-202XX [141,169]
miR-202-3p X [67]
miR-203X [121,125,128,129,169,177]
miR-203 X [142]
miR-204XX [10,54,182]
miR-204-5p X [103]
miR-205X [29,118,121,123,125,126,127,128,129,169,177,178]
miR-205-5p X [36]
miR-208a X[137]
miR-210X [125,128,129,130,169,177]
miR-214 X [117,169]
miR-214* X [169]
miR-214-3p X [25]
miR-215X [128]
miR-216b X [178]
miR-218X [117]
miR-219-2X [110]
miR-221X [130]
miR-222X X[29,140,182]
miR-222-3pX [170]
miR-223X [29,126,128,140,169]
miR-224X [169]
miR-299-3p X [169]
miR-299-5p X [169]
miR-301X [51,128]
miR-302a-5p X [91]
miR-320a X [33]
miR-325X [128]
miR-326XX [110,128]
miR-328-3p X [119]
miR-330X [128]
miR-330-3pX [169]
miR-331X [54]
miR-331-3pX [69]
miR-335X [39]
miR-337-3p X [119]
miR-337-5p X [117,169]
miR-340-5pX [33]
miR-361 X [66]
miR-363X [129]
miR-368 X [129]
miR-369 X [126]
miR-370 X [117]
miR-371-5pX [169]
miR-373X [97]
miR-375X [169]
miR-376a X [125,169]
miR-376c X [117,125,169]
miR-377 X [117,169]
miR-379 X [169]
miR-381 X [125,169]
miR-382 X [146]
miR-409 X [126]
miR-410 X [121,125,169]
miR-411 X [127,169]
miR-421X [125]
miR-423X [126,130]
miR-424 X [125,126,169]
miR-424* X [125]
miR-424-3p X [117]
miR-425X [126,169]
miR-429X [114,117,121,125,129,169,177]
miR-431 X [125,126]
miR-432XX [125,129]
miR-449X [29,129]
miR-450a X [169]
miR-451 X [126]
miR-455-3p X [169]
miR-455-5p X [169]
miR-483-5pX [169]
miR-487b X [127]
miR-494X [169]
miR-495 X [132]
miR-496 X [126]
miR-497 X [169]
miR-499X [118]
miR-501-5pX [169]
miR-503 X [120,125,126,169]
miR-504 X [169]
miR-505*X [169]
miR-513a-5pX [169]
miR-513bX [169]
miR-516 X [126]
miR-516a-5pX [125]
miR-518c*X [169]
miR-519aX [177]
miR-520-5pX [161]
miR-522X [161]
miR-526aX [161]
miR-542-3p X [125,169]
miR-542-5p X [117,125,169]
miR-543 X [183]
miR-557X [169]
miR-564X [169]
miR-572X [127]
miR-575X [169]
miR-589-5p X [13]
miR-596 X [125]
miR-601X [136]
miR-605X [125]
miR-610 X [125]
miR-614X [125]
miR-616X [54]
miR-622X [127,169]
miR-623X [169]
miR-625X X [54,135]
miR-629*X [169]
miR-630XX [125,169]
miR-632 X [125]
miR-638 XX [22]
miR-646 X [31]
miR-650X [127]
miR-652X [169]
miR-654-3p X [169]
miR-663X X [24,169]
miR-758 X [117]
miR-760XX [125,169]
miR-765X [169]
miR-768-5pX [169]
miR-801X [169]
miR-873 X [169]
miR-874X [95]
miR-876 X [59]
miR-877X [169]
miR-892bX [169]
miR-888X [177]
miR-891aX [110]
miR-923X [169]
miR-936X [125]
miR-939X [169]
miR-940 X [89]
miR-944X [51,105]
miR-1202X [108]
miR-1224X [110]
miR-1224-5pX [169]
miR-1225-5pX [169]
miR-1226X [169]
miR-1228X [121]
miR-1247 X [117]
miR-1269X [13]
miR-1271 X [184]
miR-1976 X [140]
miR-3170 X [140]
miR-3926-1 X [110]
miR-4461 X [27]
miR-4467 X [169]
miR-4758X [28]
miR-5001-5p X [169]
miR-5787X [108]
miR-6076 X [34]
miR-6511b X [27]
miR-6749-5pX [108]
miR-6950-5p X [169]
X = when the miRNA is increased, decreased or if the methylation of miRNA’s loci is modified.

References

  1. Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. The Global Cancer Observatory—All Rights Reserved. 2020. Available online: https://gco.iarc.fr/ (accessed on 30 September 2020).
  2. Perri, F.; Longo, F.; Giuliano, M.; Sabbatino, F.; Favia, G.; Ionna, F.; Addeo, R.; Scarpati, G.D.V.; Di Lorenzo, G.; Pisconti, S. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit. Rev. Oncol. 2017, 111, 166–172. [Google Scholar] [CrossRef] [PubMed]
  3. Jasek, K.; Kubatka, P.; Samec, M.; Liskova, A.; Smejkal, K.; Vybohova, D.; Bugos, O.; Biskupska-Bodova, K.; Bielik, T.; Zubor, P.; et al. DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; La Vega, H.A.-D.; De La Cruz, O.N.H.; López-Camarillo, C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front. Genet. 2019, 10, 79. [Google Scholar] [CrossRef] [Green Version]
  5. Popovic, R.; Licht, J.D. Emerging Epigenetic Targets and Therapies in Cancer Medicine. Cancer Discov. 2012, 2, 405–413. [Google Scholar] [CrossRef] [Green Version]
  6. Berindan-Neagoe, I.; Bs, P.D.C.M.; Ms, B.P.; Calin, G.A. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA: A Cancer J. Clin. 2014, 64, 311–336. [Google Scholar] [CrossRef]
  7. Lee, Y.; Kim, M.; Han, J.; Yeom, K.-H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef]
  8. Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 2006, 13, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
  9. Betel, D.; Wilson, M.; Gabow, A.; Marks, D.S.; Sander, C. The microRNA.org resource: Targets and expression. Nucleic Acids Res. 2008, 36, D149–D153. [Google Scholar] [CrossRef] [Green Version]
  10. Canlorbe, G.; Castela, M.; Bendifallah, S.; Wang, Z.; Lefevre, M.; Chabbert-Buffet, N.; Aractingi, S.; Daraï, E.; Méhats, C.; Ballester, M. Micro-RNA signature of lymphovascular space involvement in type 1 endometrial cancer. Histol. Histopathol. 2016, 32, 941–950. [Google Scholar] [PubMed]
  11. Iorio, M.V.; Ferracin, M.; Liu, C.-G.; Veronese, A.; Spizzo, R.; Sabbioni, S.; Magri, E.; Pedriali, M.; Fabbri, M.; Campiglio, M.; et al. MicroRNA Gene Expression Deregulation in Human Breast Cancer. Cancer Res. 2005, 65, 7065–7070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  12. Panda, H.; Chuang, T.-D.; Luo, X.; Chegini, N. Endometrial miR-181a and miR-98 expression is altered during transition from normal into cancerous state and target PGR, PGRMC1, CYP19A1, DDX3X, and TIMP3. J. Clin. Endocrinol. Metab. 2012, 97, E1316–E1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Wang, Y.; Xu, M.; Yang, Q. A six-microRNA signature predicts survival of patients with uterine corpus endometrial carcinoma. Curr. Probl. Cancer 2019, 43, 167–176. [Google Scholar] [CrossRef] [PubMed]
  14. Yang, C.; Ota-Kurogi, N.; Ikeda, K.; Okumura, T.; Horie-Inoue, K.; Takeda, S.; Inoue, S. MicroRNA-191 regulates endometrial cancer cell growth via TET1-mediated epigenetic modulation of APC. J. Biochem. 2020, 168, 7–14. [Google Scholar] [CrossRef] [PubMed]
  15. Melo, S.A.; Esteller, M. Dysregulation of microRNAs in cancer: Playing with fire. FEBS Lett. 2010, 585, 2087–2099. [Google Scholar] [CrossRef]
  16. Huang, W.-Y.; Hsu, S.-D.; Huang, H.-Y.; Sun, Y.-M.; Chou, C.-H.; Weng, S.-L.; Huang, H.-D. MethHC: A database of DNA methylation and gene expression in human cancer. Nucleic Acids Res. 2015, 43, D856–D861. [Google Scholar] [CrossRef] [PubMed]
  17. Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. Int. J. Cancer 2013, 132, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
  18. Dong, P.; Ihira, K.; Xiong, Y.; Watari, H.; Hanley, S.J.; Yamada, T.; Hosaka, M.; Kudo, M.; Yue, J.; Sakuragi, N. Reactivation of epigenetically silenced miR-124 reverses the epithelial-to-mesenchymal transition and inhibits invasion in endometrial cancer cells via the direct repression of IQGAP1 expression. Oncotarget 2016, 7, 20260–20270. [Google Scholar] [CrossRef] [PubMed]
  19. Kaur, S.; E Lotsari, J.; Al-Sohaily, S.; Warusavitarne, J.; Kohonen-Corish, M.R.; Peltomäki, P. Identification of subgroup-specific miRNA patterns by epigenetic profiling of sporadic and Lynch syndrome-associated colorectal and endometrial carcinoma. Clin. Epigenetics 2015, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Loginov, V.I.; Rykov, S.V.; Fridman, M.V.; Braga, E.A. Methylation of miRNA genes and oncogenesis. Biochemistry (Moscow) 2015, 80, 145–162. [Google Scholar] [CrossRef] [PubMed]
  21. Tsuruta, T.; Kozaki, K.-I.; Uesugi, A.; Furuta, M.; Hirasawa, A.; Imoto, I.; Susumu, N.; Aoki, D.; Inazawa, J. miR-152 Is a Tumor Suppressor microRNA That Is Silenced by DNA Hypermethylation in Endometrial Cancer. Cancer Res. 2011, 71, 6450–6462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Ni, J.; Liang, S.; Shan, B.; Tian, W.; Wang, H.; Ren, Y. Methylation-associated silencing of miR-638 promotes endometrial carcinoma progression by targeting MEF2C. Int. J. Mol. Med. 2020, 45, 1753–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Zhang, W.; Chen, J.-H.; Shan, T.; Aguilera-Barrantes, I.; Wang, L.-S.; Huang, T.H.-M.; Rader, J.S.; Sheng, X.; Huang, Y.-W. miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. Lab. Investig. 2018, 98, 1397–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Yanokura, M.; Banno, K.; Adachi, M.; Aoki, D.; Abe, K. Genome-wide DNA methylation sequencing reveals miR-663a is a novel epimutation candidate in CIMP-high endometrial cancer. Int. J. Oncol. 2017, 50, 1934–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Devor, E.J.; Schickling, B.M.; Reyes, H.D.; Warrier, A.; Lindsay, B.; Goodheart, M.J.; Santillan, D.A.; Leslie, K.K. Cullin-5, a ubiquitin ligase scaffold protein, is significantly underexpressed in endometrial adenocarcinomas and is a target of miR-182. Oncol. Rep. 2016, 35, 2461–2465. [Google Scholar] [CrossRef] [Green Version]
  26. Delangle, R.; De Foucher, T.; Larsen, A.K.; Sabbah, M.; Azaïs, H.; Bendifallah, S.; Daraï, E.; Ballester, M.; Mehats, C.; Uzan, C.; et al. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers 2019, 11, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  27. Wang, J.; Zhang, L.; Jiang, W.; Zhang, R.; Zhang, B.; Silayiding, A.; Duan, X. MicroRNA-135a promotes proliferation, migration, invasion and induces chemoresistance of endometrial cancer cells. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2020, 5, 100103. [Google Scholar] [CrossRef]
  28. Wu, X.; Han, Y.; Liu, F.; Ruan, L. Downregulations of miR-449a and miR-145-5p Act as Prognostic Biomarkers for Endometrial Cancer. J. Comput. Biol. 2020, 27, 834–844. [Google Scholar] [CrossRef]
  29. Donkers, H.; Bekkers, R.; Galaal, K. Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020, 11, 2010–2023. [Google Scholar] [CrossRef]
