Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Comparison of Parameters between Benign and Malignant Lesions
2.2. Effect of SUVmax on DCE-MRI Parameters
2.3. Pearson Correlation between Perfusion Parameters of Intraprostatic Lesions
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. [68Ga]Ga-PSMA-11 PET/MRI Imaging Protocol
4.3. Image Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AT | Arrival time; |
BPH | Benign prostatic hyperplasia; |
CT | Computed tomography; |
DCE-MRI | Dynamic contrast-enhanced magnetic resonance imaging; |
DWI | Diffusion-weighted imaging; |
FOV | Field of view; |
Ga | Gallium; |
GS | Gleason score; |
iAUC | initial area under curve; |
MRI | Magnetic resonance imaging; |
mpMRI | Multiparametric magnetic resonance imaging; |
PCa | Prostate cancer; |
PEI | Peak enhancement intensity; |
PET/CT | Positron emission tomography / computed tomography; |
PET/MR | Positron emission tomography /magnetic resonance; |
PI-RADS | Prostate Imaging Reporting and Data System; |
PSA | Prostate-specific antigen; |
PSMA | Prostate-specific membrane antigen; |
ROI | Region of interest; |
SUV | Standardized uptake value; |
TE | Echo time; |
TR | Repetition time; |
TTP | Time to peak; |
T2WI | T2-weighted imaging; |
W-in | Wash-in slope; |
W-out | Wash-out slope. |
References
- Miller, K.D.; Siegel, R.L.; Khan, R.; Jemal, A. Cancer Statistics. Cancer Rehabil. 2018, 70, 7–30. [Google Scholar] [CrossRef]
- Delongchamps, N.B.; Rouanne, M.; Flam, T.; Beuvon, F.; Liberatore, M.; Zerbib, M.; Cornud, F. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: Combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2010, 107, 1411–1418. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Jackson, A.; Parker, G.J.M.; Roberts, C.; Jayson, G.C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Oncol. 2012, 9, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Lissbrant, I.F.; Stattin, P.; Damber, J.-E.; Bergh, A. Vascular density is a predictor of cancer-specific survival in prostatic carcinoma. Prostate 1997, 33, 38–45. [Google Scholar] [CrossRef]
- de la Taille, A.; Katz, A.E.; Bagiella, E.; Buttyan, R.; Sharir, S.; Olsson, C.A.; Burchardt, T.; Ennis, R.D.; Rubin, M.A. Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. Am. J. Clin. Pathol. 2000, 113, 555–562. [Google Scholar] [CrossRef]
- Tan, C.H.; Hobbs, B.P.; Wei, W.; Kundra, V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: Meta-analysis. Am. J. Roentgenol. 2015, 204, W439–W448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.C.; Pien, H.H.; Sahani, D.; Sorensen, A.G.; Thrall, J.H. Imaging Angiogenesis: Applications and Potential for Drug Development. J. Natl. Cancer Inst. 2005, 97, 172–187. [Google Scholar] [CrossRef]
- Khalifa, F.; Soliman, A.; El-Baz, A.; El-Ghar, M.A.; El-Diasty, T.; Gimel’Farb, G.; Ouseph, R.; Dwyer, A.C. Models and methods for analyzing DCE-MRI: A review. Med. Phys. 2014, 41, 124301. [Google Scholar] [CrossRef]
- Winkel, D.J.; Heye, T.J.; Benz, M.R.; Glessgen, C.G.; Wetterauer, C.; Bubendorf, L.; Block, T.K.; Boll, D.T. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology 2019, 290, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.S.; Kwon, H.-J.; Park, B.-W.; Cho, G.; Lee, C.K.; Cho, K.-S.; Kim, J.K. Prostate Cancer Detection on Dynamic Contrast-Enhanced MRI: Computer-Aided Diagnosis Versus Single Perfusion Parameter Maps. Am. J. Roentgenol. 