  30. Wang, W.; Ge, L.; Xu, X.-J.; Yang, T.; Yuan, Y.; Ma, X.-L.; Zhang, X.-H. LncRNA NEAT1 promotes endometrial cancer cell proliferation, migration and invasion by regulating the miR-144-3p/EZH2 axis. Radiol. Oncol. 2019, 53, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  31. Liu, Y.; Chen, S.; Zong, Z.; Guan, X.; Zhao, Y. CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer. J. Cell. Mol. Med. 2020, 24, 6898–6907. [Google Scholar] [CrossRef]
  32. Zong, Z.; Liu, Y.; Chen, S.; Zhao, Y. Circ_PUM1 promotes the development of endometrial cancer by targeting the miR-136/NOTCH3 pathway. J. Cell. Mol. Med. 2020, 24, 4127–4135. [Google Scholar] [CrossRef] [Green Version]
  33. Zhang, H.; Li, R.; Li, Y.; Yu, X.; Sun, Q.; Li, A.; Kong, Y. eIF4E-related miR-320a and miR-340-5p inhibit endometrial carcinoma cell metastatic capability by preventing TGF-β1-induced epithelial-mesenchymal transition. Oncol. Rep. 2019, 43, 447–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Shi, Y.; Zha, J.; Zuo, M.; Yan, Q.; Song, H. Long noncoding RNA CHL1-AS1 promotes cell proliferation and migration by sponging miR-6076 to regulate CHL1 expression in endometrial cancer. J. Cell. Biochem. 2019, 121, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
  35. Zhang, N.; Wang, Y.; Liu, H.; Shen, W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp. Cell Res. 2020, 394, 112113. [Google Scholar] [CrossRef] [PubMed]
  36. Xin, W.; Gao, X.; Zhao, S.; Zhao, P.; Yu, H.; Wu, Q.; Hua, K. LncRNA RP11-395G23.3 suppresses the endometrial cancer progression via regulating microRNA-205-5p/PTEN axis. Am. J. Transl Res 2020, 12, 4422–4433. [Google Scholar]
  37. Wang, C.; Li, Q.; He, Y. MicroRNA-21-5p promotes epithelial to mesenchymal transition by targeting SRY-box 17 in endometrial cancer. Oncol. Rep. 2020, 43, 1897–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Sato, I.; Ishibashi, M.; Tokunaga, H.; Shigeta, S.; Sakurada, S.; Shimada, M.; Nagase, S.; Watanabe, Y.; Yaegashi, N. MicroRNA Let-7c Contributes to Paclitaxel Resistance via Aurora-B in Endometrial Serous Carcinoma. Tohoku J. Exp. Med. 2020, 251, 263–272. [Google Scholar] [CrossRef] [PubMed]
  39. Dou, X.; Chen, X.; Zhou, Q.; Wen, M.; Zhang, S.; Zhang, S. miR-335 modulates Numb alternative splicing via targeting RBM10 in endometrial cancer. Kaohsiung J. Med Sci. 2020, 36, 171–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  40. Wilczynski, M.; Domanska-Senderowska, D.; Krawczyk, T.; Szymanska, B.; Malinowski, A. MiRNAs in endometrioid endometrial cancer metastatic loci derived from positive lymph nodes. Acta Obstet. Gynecol. Scand. 2020, 99, 1085–1091. [Google Scholar] [CrossRef]
  41. Xu, C.; Zhai, J.; Fu, Y. Overexpression of Nuclear Enriched Autosomal Transcript 1 Facilitates Cell Proliferation, Migration Invasion, and Suppresses Apoptosis in Endometrial Cancer by Targeting MicroRNA-202-3p/T Cell Immunoglobulin and Mucin Domain 4 Axis. Cancer Biotherapy Radiopharm. 2020. [Google Scholar] [CrossRef]
  42. Zhao, D.; Ren, C.; Yao, Y.; Wang, Q.; Li, F.; Li, Y.; Jiang, A.; Wang, G. Identifying prognostic biomarkers in endometrial carcinoma based on ceRNA network. J. Cell. Biochem. 2019, 121, 2437–2446. [Google Scholar] [CrossRef]
  43. Wang, P.; Zeng, Z.; Shen, X.; Tian, X.; Ye, Q. Identification of a Multi-RNA-Type-Based Signature for Recurrence-Free Survival Prediction in Patients with Uterine Corpus Endometrial Carcinoma. DNA Cell Biol. 2020, 39, 615–630. [Google Scholar] [CrossRef]
  44. Yang, Y.; Wu, J.; Zhou, H.; Liu, W.; Wang, J.; Zhang, Q. STAT1-induced upregulation of lncRNA LINC01123 predicts poor prognosis and promotes the progression of endometrial cancer through miR-516b/KIF4A. Cell Cycle 2020, 19, 1502–1516. [Google Scholar] [CrossRef]
  45. Wang, Q.; Xu, K.; Tong, Y.; Dai, X.; Xu, T.; He, D.; Ying, J. Novel miRNA markers for the diagnosis and prognosis of endometrial cancer. J. Cell. Mol. Med. 2020, 24, 4533–4546. [Google Scholar] [CrossRef] [Green Version]
  46. Liu, Y.; Chang, Y.; Cai, Y. Hsa_circ_0061140 promotes endometrial carcinoma progression via regulating miR-149-5p/STAT3. Gene 2020, 745, 144625. [Google Scholar] [CrossRef] [PubMed]
  47. Jia, Y.; Liu, M.; Wang, S. CircRNA hsa_circRNA_0001776 inhibits proliferation and promotes apoptosis in endometrial cancer via downregulating LRIG2 by sponging miR-182. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar] [CrossRef] [PubMed]
  48. Li, H.; Sun, J.; Ma, H.; Liu, S.; Li, N.; Guo, S.; Shi, Y.; Xu, Y.; Qi, Z.; Wang, Y.; et al. MicroRNA-23a inhibits endometrial cancer cell development by targeting SIX1. Oncol. Lett. 2019, 18, 3792–3802. [Google Scholar] [CrossRef] [Green Version]
  49. Huang, X.; Zhong, R.; He, X.; Deng, Q.; Peng, X.; Li, J.; Luo, X. Investigations on the mechanism of progesterone in inhibiting endometrial cancer cell cycle and viability via regulation of long noncoding RNA NEAT1/microRNA-146b-5p mediated Wnt/β-catenin signaling. IUBMB Life 2019, 71, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Van Sinderen, M.; Griffiths, M.; Menkhorst, E.; Niven, K.; Dimitriadis, E. Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol. Lett. 2019, 18, 2684–2693. [Google Scholar] [CrossRef] [PubMed]
  51. Hutt, S.; Tailor, A.; Ellis, P.; Michael, A.; Butler-Manuel, S.; Chatterjee, J. The role of biomarkers in endometrial cancer and hyperplasia: A literature review. Acta Oncol. 2019, 58, 342–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Li, B.; Lu, W.; Qu, J.; Ye, L.; Du, G.; Wan, X. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J. Cell. Physiol. 2019, 234, 2943–2953. [Google Scholar] [CrossRef]
  53. Li, Z.; Li, N.; Sun, X.; Wang, J. FAM98A promotes cancer progression in endometrial carcinoma. Mol. Cell. Biochem. 2019, 459, 131–139. [Google Scholar] [CrossRef]
  54. Wu, A.-Y.; Hu, Y.; Cang, W.; Li, D.; Wang, W.-J.; Tian, Q.; Gu, L.-Y.; Zhang, N.; Ji, F.; Qiu, L.-H. Suppressive effect of microRNA-449a on the NDRG1/PTEN/AKT axis regulates endometrial cancer growth and metastasis. Exp. Cell Res. 2019, 382, 111468. [Google Scholar] [CrossRef]
  55. Du, J.; Zhang, F.; Zhang, L.; Jia, Y.; Chen, H. MicroRNA-103 regulates the progression in endometrial carcinoma through ZO-1. Int. J. Immunopathol. Pharmacol. 2019, 33. [Google Scholar] [CrossRef]
  56. Zhu, H.; Jin, Y.-M.; Lyu, X.-M.; Fan, L.-M.; Wu, F. Long noncoding RNA H19 regulates HIF-1α/AXL signaling through inhibiting miR-20b-5p in endometrial cancer. Cell Cycle 2019, 18, 2454–2464. [Google Scholar] [CrossRef] [PubMed]
  57. Penolazzi, L.; Bonaccorsi, G.; Gafà, R.; Ravaioli, N.; Gabriele, D.; Bosi, C.; Lanza, G.; Greco, P.; Piva, R. SLUG/HIF1-α/miR-221 regulatory circuit in endometrial cancer. Gene 2019, 711, 143938. [Google Scholar] [CrossRef] [PubMed]
  58. Hu, Y.; Wu, A.-Y.; Xu, C.; Song, K.-Q.; Wang, W.-J.; Yin, X.; Di, W.; Hong, Z.-B.; Qiu, L.-H. MicroRNA-449a Inhibits Tumor Metastasis through AKT/ERK1/2 Inactivation by Targeting Steroid Receptor Coactivator (SRC) in Endometrial Cancer. J. Cancer 2019, 10, 547–555. [Google Scholar] [CrossRef] [PubMed]
  59. Liu, Y.; Hua, T.; Chi, S.; Wang, H. Identification of key pathways and genes in endometrial cancer using bioinformatics analyses. Oncol. Lett. 2018, 17, 897–906. [Google Scholar] [CrossRef] [PubMed]
  60. Guo, S.; Yang, J.; Wu, M.; Xiao, G. Clinical value screening, prognostic significance and key pathway identification of miR-204-5p in endometrial carcinoma: A study based on the Cancer Genome Atlas (TCGA), and bioinformatics analysis. Pathol. Res. Pr. 2019, 215, 1003–1011. [Google Scholar] [CrossRef]
  61. Liu, L.; Hu, J.; Yu, T.; You, S.; Zhang, Y.; Hu, L. miR-27b-3p/MARCH7 regulates invasion and metastasis of endometrial cancer cells through Snail-mediated pathway. Acta Biochim. Biophys. Sin. 2019, 51, 492–500. [Google Scholar] [CrossRef] [PubMed]
  62. Xu, X.; Kong, X.; Liu, T.; Zhou, L.; Wu, J.; Fu, J.; Wang, Y.; Zhu, M.; Yao, S.; Ding, Y.; et al. Metastasis-associated protein 1, modulated by miR-30c, promotes endometrial cancer progression through AKT/mTOR/4E-BP1 pathway. Gynecol. Oncol. 2019, 154, 207–217. [Google Scholar] [CrossRef]
  63. Wang, Y.; Huang, T.; Sun, X.; Wang, Y. Identification of a potential prognostic lncRNA-miRNA-mRNA signature in endometrial cancer based on the competing endogenous RNA network. J. Cell. Biochem. 2019, 120, 18845–18853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Kong, J.; He, X.; Wang, Y.; Li, J. Effect of microRNA-29b on proliferation, migration, and invasion of endometrial cancer cells. J. Int. Med Res. 2019, 47, 3803–3817. [Google Scholar] [CrossRef]
  65. Kozak, J.; Wdowiak, P.; Maciejewski, R.; Torres, A. Interactions between microRNA-200 family and Sestrin proteins in endometrial cancer cell lines and their significance to anoikis. Mol. Cell. Biochem. 2019, 459, 21–34. [Google Scholar] [CrossRef] [Green Version]
  66. Dong, P.; Xiong, Y.; Yue, J.; Xu, D.; Ihira, K.; Konno, Y.; Kobayashi, N.; Todo, Y.; Watari, H. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J. Exp. Clin. Cancer Res. 2019, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
  67. Chen, P.; Xing, T.; Wang, Q.; Liu, A.; Liu, H.; Hu, Y.; Ji, Y.; Song, Y.; Wang, D. MicroRNA-202 inhibits cell migration and invasion through targeting FGF2 and inactivating Wnt/β-catenin signaling in endometrial carcinoma. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Su, Y.; Wang, J.; Ma, Z.; Gong, W.; Yu, L. miR-142 Suppresses Endometrial Cancer Proliferation In Vitro and In Vivo by Targeting Cyclin D1. DNA Cell Biol. 2019, 38, 144–150. [Google Scholar] [CrossRef]
  69. Hermyt, E.; Zmarzły, N.; Grabarek, B.; Kruszniewska-Rajs, C.; Gola, J.; Jęda-Golonka, A.; Szczepanek, K.; Mazurek, U.; Witek, A. Interplay between miRNAs and Genes Associated with Cell Proliferation in Endometrial Cancer. Int. J. Mol. Sci. 2019, 20, 6011. [Google Scholar] [CrossRef] [Green Version]
  70. Zheng, X.; Liu, M.; Song, Y.; Feng, C. Long Noncoding RNA-ATB Impairs the Function of Tumor Suppressor miR-126-Mediated Signals in Endometrial Cancer for Tumor Growth and Metastasis. Cancer Biotherapy Radiopharm. 2019, 34, 47–55. [Google Scholar] [CrossRef] [PubMed]
  71. Li, X.-C.; Hai, J.-J.; Tan, Y.-J.; Yue, Q.-F.; Liu, L.-J. MiR-218 suppresses metastasis and invasion of endometrial cancer via negatively regulating ADD2. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 1408–1417. [Google Scholar] [PubMed]
  72. Asanoma, K.; Hori, E.; Yoshida, S.; Yagi, H.; Onoyama, I.; Kodama, K.; Yasunaga, M.; Ohgami, T.; Kaneki, E.; Okugawa, K.; et al. Mutual suppression between BHLHE40/BHLHE41 and the MIR301B-MIR130B cluster is involved in epithelial-to-mesenchymal transition of endometrial cancer cells. Oncotarget 2019, 10, 4640–4654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  73. Fang, Y.-Y.; Tan, M.-R.; Zhou, J.; Liang, L.; Liu, X.-Y.; Zhao, K.; Bao, E.-C. miR-214-3p inhibits epithelial-to-mesenchymal transition and metastasis of endometrial cancer cells by targeting TWIST1. OncoTargets Ther. 2019, ume 12, 9449–9458. [Google Scholar] [CrossRef] [Green Version]
  74. Wang, L.; Zhao, S.; Mingxin, Y.U. LncRNA NR2F1-AS1 is involved in the progression of endometrial cancer by sponging miR-363 to target SOX4. Die Pharm. 2019, 74, 295–300. [Google Scholar]
  75. Deng, J.; Wang, W.; Yu, G.; Ma, X. MicroRNA-195 inhibits epithelial-mesenchymal transition by targeting G protein-coupled estrogen receptor 1 in endometrial carcinoma. Mol. Med. Rep. 2019, 20, 4023–4032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Gao, Y.; Qian, H.; Tang, X.; Du, X.; Wang, G.; Zhang, H.; Ye, F.; Liu, T. Superparamagnetic iron oxide nanoparticle-mediated expression of miR-326 inhibits human endometrial carcinoma stem cell growth. Int. J. Nanomed. 2019, ume 14, 2719–2731. [Google Scholar] [CrossRef] [Green Version]
  77. Wang, Y.; Dong, L.; Liu, Y. Targeting Thyroid Receptor Interacting Protein 6 by MicroRNA-589-5p Inhibits Cell Proliferation, Migration, and Invasion in Endometrial Carcinoma. Cancer Biotherapy Radiopharm. 2019, 34, 529–536. [Google Scholar] [CrossRef]
  78. Wu, X.; Cai, D.; Zhang, F.; Li, M.; Wan, Q. Long noncoding RNA TUSC7 inhibits cell proliferation, migration and invasion by regulating SOCS4 (SOCS5) expression through targeting miR-616 in endometrial carcinoma. Life Sci. 2019, 231, 116549. [Google Scholar] [CrossRef]
  79. Zhang, H.; Han, Y.; Zhang, X.; Xiao, N.; Jiang, T.; Zhu, S.; Wang, E.; Chen, C. miR-522 facilitates the prosperities of endometrial carcinoma cells by directly binding to monoamine oxidase B. Kaohsiung J. Med Sci. 2019, 35, 598–606. [Google Scholar] [CrossRef]
  80. Yuan, D.-Z.; Lei, Y.; Zhao, D.; Pan, J.-L.; Zhao, Y.-B.; Nie, L.; Liu, M.; Long, Y.; Zhang, J.-H.; Yue, L.-M. Progesterone-Induced miR-145/miR-143 Inhibits the Proliferation of Endometrial Epithelial Cells. Reprod. Sci. 2018, 26, 233–243. [Google Scholar] [CrossRef] [PubMed]
  81. Chen, X.; Jin, P.; Tang, H.; Zhang, L. miR-135a acts as a tumor suppressor by targeting ASPH in endometrial cancer. Int. J. Clin. Exp. Pathol. 2019, 12, 3384–3389. [Google Scholar] [PubMed]
  82. Tan, A.; Luo, R.; Ruan, P. miR-495 promotes apoptosis and inhibits proliferation in endometrial cells via targeting PIK3R1. Pathol. Res. Pr. 2019, 215, 594–599. [Google Scholar] [CrossRef] [PubMed]
  83. Zhou, Z.; Xu, Y.-P.; Wang, L.-J.; Kong, Y. miR-940 potentially promotes proliferation and metastasis of endometrial carcinoma through regulation of MRVI1. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
  84. Li, L.; Shou, H.; Wang, Q.; Liu, S. Investigation of the potential theranostic role of KDM5B/miR-29c signaling axis in paclitaxel resistant endometrial carcinoma. Gene 2019, 694, 76–82. [Google Scholar] [CrossRef] [PubMed]
  85. Zhuang, L.; Qu, H.; Cong, J.; Dai, H.; Liu, X. MiR-181c affects estrogen-dependent endometrial carcinoma cell growth by targeting PTEN. Endocr. J. 2019, 66, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  86. Sun, J.; Gao, S.; Lu, C. Knockdown of differentiation antagonizing non-protein coding RNA exerts anti-tumor effect by up-regulating miR-214 in endometrial carcinoma. Mol. Cell. Biochem. 2019, 460, 9–15. [Google Scholar] [CrossRef] [PubMed]
  87. Shen, Q.; He, T.; Yuan, H. Hsa_circ_0002577 promotes endometrial carcinoma progression via regulating miR-197/CTNND1 axis and activating Wnt/β-catenin pathway. Cell Cycle 2019, 18, 1229–1240. [Google Scholar] [CrossRef]
  88. Zhao, X.; Dai, L.; Yue, Q.; Wang, H.; Wang, X.; Li, Y.; Chen, R. MiR-195 inhibits migration, invasion and epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells by targeting SOX4. J. Biosci. 2019, 44, 146. [Google Scholar] [CrossRef]
  89. Liu, Y.; Li, H.; Zhao, C.; Jia, H. MicroRNA-101 inhibits angiogenesis via COX-2 in endometrial carcinoma. Mol. Cell. Biochem. 2018, 448, 61–69. [Google Scholar] [CrossRef]
  90. Liu, J.; Li, C.; Jiang, Y.; Wan, Y.; Zhou, S.; Cheng, W. Tumor-suppressor role of miR-139-5p in endometrial cancer. Cancer Cell Int. 2018, 18, 51. [Google Scholar] [CrossRef] [PubMed]
  91. Ma, J.; Li, D.; Kong, F.-F.; Yang, D.; Yang, H.; Ma, X.-X. miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development. J. Exp. Clin. Cancer Res. 2018, 37, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Huang, C.; Hu, G. Shikonin suppresses proliferation and induces apoptosis in endometrioid endometrial cancer cells via modulating miR-106b/PTEN/AKT/mTOR signaling pathway. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
  93. Fang, Q.; Sang, L.; Du, S. Long noncoding RNA LINC00261 regulates endometrial carcinoma progression by modulating miRNA/FOXO1 expression. Cell Biochem. Funct. 2018, 36, 323–330. [Google Scholar] [CrossRef] [PubMed]
  94. Ushakov, D.S.; Dorozhkova, A.S.; Babayants, E.V.; Ovchinnikov, V.Y.; Kushlinskii, D.n.; Adamyan, L.V.; Gulyaeva, L.F.; Kushlinskii, n.E. Expression of microRNA Potentially Regulated by AhR and CAR in Malignant Tumors of the Endometrium. Bull. Exp. Biol. Med. 2018, 165, 688–691. [Google Scholar] [CrossRef] [PubMed]
  95. Sun, X.; Dongol, S.; Qiu, C.; Xu, Y.; Sun, C.; Zhang, Z.; Yang, X.; Zhang, Q.; Kong, B. miR-652 Promotes Tumor Proliferation and Metastasis by Targeting RORA in Endometrial Cancer. Mol. Cancer Res. 2018, 16, 1927–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Zhou, Y.-X.; Zhao, W.; Mao, L.-W.; Wang, Y.-L.; Xia, L.-Q.; Cao, M.; Shen, J.; Chen, J. Long non-coding RNA NIFK-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a. Int. J. Biochem. Cell Biol. 2018, 104, 25–33. [Google Scholar] [CrossRef]
  97. Li, J.; Sun, H.; Liu, T.; Kong, J. MicroRNA-423 promotes proliferation, migration and invasion and induces chemoresistance of endometrial cancer cells. Exp. Ther. Med. 2018, 16, 4213–4224. [Google Scholar] [CrossRef]
  98. Li, Y.; Sun, D.; Gao, J.; Shi, Z.; Chi, P.; Meng, Y.; Zou, C.; Wang, Y. MicroRNA-373 promotes the development of endometrial cancer by targeting LATS2 and activating the Wnt/β-Catenin pathway. J. Cell. Biochem. 2019, 120, 8611–8618. [Google Scholar] [CrossRef]
  99. Xiong, H.; Chen, R.; Liu, S.; Lin, Q.; Chen, H.; Jiang, Q. MicroRNA-183 induces epithelial-mesenchymal transition and promotes endometrial cancer cell migration and invasion in by targeting CPEB1. J. Cell. Biochem. 2018, 119, 8123–8137. [Google Scholar] [CrossRef] [PubMed]
  100. Yan, H.; Sun, B.; Zhang, Y.; Li, Y.; Huang, C.; Feng, F.; Li, C. Upregulation of miR-183-5p is responsible for the promotion of apoptosis and inhibition of the epithelial-mesenchymal transition, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin. Int. J. Mol. Med. 2018, 42, 2469–2480. [Google Scholar] [CrossRef] [Green Version]
  101. Huang, Y.; Yang, N. MicroRNA-20a-5p inhibits epithelial to mesenchymal transition and invasion of endometrial cancer cells by targeting STAT3. Int, J. Clin. Exp. Pathol 2018, 11, 5715–5724. [Google Scholar]
  102. Chen, R.; Zhang, M.; Liu, W.; Chen, H.; Cai, T.; Xiong, H.; Sheng, X.; Liu, S.; Peng, J.; Wang, F.; et al. Estrogen affects the negative feedback loop of PTENP1-miR200c to inhibit PTEN expression in the development of endometrioid endometrial carcinoma. Cell Death Dis. 2018, 10, 4. [Google Scholar] [CrossRef]
  103. Bao, W.; Zhang, Y.; Li, S.; Fan, Q.; Qiu, M.; Wang, Y.; Li, Y.; Ji, X.; Yang, Y.; Sang, Z.; et al. miR-107-5p promotes tumor proliferation and invasion by targeting estrogen receptor-α in endometrial carcinoma. Oncol. Rep. 2018, 41, 1575–1585. [Google Scholar] [CrossRef]
  104. Yang, L.; Yang, Z.; Yao, R.; Li, Y.; Liu, Z.; Chen, X.; Zhang, G. miR-210 promotes progression of endometrial carcinoma by regulating the expression of NFIX. Int. J. Clin. Exp. Pathol. 2018, 11, 5213–5222. [Google Scholar]
  105. Yan, T.; Zhu, S.; Zhang, J.; Lu, G.; Lv, C.; Wei, Y.; Luo, M. MicroRNA-944 targets vascular endothelial growth factor to inhibit cell proliferation and invasion in osteosarcoma. Mol. Med. Rep. 2018, 18, 5221–5228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Xie, P.; Cao, H.; Li, Y.; Wang, J.; Cui, Z. Knockdown of lncRNA CCAT2 inhibits endometrial cancer cells growth and metastasis via sponging miR-216b. Cancer Biomark. 2017, 21, 123–133. [Google Scholar] [CrossRef]