2011, 197, 1122–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kader, A.; Brangsch, J.; Kaufmann, J.O.; Zhao, J.; Mangarova, D.B.; Moeckel, J.; Adams, L.C.; Sack, I.; Taupitz, M.; Hamm, B.; et al. Molecular MR Imaging of Prostate Cancer. Biomedicines 2020, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, K.; Weckesser, M.; Huss, S.; Semjonow, A.; Breyholz, H.-J.; Schrader, A.J.; Schäfers, M.; Bögemann, M. Correlation of Intraprostatic Tumor Extent with 68Ga-PSMA Distribution in Patients with Prostate Cancer. J. Nucl. Med. 2016, 57, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Ceci, F.; Cho, S.; Giesel, F.; Haberkorn, U.; Hope, T.A.; Kopka, K.; et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1014–1024. [Google Scholar] [CrossRef] [PubMed]
- Souvatzoglou, M.; Eiber, M.; Martínez-Moeller, A.; Fürst, S.; Holzapfel, K.; Maurer, T.; Ziegler, S.; Nekolla, S.; Schwaiger, M.; Beer, A.J. PET/MR in prostate cancer: Technical aspects and potential diagnostic value. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 79–88. [Google Scholar] [CrossRef]
- Zhao, J.; Hamm, B.; Brenner, W.; Makowski, M.R. Lesion-to-background ratio threshold value of SUVmax of simultaneous [68Ga]Ga-PSMA-11 PET/MRI imaging in patients with prostate cancer. Insights Imaging 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Souvatzoglou, M.; Eiber, M.; Takei, T.; Fürst, S.; Maurer, T.; Gaertner, F.; Geinitz, H.; Drzezga, A.; Ziegler, S.; Nekolla, S.G.; et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1486–1499. [Google Scholar] [CrossRef]
- Guberina, N.; Hetkamp, P.; Ruebben, H.; Fendler, W.; Grueneisen, J.; Suntharalingam, S.; Kirchner, J.; Puellen, L.; Harke, N.; Radtke, J.P.; et al. Whole-Body Integrated [68Ga]PSMA-11-PET/MR Imaging in Patients with Recurrent Prostate Cancer: Comparison with Whole-Body PET/CT as the Standard of Reference. Mol. Imaging Biol. 2019, 22, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Mansbridge, M.; Chung, E.; Rhee, H. The Use of MRI and PET Imaging Studies for Prostate Cancer Management: Brief Update, Clinical Recommendations, and Technological Limitations. Med. Sci. 2019, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Kranzbühler, B.; Müller, J.; Becker, A.S.; Schüler, H.I.G.; Muehlematter, U.J.; Fankhauser, C.D.; Kedzia, S.; Guckenberger, M.; Kaufmann, P.A.; Eberli, D.; et al. Detection Rate and Localization of Prostate Cancer Recurrence Using 68Ga-PSMA-11 PET/MRI in Patients with Low PSA Values ≤ 0.5 ng/mL. J. Nucl. Med. 2019, 61, 194–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H.P.; Fenchel, M.; Eder, M.; Eisenhut, M.; Hadaschik, B.A.; Kopp-Schneider, A.; Röthke, M. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: Initial experience. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 887–897. [Google Scholar] [CrossRef]
- Zhao, J.; Mangarova, D.B.; Brangsch, J.; Kader, A.; Hamm, B.; Brenner, W.; Makowski, M.R. Correlation between Intraprostatic PSMA Uptake and MRI PI-RADS of [68Ga]Ga-PSMA-11 PET/MRI in Patients with Prostate Cancer: Comparison of PI-RADS Version 2.0 and PI-RADS Version 2.1. Cancers 2020, 12, 3523. [Google Scholar] [CrossRef] [PubMed]
- Lecouvet, F.E.; El Mouedden, J.; Collette, L.; Coche, E.; Danse, E.; Jamar, F.; Machiels, J.P.; Berg, B.V.; Omoumi, P.; Tombal, B. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur. Urol. 2012, 62, 68–75. [Google Scholar] [CrossRef]
- Hara, N.; Okuizumi, M.; Koike, H.; Kawaguchi, M.; Bilim, V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 2004, 62, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Hamm, B.; Asbach, P. Magnetic Resonance Imaging of the Prostate in the PI-RADS Era. Dis. Abdomen Pelvis 2018, 2018–2021, 99–115. [Google Scholar]