  107. Zhang, S.; Wang, M.; Li, Q.; Zhu, P. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark. 2021, 21, 179–186. [Google Scholar] [CrossRef] [PubMed]
  108. Chen, H.; Fan, Y.; Xu, W.; Chen, J.; Meng, Y.; Fang, D.; Wang, J. Exploration of miR-1202 and miR-196a in human endometrial cancer based on high throughout gene screening analysis. Oncol. Rep. 2017, 37, 3493–3501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  109. Wang, Z.; Wang, W.; Huang, K.; Wang, Y.; Li, J.; Yang, X. MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer. Oncotarget 2017, 8, 111258–111270. [Google Scholar] [CrossRef] [PubMed]
  110. Liu, Y.; Nan, F.; Lu, K.; Wang, Y.; Liu, Y.; Wei, S.; Wu, R.; Wang, Y. Identification of key genes in endometrioid endometrial adenocarcinoma via TCGA database. Cancer Biomark. 2017, 21, 11–21. [Google Scholar] [CrossRef]
  111. Ihira, K.; Dong, P.; Xiong, Y.; Watari, H.; Konno, Y.; Hanley, S.J.B.; Noguchi, M.; Hirata, N.; Suizu, F.; Yamada, T.; et al. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017, 8, 13509–13520. [Google Scholar] [CrossRef] [PubMed]
  112. Cai, Y.; He, T.; Liang, L.; Zhang, X.; Yuan, H. Upregulation of microRNA-337 promotes the proliferation of endometrial carcinoma cells via targeting PTEN. Mol. Med. Rep. 2016, 13, 4827–4834. [Google Scholar] [CrossRef] [Green Version]
  113. Zhao, X.; Zhu, D.; Lu, C.; Yan, D.; Li, L.; Chen, Z. MicroRNA-126 inhibits the migration and invasion of endometrial cancer cells by targeting insulin receptor substrate 1. Oncol. Lett. 2015, 11, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
  114. Yoneyama, K.; Ishibashi, O.; Kawase, R.; Kurose, K.; Takeshita, T. miR-200a, miR-200b and miR-429 are onco-miRs that target the PTEN gene in endometrioid endometrial carcinoma. Anticancer. Res. 2015, 35, 1401–1410. [Google Scholar] [PubMed]
  115. Zhou, S.-F.; He, S.-M.; Zeng, S.; Zhou, Z.-W.; He, Z. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: A bioinformatic and clinical study and the therapeutic implication. Drug Des. Dev. Ther. 2015, 9, 1103–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Kong, X.; Xu, X.; Yan, Y.; Guo, F.; Li, J.; Hu, Y.; Zhou, H.; Xun, Q. Estrogen Regulates the Tumour Suppressor MiRNA-30c and Its Target Gene, MTA-1, in Endometrial Cancer. PLoS ONE 2014, 9, e90810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  117. Jurcevic, S.; Klinga-Levan, K.; Olsson, B.; Ejeskär, K. Verification of microRNA expression in human endometrial adenocarcinoma. BMC Cancer 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Tsukamoto, O.; Miura, K.; Mishima, H.; Abe, S.; Kaneuchi, M.; Higashijima, A.; Miura, S.; Kinoshita, A.; Yoshiura, K.-I.; Masuzaki, H. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecol. Oncol. 2014, 132, 715–721. [Google Scholar] [CrossRef]
  119. Xiong, H.; Li, Q.; Liu, S.; Wang, F.; Xiong, Z.; Chen, J.; Chen, H.; Yang, Y.; Tan, X.; Luo, Q.; et al. Integrated microRNA and mRNA Transcriptome Sequencing Reveals the Potential Roles of miRNAs in Stage I Endometrioid Endometrial Carcinoma. PLOS ONE 2014, 9, e110163. [Google Scholar] [CrossRef] [Green Version]
  120. Xu, Y.-Y.; Wu, H.-J.; Ma, H.-D.; Xu, L.-P.; Huo, Y.; Yin, L.-R. MicroRNA-503 suppresses proliferation and cell-cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1. FEBS J. 2013, 280, 3768–3779. [Google Scholar] [CrossRef]
  121. Torres, A.; Torres, K.; Pesci, A.; Ceccaroni, M.; Paszkowski, T.; Cassandrini, P.; Zamboni, G.; Maciejewski, R. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma. BMC Cancer 2012, 12, 369. [Google Scholar] [CrossRef] [Green Version]
  122. Lee, H.; Choi, H.J.; Kang, C.S.; Lee, H.J.; Lee, W.S.; Park, C.S. Expression of miRNAs and PTEN in endometrial specimens ranging from histologically normal to hyperplasia and endometrial adenocarcinoma. Mod. Pathol. 2012, 25, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Karaayvaz, M.; Zhang, C.; Liang, S.; Shroyer, K.R.; Ju, J. Prognostic significance of miR-205 in endometrial cancer. PLoS ONE 2012, 7, e35158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Zhao, Z.-n.; Bai, J.-X.; Zhou, Q.; Yan, B.; Qin, W.-W.; Jia, L.-T.; Meng, Y.-L.; Jin, B.-Q.; Yao, L.-B.; Wang, T.; et al. TSA Suppresses miR-106b-93-25 Cluster Expression through Downregulation of MYC and Inhibits Proliferation and Induces Apoptosis in Human EMC. PLoS ONE 2012, 7, e45133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Snowdon, J.; Zhang, X.; Childs, T.; Tron, V.A.; Feilotter, H. The microRNA-200 family is upregulated in endometrial carcinoma. PLoS ONE 2011, 6, e22828. [Google Scholar] [CrossRef] [PubMed]
  126. Cohn, D.E.; Fabbri, M.; Valeri, N.; Alder, H.; Ivanov, I.; Liu, C.-G.; Croce, C.M.; Resnick, K.E. Comprehensive miRNA profiling of surgically staged endometrial cancer. Am. J. Obstet. Gynecol. 2010, 202, 656.e1–656.e8. [Google Scholar] [CrossRef] [Green Version]
  127. Ratner, E.S.; Tuck, D.; Richter, C.; Nallur, S.; Patel, R.M.; Schultz, V.; Hui, P.; Schwartz, P.E.; Rutherford, T.J.; Weidhaas, J.B. MicroRNA signatures differentiate uterine cancer tumor subtypes. Gynecol. Oncol. 2010, 118, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Chung, T.K.H.; Cheung, T.-H.; Huen, n.-Y.; Wong, K.W.Y.; Lo, K.W.K.; Yim, S.-F.; Siu, n.S.S.; Wong, Y.-M.; Tsang, P.-T.; Pang, M.-W.; et al. Dysregulated microRNAs and their predicted targets associated with endometrioid endometrial adenocarcinoma in Hong Kong women. Int. J. Cancer 2008, 124, 1358–1365. [Google Scholar] [CrossRef]
  129. Wu, W.; Lin, Z.; Zhuang, Z.; Liang, X. Expression profile of mammalian microRNAs in endometrioid adenocarcinoma. Eur. J. Cancer Prev. 2009, 18, 50–55. [Google Scholar] [CrossRef]
  130. Boren, T.; Xiong, Y.; Hakam, A.; Wenham, R.; Apte, S.; Wei, Z.; Kamath, S.; Chen, D.-T.; Dressman, H.; Lancaster, J.M. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol. Oncol. 2008, 110, 206–215. [Google Scholar] [CrossRef]
  131. Osella, M.; Riba, A.; Testori, A.; Corã, D.; Caselle, M. Interplay of microRNA and epigenetic regulation in the human regulatory network. Front. Genet. 2014, 5, 345. [Google Scholar] [CrossRef] [Green Version]
  132. Tang, J.; Ma, W.; Luo, L. Establishment of the Prognosis Predicting Signature for Endometrial Cancer Patient. Med Sci. Monit. 2019, 25, 8248–8259. [Google Scholar] [CrossRef] [PubMed]
  133. Wu, Y.-S.; Lin, H.; Chen, D.; Yi, Z.; Zeng, B.; Jiang, Y.; Ren, G. A four-miRNA signature as a novel biomarker for predicting survival in endometrial cancer. Gene 2019, 697, 86–93. [Google Scholar] [CrossRef] [PubMed]
  134. Sidorkiewicz, I.; Jóźwik, M.; Niemira, M.; Krętowski, A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers 2020, 12, 2559. [Google Scholar] [CrossRef]
  135. Li, B.-L.; Lu, W.; Lu, C.; Qu, J.-J.; Yang, T.-T.; Yan, Q.; Wan, X.-P. CpG island hypermethylation-associated silencing of microRNAs promotes human endometrial cancer. Cancer Cell Int. 2013, 13, 1–44. [Google Scholar] [CrossRef] [Green Version]
  136. Hiroki, E.; Suzuki, F.; Akahira, J.-I.; Nagase, S.; Ito, K.; Sugawara, J.-I.; Miki, Y.; Suzuki, T.; Sasano, H.; Yaegashi, N. MicroRNA-34b functions as a potential tumor suppressor in endometrial serous adenocarcinoma. Int. J. Cancer 2012, 131, E395–E404. [Google Scholar] [CrossRef] [PubMed]
  137. Pavicic, W.; Perkiö, E.; Kaur, S.; Peltomäki, P. Altered Methylation at MicroRNA-Associated CpG Islands in Hereditary and Sporadic Carcinomas: A Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA)-Based Approach. Mol. Med. 2011, 17, 726–735. [Google Scholar] [CrossRef]
  138. Huang, Y.-W.; Liu, J.C.; Deatherage, D.E.; Luo, J.; Mutch, D.G.; Goodfellow, P.J.; Miller, D.S.; Huang, T.H.-M. Epigenetic Repression of microRNA-129-2 Leads to Overexpression of SOX4 Oncogene in Endometrial Cancer. Cancer Res. 2009, 69, 9038–9046. [Google Scholar] [CrossRef] [Green Version]
  139. Moreno-Moya, J.M.; Vilella, F.; Martinez, S.; Pellicer, A.; Simón, C. The transcriptomic and proteomic effects of ectopic overexpression of miR-30d in human endometrial epithelial cells. Mol. Hum. Reprod. 2014, 20, 550–566. [Google Scholar] [CrossRef] [Green Version]
  140. Jia, W.; Wu, Y.; Zhang, Q.; Gao, G.; Zhang, C.; Xiang, Y. Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol. Lett. 2013, 6, 261–267. [Google Scholar] [CrossRef] [Green Version]
  141. Deng, X.; Hou, C.; Liang, Z.; Wang, H.; Zhu, L.; Xu, H. miR-202 Suppresses Cell Proliferation by Targeting FOXR2 in Endometrial Adenocarcinoma. Dis. Markers 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  142. Huang, Y.-W.; Kuo, C.-T.; Chen, J.-H.; Goodfellow, P.J.; Huang, T.H.-M.; Rader, J.S.; Uyar, D.S. Hypermethylation of miR-203 in endometrial carcinomas. Gynecol. Oncol. 2014, 133, 340–345. [Google Scholar] [CrossRef] [Green Version]
  143. Li, Y.; Zhang, Z.; Zhang, X.; Lin, Y.; Luo, T.; Xiao, Z.; Zhou, Q. A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. Am. J. Transl. Res. 2016, 8, 719–731. [Google Scholar] [PubMed]
  144. Li, J.-H.; Sun, S.-S.; Li, N.; Lv, P.; Xie, S.-Y.; Wang, P.-Y. MiR-205 as a promising biomarker in the diagnosis and prognosis of lung cancer. Oncotarget 2017, 8, 91938–91949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  145. Wang, W.; Yin, Y.; Shan, X.; Zhou, X.; Liu, P.; Cao, Q.; Zhu, D.; Zhang, J.; Zhu, W. The Value of Plasma-Based MicroRNAs as Diagnostic Biomarkers for Ovarian Cancer. Am. J. Med Sci. 2019, 358, 256–267. [Google Scholar] [CrossRef] [Green Version]