- Maurer, T.; Eiber, M.; Schwaiger, M.E.M.; Gschwend, T.M.J.E. Current use of PSMA–PET in prostate cancer management. Nat. Rev. Urol. 2016, 13, 226–235. [Google Scholar] [CrossRef]
- Berman, R.M.; Brown, A.M.; Chang, S.D.; Sankineni, S.; Kadakia, M.; Wood, B.J.; Pinto, P.A.; Choyke, P.L.; Turkbey, B. DCE MRI of prostate cancer. Abdom. Radiol. 2016, 41, 844–853. [Google Scholar] [CrossRef]
- Vos, E.K.; Litjens, G.J.; Kobus, T.; Hambrock, T.; de Kaa, C.A.H.-V.; Barentsz, J.O.; Huisman, H.J.; Scheenen, T.W. Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T. Eur. Urol. 2013, 64, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-J.; Chu, W.-C.; Pu, Y.-S.; Chueh, S.-C.; Shun, C.-T.; Tseng, W.-Y.I. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J. Magn. Reson. Imaging 2012, 36, 912–919. [Google Scholar] [CrossRef]
- van Niekerk, C.G.; van der Laak, J.A.; Hambrock, T.; Huisman, H.J.; Witjes, J.A.; Barentsz, J.O.; de Kaa, C.A.H. Correlation between dynamic contrast-enhanced MRI and quantitative histopathologic microvascular parameters in organ-confined prostate cancer. Eur. Radiol. 2014, 24, 2597–2605. [Google Scholar] [CrossRef]
- Ren, J.; Huan, Y.; Wang, H.; Chang, Y.-J.; Zhao, H.-T.; Ge, Y.-L.; Liu, Y.; Yang, Y. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: Correlation with angiogenesis. Clin. Radiol. 2008, 63, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.; Kang, D.K.; Yoon, D.; Jung, Y.S.; Kim, K.S.; Yim, H.; Kim, T.H. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur. Radiol. 2014, 24, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet 2016, 388, 518–529. [Google Scholar] [CrossRef]
- Folkman, J. The role of angiogenesis in tumor growth. Semin. Cancer Biol. 1992, 3, 45–71. [Google Scholar]
- Borre, M.; Offersen, B.V.; Nerstrøm, B.; Overgaard, J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br. J. Cancer 1998, 78, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Conway, R.E.; Petrovic, N.; Li, Z.; Heston, W.; Wu, D.; Shapiro, L.H. Prostate-Specific Membrane Antigen Regulates Angiogenesis by Modulating Integrin Signal Transduction. Mol. Cell. Biol. 2006, 26, 5310–5324. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.S.; Reuter, V.E.; Heston, W.D.; Bander, N.H.; Grauer, L.S.; Gaudin, P.B. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999, 59, 3192–3198. [Google Scholar] [PubMed]
- Singanamalli, A.; Rusu, M.; Sparks, R.E.; Shih, N.N.; Ziober, A.; Wang, L.-P.; Tomaszewski, J.; Rosen, M.; Feldman, M.; Madabhushi, A. Identifying in vivo DCE MRI markers associated with microvessel architecture and gleason grades of prostate cancer. J. Magn. Reson. Imaging 2015, 43, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Ouden, D.; Kranse, R.; Hop, W.C.; van der Kwast, T.H.; Schroder, F.H. Microvascular invasion in prostate cancer: Prognostic significance in patients treated by radical prostatectomy for clinically localized carcinoma. Urol. Int. 1998, 60, 17–24. [Google Scholar] [CrossRef]
- Antunes, A.A.; Srougi, M.; Dall’Oglio, M.F.; Crippa, A.; Paranhos, M.; Cury, J.; Nesrallah, L.J.; Leite, K.R. Microvascular invasion is an independent prognostic factor in patients with prostate cancer treated with radical prostatectomy. Int. Braz. J. Urol. 2006, 32, 668–677. [Google Scholar] [CrossRef]
- Salomao, D.R.; Graham, S.D.; Bostwick, D.G. Microvascular invasion in prostate cancer correlates with pathologic stage. Arch. Pathol. Lab. Med. 1995, 119, 1050–1054. [Google Scholar]
- Shabsigh, A.; Chang, D.T.; Heitjan, D.F.; Kiss, A.; Olsson, C.A.; Puchner, P.J.; Buttyan, R. Rapid reduction in blood flow to the rat ventral prostate gland after castration: Preliminary evidence that androgens influence prostate size by regulating blood flow to the prostate gland and prostatic endothelial cell survival. Prostate 1998, 36, 201–206. [Google Scholar] [CrossRef]
- Shabsigh, A.; Lee, B.; Buttyan, R. Unique morphological aspects of the rat ventral prostate gland revealed by vascular corrosion casting. Prostate 1999, 39, 240–245. [Google Scholar] [CrossRef]
- Røe, K.; Mikalsen, L.T.; Van Der Kogel, A.J.; Bussink, J.; Lyng, H.; Ree, A.H.; Marignol, L.; Olsen, D.R. Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer. Radiat. Oncol. 2012, 7, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, L.E.; Logue, J.P.; Hutchinson, C.E.; Clarke, N.W.; Buckley, D.L. Late tissue effects following radiotherapy and neoadjuvant hormone therapy of the prostate measured with quantitative magnetic resonance imaging. Radiother. Oncol. 2008, 88, 127–134. [Google Scholar] [CrossRef]
- Hodge, K.K.; McNeal, J.E.; Terris, M.K.; Stamey, T.A. Random Systematic Versus Directed Ultrasound Guided Transrectal Core Biopsies of the Prostate. J. Urol. 1989, 142, 71–74. [Google Scholar] [CrossRef]
- Elabbady, A.A.; Khedr, M.M. Extended 12-Core Prostate Biopsy Increases Both the Detection of Prostate Cancer and the Accuracy of Gleason Score. Eur. Urol. 2006, 49, 49–53. [Google Scholar] [CrossRef]
- Uno, H.; Nakano, M.; Ehara, H.; Deguchi, T. Indications for Extended 14-Core Transrectal Ultrasound-Guided Prostate Biopsy. Urology 2008, 71, 23–27. [Google Scholar] [CrossRef]
- Turkbey, B.; Rosenkrantz, A.B.; Haider, M.A.; Padhani, A.R.; Villeirs, G.; Macura, K.J.; Tempany, C.M.; Choyke, P.L.; Cornud, F.; Margolis, D.J.; et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. Eur. Urol. 2019, 76, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Fiedler, H.; Stefanova, M.; Sterzing, F.; Rius, M.; Kopka, K.; Moltz, J.H.; Afshar-Oromieh, A.; Choyke, P.L.; Haberkorn, U.; et al. PSMA PET/CT with Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1794–1800. [Google Scholar] [CrossRef] [Green Version]
- Woythal, N.; Arsenic, R.; Kempkensteffen, C.; Miller, K.; Janssen, J.-C.; Huang, K.; Makowski, M.R.; Brenner, W.; Prasad, V. Immunohistochemical Validation of PSMA Expression Measured by 68Ga-PSMA PET/CT in Primary Prostate Cancer. J. Nucl. Med. 2018, 59, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Benign Lesions | Malignant Lesions | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 2.3 | 1.5 | 3.7 | 7.0 | 4.2 | 11.5 | p < 0.05 * |
AT(min) | 0.47 | 0.40 | 0.57 | 0.47 | 0.39 | 0.56 | p > 0.05 |
TTP(min) | 1.09 | 0.84 | 1.32 | 0.95 | 0.75 | 1.22 | p < 0.05 * |
W-in | 0.13 | 0.07 | 0.18 | 0.12 | 0.08 | 0.22 | p >0.05 |
W-out | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | p >0.05 |
PEI | 0.21 | 0.15 | 0.28 | 0.20 | 0.15 | 0.26 | p > 0.05 |
iAUC | 0.08 | 0.05 | 0.11 | 0.08 | 0.05 | 0.12 | p > 0.05 |
Parameter | SUVmax ≤ 3.0 | SUVmax > 3.0 | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 1.6 | 1.2 | 2.3 | 4.7 | 3.6 | 6.2 | p < 0.05 * |
AT(min) | 0.47 | 0.39 | 0.58 | 0.47 | 0.44 | 0.56 | p > 0.05 |
TTP(min) | 1.13 | 0.92 | 1.35 | 0.92 | 0.78 | 1.24 | p > 0.05 |
W-in | 0.13 | 0.07 | 0.18 | 0.13 | 0.08 | 0.21 | p > 0.05 |