  146. Wang, F.; Zhong, S.; Zhang, H.; Zhang, W.; Zhang, H.; Wu, X.; Chen, B. Prognostic Value of MicroRNA-182 in Cancers: A Meta-Analysis. Dis. Markers 2015, 2015, 1–8. [Google Scholar] [CrossRef]
  147. Ghazanfari, T.; Tehrani, G.A.; Maziri, P. The Relationship between the Methylation of Promoter Regions of Tumor Suppressor Genes PTEN and APC with Endometrial Cancer. Asian Pac. J. Cancer Prev. 2019, 20, 2259–2265. [Google Scholar] [CrossRef]
  148. Sarver, A.L.; French, A.J.; Borralho, P.M.; Thayanithy, V.; Oberg, A.L.; Silverstein, K.A.T.; Morlan, B.W.; Riska, S.M.; A Boardman, L.; Cunningham, J.M.; et al. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states. BMC Cancer 2009, 9, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Lanza, G.; Ferracin, M.; Gafà, R.; Veronese, A.; Spizzo, R.; Pichiorri, F.; Liu, C.-G.; A Calin, G.; Croce, C.M.; Negrini, M. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer 2007, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
  150. Earle, J.S.; Luthra, R.; Romans, A.; Abraham, R.; Ensor, J.; Yao, H.; Hamilton, S.R. Association of MicroRNA Expression with Microsatellite Instability Status in Colorectal Adenocarcinoma. J. Mol. Diagn. 2010, 12, 433–440. [Google Scholar] [CrossRef]
  151. Leenen, C.H.; Van Lier, M.G.; Van Doorn, H.C.; Van Leerdam, M.E.; Kooi, S.G.; De Waard, J.; Hoedemaeker, R.F.; Ouweland, A.M.V.D.; Hulspas, S.M.; Dubbink, H.J.; et al. Prospective evaluation of molecular screening for Lynch syndrome in patients with endometrial cancer ≤70years. Gynecol. Oncol. 2012, 125, 414–420. [Google Scholar] [CrossRef]
  152. Stumpel, D.J.P.M.; Schotte, D.; Lange-Turenhout, E.A.M.; A Schneider, P.; Seslija, L.; De Menezes, R.X.; E Marquez, V.; Pieters, R.; Boer, M.L.D.; Stam, R.W. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: Major matters at a micro scale. Leukemia 2010, 25, 429–439. [Google Scholar] [CrossRef] [Green Version]
  153. Chen, Y.; Song, Y.; Wang, Z.; Yue, Z.; Xu, H.; Xing, C.; Liu, Z. Altered Expression of MiR-148a and MiR-152 in Gastrointestinal Cancers and Its Clinical Significance. J. Gastrointest. Surg. 2010, 14, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
  154. Banno, K.; Kisu, I.; Yanokura, M.; Masuda, K.; Kobayashi, Y.; Ueki, A.; Tsuji, K.; Yamagami, W.; Nomura, H.; Susumu, N.; et al. Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics. Biochem. Res. Int. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Braconi, C.; Huang, N.; Patel, T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatol. 2009, 51, 881–890. [Google Scholar] [CrossRef] [Green Version]
  156. Balaguer, F.; Link, A.; Lozano, J.J.; Cuatrecasas, M.; Nagasaka, T.; Boland, C.R.; Goel, A. Epigenetic Silencing of miR-137 Is an Early Event in Colorectal Carcinogenesis. Cancer Res. 2010, 70, 6609–6618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Althoff, K.; Beckers, A.; Odersky, A.; Mestdagh, P.; Köster, J.; Bray, I.; Bryan, K.; Vandesompele, J.; Speleman, F.; Stallings, R.; et al. MiR-137 functions as a tumor suppressor in neuroblastoma by downregulating KDM1A. Int. J. Cancer 2013, 133, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
  158. Langevin, S.M.; Stone, R.A.; Bunker, C.H.; Ms, M.A.L.; LaFramboise, W.A.; Kelly, L.; Seethala, R.R.; Grandis, J.R.; Sobol, R.W.; Taioli, E. MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 2011, 117, 1454–1462. [Google Scholar] [CrossRef] [Green Version]
  159. Harada, T.; Yamamoto, E.; Yamano, H.-O.; Nojima, M.; Maruyama, R.; Kumegawa, K.; Ashida, M.; Yoshikawa, K.; Kimura, T.; Harada, E.; et al. Analysis of DNA Methylation in Bowel Lavage Fluid for Detection of Colorectal Cancer. Cancer Prev. Res. 2014, 7, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
  160. Shimizu, T.; Suzuki, H.; Nojima, M.; Kitamura, H.; Yamamoto, E.; Maruyama, R.; Ashida, M.; Hatahira, T.; Kai, M.; Masumori, N.; et al. Methylation of a Panel of MicroRNA Genes Is a Novel Biomarker for Detection of Bladder Cancer. Eur. Urol. 2013, 63, 1091–1100. [Google Scholar] [CrossRef]
  161. Zhang, X.; Dong, Y.; Ti, H.; Zhao, J.; Wang, Y.; Li, T.; Zhang, B. Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and worse prognosis in endometrioid carcinomas. Hum. Pathol. 2013, 44, 2571–2580. [Google Scholar] [CrossRef]
  162. De Foucher, T.; Sbeih, M.; Uzan, J.; Bendifallah, S.; Lefevre, M.; Chabbert-Buffet, N.; Aractingi, S.; Uzan, C.; Alsalam, I.A.; Mitri, R.; et al. Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer. J. Transl. Med. 2018, 16, 131. [Google Scholar] [CrossRef]
  163. Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [Green Version]
  164. Kanaya, T.; Sakaguchi, J.; Maida, Y.; Takakura, M.; Mizumoto, Y.; Kyo, S.; Nakamura, M.; Hashimoto, M.; Inoue, M. Association of Mismatch Repair Deficiency WithPTENFrameshift Mutations in Endometrial Cancers and the Precursors in a Japanese Population. Am. J. Clin. Pathol. 2005, 124, 89–96. [Google Scholar] [CrossRef] [PubMed]
  165. Kunitomi, H.; Banno, K.; Yanokura, M.; Takeda, T.; Iijima, M.; Nakamura, K.; Iida, M.; Adachi, M.; Watanabe, K.; Matoba, Y.; et al. New use of microsatellite instability analysis in endometrial cancer. Oncol. Lett. 2017, 14, 3297–3301. [Google Scholar] [CrossRef] [Green Version]
  166. Schmid, G.; Notaro, S.; Reimer, D.; Abdel-Azim, S.; Duggan-Peer, M.; Holly, J.; Fiegl, H.; Rössler, J.; Wiedemair, A.; Concin, N.; et al. Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
  167. Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef] [PubMed]
  168. Balch, C.; E Matei, D.; Huang, T.H.-M.; Nephew, K.P. Role of epigenomics in ovarian and endometrial cancers. Epigenomics 2010, 2, 419–447. [Google Scholar] [CrossRef] [Green Version]
  169. Hiroki, E.; Akahira, J.-I.; Suzuki, F.; Nagase, S.; Ito, K.; Suzuki, T.; Sasano, H.; Yaegashi, N. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2009, 101, 241–249. [Google Scholar] [CrossRef] [PubMed]
  170. Liu, T.; Gao, H.; Yang, M.; Zhao, T.; Liu, Y.; Lou, G. Correlation of TNFAIP8 overexpression with the proliferation, metastasis, and disease-free survival in endometrial cancer. Tumor Biol. 2014, 35, 5805–5814. [Google Scholar] [CrossRef] [PubMed]
  171. Lin, X.; Qiu, J.; Hua, K. Long non-coding RNAs as emerging regulators of epithelial to mesenchymal transition in gynecologic cancers. Biosci. Trends 2018, 12, 342–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Zhang, R.; He, Y.; Zhang, X.; Xing, B.; Sheng, Y.; Lu, H.; Wei, Z. Estrogen receptor-regulated microRNAs contribute to the BCL2/BAX imbalance in endometrial adenocarcinoma and precancerous lesions. Cancer Lett. 2012, 314, 155–165. [Google Scholar] [CrossRef]
  173. Aprelikova, O.; Yu, X.; Palla, J.; Wei, B.-R.; John, S.; Yi, M.; Stephens, R.; Simpson, R.M.; Risinger, J.I.; Jazaeri, A.; et al. The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 2010, 9, 4387–4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  174. Li, F.; Chen, H.; Huang, Y.; Zhang, Q.; Xue, J.; Liu, Z.; Zheng, F. miR-34c plays a role of tumor suppressor in HEC-1-B cells by targeting E2F3 protein. Oncol. Rep. 2015, 33, 3069–3074. [Google Scholar] [CrossRef] [PubMed]
  175. Choi, C.H.; Park, Y.-A.; Choi, J.-J.; Song, T.; Song, S.Y.; Lee, Y.-Y.; Lee, J.-W.; Kim, T.-J.; Kim, B.-G.; Bae, D.-S. Angiotensin II type I receptor and miR-155 in endometrial cancers: Synergistic antiproliferative effects of anti-miR-155 and losartan on endometrial cancer cells. Gynecol. Oncol. 2012, 126, 124–131. [Google Scholar] [CrossRef]
  176. Bao, W.; Wang, H.-H.; Tian, F.-J.; He, X.-Y.; Qiu, M.-T.; Wang, J.-Y.; Zhang, H.-J.; Wang, L.-H.; Wan, X.-P. A TrkB–STAT3–miR-204-5p regulatory circuitry controls proliferation and invasion of endometrial carcinoma cells. Mol. Cancer 2013, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  177. Devor, E.J.; Hovey, A.M.; Goodheart, M.J.; Ramachandran, S.; Leslie, K.K. microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncol. Rep. 2011, 26, 995–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  178. Lee, T.S.; Jeon, H.W.; Kim, Y.B.; Kim, Y.A.; Kim, M.A.; Kang, S.B. Aberrant MicroRNA Expression in Endometrial Carcinoma Using Formalin-Fixed Paraffin-Embedded (FFPE) Tissues. PLoS ONE 2013, 8, e81421. [Google Scholar] [CrossRef]
  179. Dong, P.; Kaneuchi, M.; Konno, Y.; Watari, H.; Sudo, S.; Sakuragi, N. Emerging Therapeutic Biomarkers in Endometrial Cancer. BioMed Res. Int. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Zhai, H.; Karaayvaz, M.; Dong, P.; Sakuragi, N.; Ju, J.; Dong, P. Prognostic significance of miR-194 in endometrial cancer. Biomark. Res. 2013, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Feng, X.; Wang, Z.; Fillmore, R.; Xi, Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 2014, 344, 166–173. [Google Scholar] [CrossRef] [Green Version]
  182. Montagnana, M.; Benati, M.; Danese, E.; Giudici, S.; Perfranceschi, M.; Ruzzenenete, O.; Salvagno, G.L.; Bassi, A.; Gelati, M.; Paviati, E.; et al. Aberrant MicroRNA Expression in Patients With Endometrial Cancer. Int. J. Gynecol. Cancer 2017, 27, 459–466. [Google Scholar] [CrossRef] [PubMed]
  183. Fan, C.; Lin, Y.; Mao, Y.; Huang, Z.; Liu, A.Y.; Ma, H.; Yu, D.; Maitikabili, A.; Xiao, H.; Zhang, C.; et al. MicroRNA-543 suppresses colorectal cancer growth and metastasis by targeting KRAS, MTA1 and HMGA2. Oncotarget 2016, 7, 21825–21839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Li, L.; Qu, Y.-W.; Li, Y.-P. Over-expression of miR-1271 inhibits endometrial cancer cells proliferation and induces cell apoptosis by targeting CDK1. Eur. Rev. Med Pharmacol. Sci. 2017, 21, 2816–2822. [Google Scholar] [PubMed]
Figure 1. PRISMA flow diagram.