W-out | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | p >0.05 |
PEI | 0.21 | 0.16 | 0.28 | 0.21 | 0.12 | 0.27 | p > 0.05 |
iAUC | 0.09 | 0.05 | 0.11 | 0.07 | 0.05 | 0.12 | p > 0.05 |
Parameter | SUVmax ≤ 3.0 | SUVmax > 3.0 | |||||
---|---|---|---|---|---|---|---|
Median | Q1 | Q3 | Median | Q1 | Q3 | p Value | |
SUVmax | 2.0 | 1.0 | 2.2 | 8.2 | 5.5 | 12.2 | p < 0.05 * |
AT(min) | 0.49 | 0.47 | 0.98 | 0.47 | 0.39 | 0.55 | p > 0.05 |
TTP(min) | 0.95 | 0.66 | 1.12 | 0.96 | 0.77 | 1.22 | p > 0.05 |
W-in | 0.16 | 0.08 | 0.28 | 0.12 | 0.08 | 0.22 | p > 0.05 |
W-out | 0.01 | −0.003 | 0.02 | 0.01 | 0.01 | 0.02 | p > 0.05 |
PEI | 0.20 | 0.14 | 0.32 | 0.21 | 0.15 | 0.25 | p > 0.05 |
iAUC | 0.08 | 0.05 | 0.19 | 0.08 | 0.05 | 0.12 | p > 0.05 |
AT | TTP | W-in | W-out | PEI | iAUC | |
---|---|---|---|---|---|---|
AT | 1 | −0.17 * | 0.18 * | −0.05 | −0.004 | 0.18 * |
TTP | - | 1 | −0.45 ** | 0.71 ** | 0.17 * | −0.31 ** |
W-in | - | - | 1 | −0.30 ** | 0.57 ** | 0.95 ** |
W-out | - | - | - | 1 | 0.41 ** | −0.18 * |
PEI | - | - | - | - | 1 | 0.70 ** |
iAUC | - | - | - | - | - | 1 |
Characteristics | N = 39 |
---|---|
Age at scan (years) | 69 ± 9 |
PSA (ng/ml) at scan time | 8.70(5.18, 18.83) |
Biopsy Gleason score (n) | |
3 + 3 | 8 |
3 + 4 | 8 |
4 + 3 | 8 |
4 + 4 | 7 |
4 + 5 | 2 |
5 + 4 | 3 |
5 + 5 | 3 |
Treatment | |
ADT prior to scan (n) | 2 |
ADT ongoing at the time of scan (n) | 3 |
Radiotherapy prior to scan (n) | 3 |
Sequence | TR/TE (msec) | FOV (mm) | Flip Angle (Degrees) | Section Thickness (mm) | Voxel Size (mm) |
---|---|---|---|---|---|
T2WI HASTEAxial | 1400.0/95.0 | 400 | 160 | 5.0 | 1.3 × 1.3 × 5.0 |
T1WI FS VIBE | 1600.0/96.0 | 350 | 160 | 4.0 | 1.1 × 1.1 × 4.0 |
T2WI Axial | 5500.0/103.0 | 180 | 150 | 3.0 | 0.5 × 0.5 × 3.0 |
T2WI Sagittal | 1600.0/96.0 | 350 | 160 | 4.0 | 1.1 × 1.1 × 4.0 |
T2WI Coronal | 4500.0/102.0 | 200 | 173 | 3.0 | 0.4 × 0.4 × 3.0 |
DWI | 11,600.0/70.0 | 280 | 3.0 | 2.5 × 2.5 × 3.0 | |
T1WI FS TWIST dynamic | 7.41/3.30 | 260 | 12 | 3.5 | 1.4 × 1.4 × 3.5 |
T1WI STARVIBE | 3.71/1.77 | 360 | 9 | 1.2 | 1.1 × 1.1 × 1.2 |
Parameter | Definition |
---|---|
AT | arrival time: point in time when contrast enhancement starts |
TTP | time to peak: time from arrival time to end of wash-in |
W-in | wash-in: slope of the fitted line between AT and end of wash-in |
W-out | wash-out: slope of the fitted line between start of wash-out and end of measurement |
PEI | peak enhancement intensity: value of concentration when the contrast enhancement reaches the highest concentration |
iAUC | initial area under curve in 60 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Kader, A.; Mangarova, D.B.; Brangsch, J.; Brenner, W.; Hamm, B.; Makowski, M.R. Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers 2021, 13, 1404. https://doi.org/10.3390/cancers13061404
Zhao J, Kader A, Mangarova DB, Brangsch J, Brenner W, Hamm B, Makowski MR. Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers. 2021; 13(6):1404. https://doi.org/10.3390/cancers13061404
Chicago/Turabian StyleZhao, Jing, Avan Kader, Dilyana B. Mangarova, Julia Brangsch, Winfried Brenner, Bernd Hamm, and Marcus R. Makowski. 2021. "Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters" Cancers 13, no. 6: 1404. https://doi.org/10.3390/cancers13061404
APA StyleZhao, J., Kader, A., Mangarova, D. B., Brangsch, J., Brenner, W., Hamm, B., & Makowski, M. R. (2021). Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers, 13(6), 1404. https://doi.org/10.3390/cancers13061404