Figure 1. PRISMA flow diagram.
Cancers 13 01137 g001
Figure 2. MicroRNA (miRNA) as epigenetic modifiers in endometrial cancer. Schematic summary of the three epigenetic mechanisms known to involve miRNAs. (A) miRNAs can act as tumor suppressors or as oncomiRNAs. miR-200 binds directly to PTEN resulting in the inhibition of apoptosis. miR-182 binds directly to LRIG2 leading to inhibition of cell growth while the miR-182-mediated decrease in cullin-5 protein levels results in increased cell proliferation. (B) CpG-rich domains of miRNA loci can be hypo- or hyper-methylated. Hyper-methylation of the miR-129-2 locus leads to decreased expression of this miRNA, which acts as a natural inhibitor of the SOX4 oncogene, thereby activating SOX4. (C) TET1 expression is downregulated by miR-191 through the mRNA-miRNA interaction in the 3’-untranslated region of TET1. Downregulation of the TET1 protein is accompanied by hyper-methylation of the promotor region of tumor suppressors like adenomatous polyposis coli (APC), resulting in decreased gene expression and attenuated levels of APC protein.
Figure 2. MicroRNA (miRNA) as epigenetic modifiers in endometrial cancer. Schematic summary of the three epigenetic mechanisms known to involve miRNAs. (A) miRNAs can act as tumor suppressors or as oncomiRNAs. miR-200 binds directly to PTEN resulting in the inhibition of apoptosis. miR-182 binds directly to LRIG2 leading to inhibition of cell growth while the miR-182-mediated decrease in cullin-5 protein levels results in increased cell proliferation. (B) CpG-rich domains of miRNA loci can be hypo- or hyper-methylated. Hyper-methylation of the miR-129-2 locus leads to decreased expression of this miRNA, which acts as a natural inhibitor of the SOX4 oncogene, thereby activating SOX4. (C) TET1 expression is downregulated by miR-191 through the mRNA-miRNA interaction in the 3’-untranslated region of TET1. Downregulation of the TET1 protein is accompanied by hyper-methylation of the promotor region of tumor suppressors like adenomatous polyposis coli (APC), resulting in decreased gene expression and attenuated levels of APC protein.
Cancers 13 01137 g002
Table 1. Differences in the expression profiles of microRNAs between malignant and healthy endometrial tissues.
Table 1. Differences in the expression profiles of microRNAs between malignant and healthy endometrial tissues.
ReferenceDateReviewType of Review Article miRNA IncreasedmiRNA Decreased Case SampleCase ControlDetection Technique
Wang et al. [27]2020J Obstet Gynecol Reprod Biol XOriginal ArticlemiR-135a Human cell lines Scrambled negative control RNAsRT-PCR
Wu et al. [28]2020J Comput BiolOriginal Article miR-449a,-145-5pEndometrial cancer tissue (n = 77)Adjacent healthy endometrial tissue (n = 22)bioinformatics
Donkers et al. [29]2020Onco targetLiterature ReviewmiR-205, -200c,-223,-182,-183,-200a,-135b,-429,-141,-200b,-200a*,-222,-141-3p,-200c-3p,-186,-200b*,-15b,-106a,-135a,-205-5p,-182-5p,-200b-3p,-92a,-9-5p,-27a,-210,-96,-194, -95,-155,-18a* miR-222-3p miR-96-5p miR-103 miR-151 miR-34a miR-92a-1* miR-887-5p miR-20a* miR-106b* miR-449a miR-17* miR-185 miR-1228 miR-146 miR-425 miR-1290 miR-205 miR-200c miR-223 miR-182 miR-183 miR-200a miR-135b miR-429 miR-141 miR-200b miR-200a* miR-222 miR-141-3p miR-200c-3p miR-186 miR-200b* miR-15b miR-106a miR-135a miR-205-5p miR-182-5p miR-200b-3p miR-92a miR-9-5p miR-27a miR-210 miR-96 miR-194 miR-95 miR-155 miR-18a* miR-222-3p miR-96-5p miR-103 miR-151 miR-34a miR-92a-1* miR-887-5p miR-20a* miR-106b* miR-449a miR-17* miR-185 miR-1228 miR-146 miR-425 miR-1290miR-137,-129-3p,-410,-503,-1247,-376c,-377,-26a-5p,-214,-150-5p,-370, let-7f-5p, -26b-5p, let-7c-5p,-23b-3p,-125b-5p, -126-3p, -195-5p, -424-5p, -374a-5p, -let-7a-5p, -let-7e-5p, -125a-5p, -542-5p miR-337-5p miR-1305 miR-758 miR-300 miR-93 miR-125 miR-34 miR-30a-3p miR-301b miR-10b miR-195 miR-30a-5p miR-101 miR-10b* miR-133a miR-133b miR-152 miR-29b miR-34b miR-411 Endometrial cancer tissue RT-PCR
Wang et al. [30] 2020Radiol OncolOriginal Article miR-144-3pEndometrial cancer Cell lines RT-PCR
Liu Y et al. [31]2020J Cell Mol Med.Original Article miR-646Endometrial cancer tissue (n = 32)Normal endometrial tissue (n = 26)RT-PCR/bioinformatics
Zong et al. [32] 2020J Cell Mol MedOriginal Article miR-136Endometrial cancer tissue (n = 69) RT-PCR
Zhang et al. [33] 2020Oncol repOriginal Article miR-320a, miR-340-5pEndometrial cancer tissue (n = 8)Adjacent healthy endometrial tissueRT-PCR
Shi et al. [34]2020BiochemOriginal Article miR-6076Endometrial cancer Cell lines RT-PCR
Zhang et al. [35]2020Exp Cell ResOriginal Article miR-320aEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 7)bioinformatics
Xin et al. [36] 2020Am J Transl ResOriginal Article miR-205-5pEndometrial cancer tissue (n = 42)Normal endometrial tissue (n = 29)RT-PCR
Wang et al. [37] 2020Oncol RepOriginal ArticlemiR-21-5p Endometrial cancer tissue (n = 160)Adjacent healthy endometrial tissueRT-PCR
Sato et al. [38] 2020Tohoku J Exp MedOriginal Article miR Let-7cPaclitaxel-resistant cell lines RT-PCR
Dou et al. [39] 2020Kaohsiung J Med SciOriginal ArticlemiR-335 Endometrial cancer tissue (n = 47)Adjacent healthy endometrial tissue RT-PCR
Wilczynski et al. [40]2020Acta Obstet Gynecol ScandOriginal Article miRNA-204, miRNA-424 Endometrioid cancer tissue with lymphadenectomy positive Endometrioid cancer tissue with lymphadenectomy negativeRT-PCR
Xu et al. [41] 2020Cancer Biother RadiopharmOriginal Article miR-202-3pEndometrial cancer type 2 (n = 20) RT-PCR
Zhao et al. [42] 2020J Cell BiochemOriginal ArticlemiR-31,−205, −211,−425 Endometrial cancer tissue (n = 546)Normal endometrial tissue (n = 33)bioinformatics TCGA
Wang et al. [43] 2020DNA Cell BiolOriginal Articlehsa-miR-184,-4461hsa-miR-6511bEndometrial cancer tissue with recurrence (n = 232)Endometrial cancer tissue with no recurrence (n = 231)RT-PCR
Yang et al. [44] 2020Cell CycleOriginal Article miR-516bEndometrial cancer tissue (n = 106) RT-PCR
Wang et al. [45] 2020J Cell Mol MedOriginal Articlehsa-miR-183-3p, -200b-3p, -429, -1307-3p,-183-5pmiR-542-3p,-152-3p,-24-1-5p,-374b-5pEndometrial cancer tissue (n = 441)Normal endometrial tissuebioinformatics (TCGA)
Liu et al. [46] 2020GeneOriginal Article miR-149-5pEndometrial cancer Cell lines RT-PCR
Jia et al. [47] 2020Cancer Cell InternationalOriginal ArticlemiR-182 Endometrial cancer tissue (n = 50)Normal endometrial tissue (n = 30)RT-PCR
Li et al. [48] 2019Oncol LettOriginal Article miR-23aEndometrial cancer tissue (n = 16)Adjacent healthy endometrial tissue RT-PCR/immunohistochimie
Huang et al. [49]2019IUBMBOriginal ArticlemiR-146b-5p Endometrial cancer tissue with progesterone (n = 3) and without progesterone (n = 3) RT PCR/bio informatics
Van Sinderen et al. [50]2019oncol LettOriginal Article miR-29cEndometrioid endometrial cancers tissue (n = 35)Adjacent healthy endometrial tissue RT-PCR
Hutt S et al. [51]2019Acta OncologicaLiterature ReviewmiR-944,-301miR-205, -106bEndometrial cancer tissue
Li B et al. [52]2019J Cell PhysioOriginal Article miR-148bEndometrial cancer tissue and cell linesAdjacent healthy endometrial tissue RT-PCR
Li Z et al. [53]2019Molecular and Cellular BiochemistryOriginal Article miR-142-3pEndometrial cancer tissue (n = 69)Adjacent healthy endometrial tissue (n = 20)RT-PCR
Wu et al. [54]2019Exp cell ResOriginal Article miR-449aEndometrioid cancer tissue (n = 87)Different cell lines RT-PCR/immunohistochimie
Du et al. [55]2019int J Immunopathol PharmacolOriginal ArticlemiR-103 Endometrial cancer tissue (n = 14) RT-PCR
Zhu et al. [56]2019cell CycleOriginal Article miR-20b-5pEndometrial cancer tissue (n = 36)Adjacent healthy endometrial tissue RT-PCR
Penolazzi L et al. [57]2019GeneOriginal ArticlemiR-221 Endometrioid cancer tissue (n = 53), 2 groups: obese patient BMI >30kg/m2 and non obese patient BMI <30kg/m2 RT-PCR/immunohistochimie
Hu et al. [58]2019J cancerOriginal Article miR-449aEndometrial cancer tissue (n = 40)Endometrial cancer stage I-IIRT-PCR
liu et al. [59]2019oncol LettOriginal Articlehsa-miR-200b, -205, -200a, -141, -200chsa-miR-503,-876-3p, -144, -133a, -154Endometrial cancer tissue (n = 552)Normal endometrial tissue (n = 23)RT-PCR/bioinformatics
Guo S et al. [60]2019Pathol Res PractOriginal Article miR-204-5pEndometrial cancer tissue (n = 22)Adjacent healthy endometrial tissue RT-PCR/bioinformatics (TCGA)
Liu L et al. [61]2019Acta Biochim Biophys SinOriginal Article miR-27b-3pEndometrial cancer tissue (n = 66) RT-PCR/immunohistochimie
Xu et al. [62]2019Gynecol OncolOriginal Article miR-30c"Endometrial cancer tissue (n = 161): 141 endometrioid adenocarcinoma, 16 serous adenocarcinoma, and 4 clear cellAdjacent healthy endometrial tissueRT-PCR/immunohistochimie
Wang et al. [63]2019J Cell BiochemOriginal Articlehsa-miR-1269a, -205-5p, -4652-5p, -183-3p, -183-5p, -96-5p, -182-5p, -449b-5p, -4724-5p, -891a-5p Endometrial cancer tissue (n = 91)Adjacent healthy endometrial tissue bioinformatics TCGA
Kong et al. [64]2019J Int Med ResOriginal Article miR-29bEndometrial cancer Cell lines RT-PCR
Kozak et al. [65]2019Mol Cell BiochemOriginal ArticlemiR-200 family,-141 Endometrial cancer Cell lines RT-PCR
Dong et al. [66]2019J Exp Clin Cancer ResOriginal Article miR-361Endometrial cancer Cell lines RT-PCR
Chen P et al. [67]2019Biosci RepOriginal Article miR-202Endometrial cancer tissue (n = 76)Adjacent healthy endometrial tissueRT-PCR
Yi Su et al. [68]2019DNA Cell Biol.Original Article miR-142Endometrial cancer tissue (n = 49) RT-PCR
Hermyt et al. [69]2019Int J Mol SciOriginal ArticlemiR-331-3p, -182,-200c,-155,-200b,-874,-10a,-625,-let-7f,-let-7g,-let-7a-331,331-3p,-15bmiR-370, -432, -1296, -483-5pEndometrial cancer tissue (n = 40)Normal endometrial tissue (n = 20)RT-PCR
Zheng et al. [70]2019Cancer Biother RadiopharmOriginal Article miR-126Endometrial cancer tissue (n = 35): 28 endometrioid carcinoma, 3 serous carcinoma, 3 clear cell carcinoma, and 1 undifferentiated carcinomaNormal endometrial tissue (n = 35)immunofluorescence assay
X-C Li et al. [71]2019Eur Rev Med Pharmacol SciOriginal Article miR-218endometrial cancer tissue (n = 25)Adjacent healthy endometrial tissue RT-PCR
Asanoma et al. [72]2019OncotargetOriginal ArticlemiR-300 family Endometrial cancer tissue (n = 61); 29 stage IA, 15 stage IB, 1 stage IIA, 1 stage IIB, 2 stage IIIB, 11 stage IIIC, 2 stage IVB; 56 endometrioid cancer, 5 serous carcinomaStage 1A endometrioid endometrial cancer (n = 29)RT-PCR
Fang et al. [73]2019Onco targetOriginal Article miR-214-3pendometrial cancer tissue (n = 22)Adjacent healthy endometrial tissueRT-PCR
Wang et al. [74]2019pharmazieOriginal Article miR-363Endometrial cancer tissue (n = 36)Normal endometrial tissue (n = 36)RT-PCR
Deng et al. [75]2019Mol Med RepOriginal Article miR-195Endometrial cancer Cell lines RT-PCR
Gao et al. [76]2019Int J NanomedicineOriginal Article miR-326Endometrioid endometrial cancer tissue (n = 6) RT-PCR/bioinformatics
Wang et al. [77]2019Cancer Biother RadiopharmOriginal Article miR-589-5pEndometrial cancer tissue (n = 40)Adjacent healthy endometrial tissue RT-PCR
Wu et al. [78]2019Life SciOriginal ArticlemiR-616 Endometrial cancer tissue (n = 120)Adjacent healthy endometrial tissue RT-PCR
Zhang et al. [79]2019Kaohsiung J Med SciOriginal ArticlemiR-522 Endometrial cancer Cell lines RT-PCR/bioinformatics (TCGA)
Yuan et al. [80]2019Reprod SciOriginal Article miR-143,-145Endometrial cancer Cell lines RT-PCR
Chen et al. [81]2019Int J Clin Exp PatholOriginal ArticlemiR-135a Endometrial cancer Cell lines RT-PCR
Tan et al. [82]2019Pathol Res PractOriginal Article miR-495Endometrial cancer tissue (n = 30) RT-PCR
Zhou et al. [83]2019Biosci RepOriginal ArticlemiR-940 Endometrial cancer tissue (n = 546)Normal endometrial tissue (n = 33)RT-PCR/bioinformatics (TCGA)
Li et al. [84]2019GeneOriginal Article miR-29c-3pEndometrial cancer tissue (n = 80)Adjacent healthy endometrial tissue RT-PCR
Zhuang et al. [85]2019Endocr JOriginal ArticlemiR-181c Endometrial cancer Cell lines RT-PCR
Sun et al. [86]2019Mol Cell BiochemOriginal Article miR-214Endometrial cancer tissue (n = 27)Normal endometrial tissue (n = 18)RT-PCR
Shen et al. [87]2019Cell CycleOriginal Article miR-197Endometrial cancer tissue (n = 36) RT-PCR
Zhao et al. [88]2019J BiosciOriginal Article miR-195Endometrial cancer tissue (n = 30)Normal endometrial tissue (n = 26)RT-PCR
Liu, Y. et al. [89] 2018Mol. Cell. Biochem Original ArticlemiR-181c-3p, -25-5p miR-99a-3p, -96a-5p, -328-3p, -337-3p, let-7c-5p Endometrioid endometrial cancer tissue (n = 15) Adjacent healthy endometrial tissue (n =15) RT-PCR
Liu, Y. et al. [90]2018Cancer cell IntOriginal Article miR-139-5pEndometrial cancer tissue (n = 25)Normal endometrial tissue (n = 15)RT-PCR
Ma, J. et al. [91]2018Exp. Clin. Cancer Res Original Article miR-302a-5p, -367-3pEndometrial cancer tissue (n = 80)Normal endometrial tissue (n = 80)RT-PCR
Huang et al. [92]2018Biosci. Rep Original ArticlemiR-106b Endometrial cancer tissue (n = 20)Normal endometrial tissue (n = 20)RT-PCR
Fang et al. [93]2018Cell Biochem. Funct Original ArticlemiR-182,-183,-153,-27a,-96 Endometrial cancer tissue (n = 69); 33N+, 36N−Normal endometrial tissue (n = 10)RT-PCR
Ushakov et al. [94]2018Bull. Exp. Boil. Med Original Article miR-29c,-31,-185,-652Endometrioid endometrial cancers tissue FIGO I-II (n = 32) Adjacent healthy endometrial tissue (n =30) RT-PCR
Xiamei Sun [95]2018Mol cancer ResOriginal ArticlemiR-652 Endometrial serous carcinoma (n = 13) endometrioid carcinoma (n = 39)Normal endometrial tissue (n = 22)RT-PCR
Yun-Xiao Zhou [96]2018Int J Biochem Cell BiolOriginal ArticlemiR-146a Endometrial cancer tissueNormal endometrial tissueRT-PCR
Jie Li [97]2018Exp ther MedOriginal ArticlemiR-423 Endometrial cancer Cell lines RT-PCR
Yan Li [98]2018J Cell BiochemOriginal ArticlemiR-373 Endometrial cancer tissue (n = 64)Adjacent healthy endometrial tissue RT-PCR
Ying Liu [89]2018Mol Cell BiochemOriginal Article miR-101Endometrial cancer tissue (n = 30)Adjacent healthy endometrial tissue RT-PCR
Xiong H [99]2018J Cell BiochemOriginal ArticlemiR-183 Endometrial cancer tissue (n = 208)Adjacent healthy endometrial tissue RT-PCR
Hua Yan [100]2018Int J Mol MedOriginal Article miR-185-5pEndometrial cancer tissue (n = 156)Adjacent healthy endometrial tissue RT-PCR
Yu Huang [101]2018Int J Clin Exp PatholOriginal Article miR-20a-5pEndometrial cancer tissue (n = 41)Adjacent healthy endometrial tissue RT-PCR
Ruichao Chen [102]2018Cell Death DisOriginal ArticlemiR-200c Endometrial cancer tissue (n = 40)adjacent healthy endometrial tissueRT-PCR
Wei Bao [103]2018Oncol RepOriginal ArticlemiR-107-5p Endometrial cancer with lymphadenectomy positiveEndometrial cancer with lymphadenectomy negativeRT-PCR
Li Yang [104]2018Int J Clin Exp PatholOriginal ArticlemiR-210 Endometrial cancer tissue (n = 66);49 stage FIGO I, 7 stage II, 10 stage III RT-PCR
Yan et al. [105]2018Molecular Medicine ReportsOriginal ArticlemiR-944 Endometrial cancer tissue (n = 68); 54 endometrioid, 14 others, 55 FIGO I, 13 FIGO III-IV, 59 n+, 9 nNormal endometrial tissue (n = 20)RT-PCR
Xie et al. [106]2017Cancer Biomark Original Article miR-216bEndometrioid endometrial cancers tissue (n = 30); 12 FIGO I, 7 FIGO II, 11 FIGO IIIAdjacent healthy endometrial tissue (n =30) RT-PCR
Zhang et al. [107]2017Cancer Biomark Original Article miR-101Endometrial cancer tissue (n = 37); 21 FIGO I, 5 FIGO II, 4 FIGO III, 5 FIGO IVNormal endometrial tissue (n = 22)RT-PCR
Chen et al. [108]2017Oncol. Rep Original ArticlemiR-5785,-6749-5p,-1202miR-338-3p,-449a,-196aEndometrial cancer tissue (n = 15)Normal endometrial tissue (n = 15)RT-PCR
Wang Z et al. [109]2017Oncotarget Original ArticlemiR-522, miR-139-3p, miR-520c-5p, miR-518d-5p, miR-146b-5p, miR-34a, miR-526a, miR-193a-3p, miR-221, miR-4674 miR-760Endometrial cancer tissue Normal endometrial tissue (n = 15)RT-PCR
Liu et al. [110]2017Cancer biomark Original Article miR-1224,-1269,-182,-183, -200b, -205, -219-2, -449a, -891a, -96miR-1-2,-100,-101-2,-1247,-133a,-139,-143,-145,-3926-1,-99a Endometrial cancer tissue (n = 381) Bioinformatics (TCGA)
Ihira et al. [111] 2017Oncotarget Original Article miR-361 Endometrial cancer cell lines (n = 3), endometrial cancer tissue (n = 24) RT-PCR Ihira et al.
Cai et al. [112]2016Mol. Med. Rep Original ArticlemiR-337 Endometrial cancer tissue (n = 24)Adjacent healthy endometrial tissue (n =24) RT-PCR
Zhao et al. [113]2016Oncol. Lett Original Article miR-126Endometrial cancer tissue (n = 11)Adjacent healthy endometrial tissue (n =11) RT-PCR
Yoneyama et al. [114]2015Anticancer. Res Original ArticlemiR-200a,-200b,-429 Endometrioid endometrial cancers tissue (n = 7) Adjacent healthy endometrial tissue (n =7) RT-PCR
Zhou et al. [115]2015Drug Des. Dev. Ther Original ArticlemiR-181a Endometrioid endometrial cancers tissue (n = 47); 38 FIGO I-II, 9 FIGO III-IV, 5N+, 42N−Normal endometrial tissue (n = 13)RT-PCR
Kong et al. [116]2014PLoS ONE Original Article miR-30cEndometrioid endometrial cancers tissue (n = 21) Normal endometrial tissue (n = 14)RT-PCR
Jurcevic et al. [117]2014BMC Cancer Original ArticlemiR-183, -182, 429, -135a, -9-3p, -9, 135b, -200a-5p, -218, -18a-3p miR-1247, -199b-5p, -214, -370, -424-3p, -376c, -542-5p, -758, -377, 337-5p Endometrial cancer tissue (n = 30); 10 FIGO I, 10 FIGO II, 10 FIGO IIINormal endometrial tissue (n = 20)RT-PCR
Tsukamoto et al. [118]2014Gynecol. Oncol. Original ArticlemiR-499, -135b, -205 miR-10b, -195, -30a-5p, -30a-3p, -21 Endometrioid endometrial cancers tissue (n = 28); 7 FIGO IA, 4N+, 21 nNormal endometrial tissue (n = 14)RT-PCR
Xiong et al. [119]2014PLoS ONE Original ArticlemiR-181c-3p, -25-5p miR-99a-3p, -96a-5p, -328-3p, -337-3p, let-7c-5p Endometrioid endometrial cancer tissue (n = 15) Adjacent healthy endometrial tissue (n =15) RT-PCR
Xu et al. [120]2013FEBS J. Original Article miR-503Endometrial cancer tissue (n = 71)Normal endometrial tissue (n = 5), adjacent healthy endometrial tissue (n = 10)RT-PCR
Torres et al. [17]2013Int. J. Cancer Original ArticlemiR-9, -141, -183, -200a, -200a*, -200b, -200b*, -200c, -203, -205, -429, -96, -182, -135b miR-410Endometrioid endometrial cancer tissue (n = 77): 50 FIGO I,5 FIGO II,20 FIGO III,2 FIGO IV, 29 n+, 15 nNormal endometrial tissue (n = 31)RT-PCR
Torres et al. [121]2012BMC Cancer Original Article miR-99a, -100, -199b Endometrioid endometrial cancer tissue (n = 77): 50 FIGO I,5 FIGO II,20 FIGO III,2 FIGO, 29 n+, 15 nNormal endometrial tissue (n = 31)RT-PCR
Lee et al. [122]2012Mod. Pathol. Original ArticlemiR-182, -183, -200a, -200c, -205 Endometrial cancer tissue (n = 22): 15 FIGO IA, 5 FIGO IB, 2 FIGO IIIC1 Normal endometrial tissue (n = 10)RT-PCR
Karaayvaz et al. [123]2012PLoS ONE Original ArticlemiR-200c, -205 Endometrial cancer tissue (n = 48); 24 endometrioid, 13 serous, 5 clear cell, 6 othersAdjacent healthy endometrial tissue (n =48) RT-PCR
Zhao et al. [124] 2012 Plos One Original Article miR-106b-93-25 Endometrial cancer Cell lines RT-PCR
Snowdown et al. [125]2011PLoS ONE Original ArticlemiR-9/-9*, -18a, -96, -141, -146a, -200a/b/b*/c, -203, -205, -210, -421, -429, -516a-5p, -605, -614, -936 miR-10b*, -23a*, -100, -127-3p, -152, -199b-3p, -199b-5p, -370, 376a/c, -381, -410, -424, -424*, -431, -432, -503, -542-3/5p, -596,-610, -630, -632, -760 Endometrioid endometrial cancer tissue (n = 19); 9 FIGO IA, 4 FIGO IB, 1 FIGO IINormal endometrial tissue (n = 10)RT-PCR
Cohn et al. [126]2010Am. J. Obstet. Gynecol Original ArticlemiR-9, -19b; -146, -181c, -183, -200c, -205, -223, -423, -425 let-7a, miR-32, -33b, -369, -409, -424, -431, -451, -496, -503, -516 Endometrial cancer tissue (n = 141); 121 endometrioid FIGO I, 3 endometrioid FIGO III, 7 serous FIGO III, 4 endometrioid FIGO IV, 6 serous FIGO IV Normal endometrial tissue (n = 20)RT-PCR
Ratner et al. [127]2010Gynecol. OncolOriginal ArticlemiR-182, -183, -200a, -205, -34a, -572, -622, -650 miR-411, -487b Endometrioid endometrial cancer tissue (n = 30); 27 serous, 6 carcinosarcoma, 27 FIGO I, 12 FIGO II, 18 FIGO IIINormal endometrial tissue (n = 5)RT-PCR
Chung et al. [128]2009Int. J. Cancer Original ArticlemiR-10a, -17-5p, -23a*, -25, -28, -34a, -95, -103, -106a, -107, -130b, -141, -151, -155, -182, -183, -184, -191, -194, -200a/c, -203, -205, -210, -215, -223, -301, -325, -326, -330 Endometrioid endometrial cancer tissue (n = 30); 25 FIGO I–II, 5 FIGO III, 3 n+, 27 nNormal endometrial tissue (n = 22)RT-PCR
Wu et al. [129]2009Eur. J. Cancer Prev Original ArticlemiR-200c, -449, -205, -182, -429, -200b, -96, -31, -141, -200a, -363, -210, -432, -203, -10a, -155, -142-5pmiR-204, -193a, -368, -133b, -193b, -99b Endometrioid endometrial cancer tissue (n = 10); 5 FIGO I, 5 FIGO II Adjacent healthy endometrial tissue (n =10) RT-PCR
Boren et al. [130]2008Gynecol. Onco Original Articlelet-7c, miR-103,-106a,-107,-181a,-185,-210,-423let-7i, miR-30c,-152,-193,-221Endometrioid endometrial cancer tissue (n = 37) Normal endometrial tissue (n = 20)RT-PCR
FIGO: International Federation of Gynecology and Obstetrics, n: ganglionic status, RT-PCR: real-time polymerase chain reaction.
Table 2. DNA methylation levels of miRNA loci in endometrial tissues.
Table 2. DNA methylation levels of miRNA loci in endometrial tissues.
ReferenceDateType of Review Article Tumor Suppressor or OncomiR miRNA DNA Methylation Level Methylation Target Case Sample Case Control Detection Technique
Yang et al. [14]2020Original articleOncomiRmiR-191hypomethylationAPC via TET1Endometrial Cell lines Hydroxymethylated DNA Immunoprecipitation quantitative PCR
Ni J et al. [22]2020Original articletumor supressormiR-638hypermethylationmiRNA lociEndometrial cancer tissue (n = 68)Normal endometrial tissue (n = 68)bisulfite sequencing/PCR
Zhang et al. [23]2018Original article Tumor supressor miR-137hypermethylationmiRNA lociEndometrial cancer tissue (n = 67)Normal endometrial tissue (n = 10)COBRA assay
Yanokura et al. [24]2017Original articleTumor supressormiR-663hypermethylationmiRNA lociEndometrial cancer tissue (n = 25)Adjacent healthy tissue (n = 25)bisulfite sequencing/PCR
Devor et al. [25]2015Original articleOncomiRmiR-182hypomethylationmiRNA lociEndometrial cancer tissue (n = 34); 18 endometrioid, 16 serousNormal endometrial tissue (n = 6)bisulfite sequencing/PCR
Moreno-Moya et al. [139]2014Original articleOncomiRmiR-30dhypermethylationH19Endometrial epithelial cell (n = 4) anti-5-methylcytosine monoclonal antibody
Li et al. [135] 2013Original articleOncomiRmiR-200b hypomethylationmiRNA locilynch endometrial cancer tissue (n = 19), other endometrial cancer tissue (n = 64)Normal endometrial tissue (n = 22)bisulfite sequencing/PCR
Li et al. [135]2013Original articleOncomiRmiR-130a/b hypomethylationmiRNA locilynch endometrial cancer tissue (n = 19), other endometrial cancer tissue (n = 64)Normal endometrial tissue (n = 22)bisulfite sequencing/PCR
Li et al. [135]2013Original articleOncomiRmiR-625hypomethylationmiRNA locilynch endometrial cancer tissue (n = 19), other endometrial cancer tissue (n = 64)Normal endometrial tissue (n = 22)bisulfite sequencing/PCR
Li et al. [135] 2013Original articleOncomiRmiR-222 hypomethylationmiRNA locilynch endometrial cancer tissue (n = 19), other endometrial cancer tissue (n = 64)Normal endometrial tissue (n = 22)bisulfite sequencing/PCR
Hiroki et al. [136]2012Original articleTumor supressormiR-34bhypermethylationmiRNA lociEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 7)bisulfite sequencing/PCR
Pavicic et al. [137]2011original articleTumor supressormiR-124a-1 miRNA lociEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 41)bisulfite sequencing/PCR
Pavicic et al. [137]2011original articleTumor supressormiR-124a-2hypermethylationmiRNA lociEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 41)bisulfite sequencing/PCR
Pavicic et al. [137]2011original articleTumor supressormiR-124a-3hypermethylationmiRNA lociEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 41)bisulfite sequencing/PCR
Tsuruta et al. [21]2011original articleTumor supressormiR-152hypermethylationmiRNA lociEndometrial cancer tissue (n = 70); 38 stage I, 8 stage II, 21 stage III, 3 stage IV bisulfite sequencing/PCR
Pavicic et al. [137] 2011Original articleOncomiRmiR-208ahypomethylationmiRNA lociEndometrial cancer tissue (n = 41)Normal endometrial tissue (n = 41)bisulfite sequencing/PCR
Huang et al. [138]2009original articleTumor supressormiR-129-2hypermethylationmiRNA lociEndometrial cancer tissue (n = 117)Normal endometrial tissue (n = 7)bisulfite sequencing/PCR
COBRA: The Combined Bisulfite Restriction Analysis; PCR: polymerase chain reaction.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Favier, A.; Rocher, G.; Larsen, A.K.; Delangle, R.; Uzan, C.; Sabbah, M.; Castela, M.; Duval, A.; Mehats, C.; Canlorbe, G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers 2021, 13, 1137. https://doi.org/10.3390/cancers13051137

AMA Style

Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers. 2021; 13(5):1137. https://doi.org/10.3390/cancers13051137

Chicago/Turabian Style

Favier, Amélia, Grégoire Rocher, Annette K. Larsen, Romain Delangle, Catherine Uzan, Michèle Sabbah, Mathieu Castela, Alex Duval, Céline Mehats, and Geoffroy Canlorbe. 2021. "MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review" Cancers 13, no. 5: 1137. https://doi.org/10.3390/cancers13051137

APA Style

Favier, A., Rocher, G., Larsen, A. K., Delangle, R., Uzan, C., Sabbah, M., Castela, M., Duval, A., Mehats, C., & Canlorbe, G. (2021). MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers, 13(5), 1137. https://doi.org/10.3390/cancers13051137

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop